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Abstract

Starch is the most important food energy source in cereals. Many of the known enzymes

involved in starch biosynthesis are partially or entirely granule-associated in the endosperm.

Studying the proteome of rice starch granules is critical for us to further understand the

mechanisms underlying starch biosynthesis and packaging of starch granules in rice amylo-

plasts, consequently for the improvement of rice grain quality. In this article, we developed a

protocol to purify starch granules from mature rice endosperm and verified the quality of

purified starch granules by microscopy observations, I2 staining, and Western blot analyses.

In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction

method with respect to the efficiency in recovery of starch granule associated proteins. LC-

MS/MS analysis showed identification of already known starch granule associated proteins

with high confidence. Several proteins reported to be involved in starch synthesis in prior

genetic studies in plants were also shown to be enriched with starch granules, either directly

or indirectly, in our studies. In addition, our results suggested that a few additional candidate

proteins may also be involved in starch synthesis. Furthermore, our results indicated that

some starch synthesis pathway proteins are subject to protein acetylation modification. GO

analysis and KEGG pathway enrichment analysis showed that the identified proteins were

mainly located in plastids and involved in carbohydrate metabolism. This study substantially

advances the understanding of the starch granule associated proteome in rice and post

translational regulation of some starch granule associated proteins.

Introduction

Rice (Oryza sativa L.) is one of the most vital crops in the world, which serves as the staple

food for over half of the world’s population [1]. Rice endosperm is mainly composed of starch,

a good source of carbohydrates [2]. The eating and cooking quality of rice-grain is directly

connected to the starch composition in rice endosperm [3, 4]. There are two major types of

starch in rice grains, highly structurally organized branched amylopectin and relatively
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unbranched amylose. The rice cooking quality and taste properties are primarily determined

by the amylose/total starch ratio (amylose ratio or amylose content, AC) [5]. Rice varieties

with high amylose content are cooked drier, with stiff and split up grain; while varieties with

low amylose content are softer, with a more polished appearance, and sticky texture after cook-

ing [6].

Starch, including both amylose and amylopectin, synthesized in chloroplasts is referred to

as transient starch, while starch synthesized in amyloplasts is known as storage starch [7].

Located in starch granules in cereal endosperm, storage starch consists of glucose units com-

bined by α-D-(1, 4)-glycosidic bond linkage producing linear chains, which have branch

points introduced by α-D-(1, 6)-glycosidic bond linkages [7, 8]. The amylose molecules are

essentially linear with less than 1% glucose units participating in α-(1, 6) bonds [7]. Differing

from amylose, amylopectin is a branched polymer with roughly 5–6% branches [7]. One or

more starch granule(s) can be packaged into an amyloplast [9].

Five classes of enzymes have been reported to be involved in starch biosynthesis. These

enzymes consist of ADP-glucose pyrophosphorylase (AGPase), which produces the activated

glucosyl donor ADP-glucose (ADPG) for starch synthesis; soluble starch synthase (SSS), which

plays an important role in chain extension of starch; granule-bound starch synthase (GBSS),

which is involved in both amylose and amylopectin biosynthesis in starch granule; starch

branching enzyme (SBE) and starch debranching enzyme (DBE), which both influence the

fine structure of amylopectin [10–15]. Each of these enzymes harbors several subunits or iso-

forms in plants [14]. AGPase has two isoforms, one isoform is a key cytosolic enzyme, while

the other form plays a small enzymatic role in plastids [14–17]. AGPase is the first enzyme in

the starch biosynthesis pathway that generates ADPglc, which is the sugar nucleotide used by

starch synthesis enzymes in the amyloplast [14–16]. A portion of the produced ADPglc is then

transported into the amyloplasts by the BRITTLE-1 (OsBT1) protein and used for starch syn-

thesis [18, 19]. BRITTLE-1 (OsBT1) is a plastidial envelope protein functioning as an adenylate

translocator [18, 19]. Two isoforms of GBSS have been found in rice: OsGBSS 1 located in the

grain and OsGBSS 2 is mainly found in leaf [14, 20]. Given its exclusive location inside of the

starch granule, some scientists consider GBSS as the most important enzyme in storage starch

biosynthesis, especially in forming the extra-long chains of amylopectin [21]. SSS functions in

extending the main oligosaccharide chains of amylopectin with the addition of hexose sequen-

tially. Four isoforms of SSS have been reported, including SSS1, SSS2 (SSS2A /SSSII-3, SSS2B

/SSSII-2, SSS2C/SSSII-1), SSS3 (SSS3A/SSSIII-2, SSS3B/SSSIII-1), and SSS4 (SSS4A/SSSIV-1,

and SSS4B/ SSSIV-2) [14, 15]. Individual starch synthase isoforms can have unique roles [13]

or overlapping functions in starch biosynthesis [22]. Both SBE and DBE are responsible for the

fine structure of amylopectin [23], and there are four isoforms of SBE in rice grain including

OsSBE1, OsSBE3 (OsQEIIa, or OsBEIIb), and OsSBE4 (OsQEIIb, or OsBEIIa) [14, 24, 25],

while two types of DBE isoforms including isoamylase (OsISO) and pullulanase (OsPUL) have

been identified in rice. ISO has at least three isoforms (OsISO1, OsISO2, and OsISO3), but no

isoforms of PUL has been reported in rice [14, 26]. Many of these enzymes are allocated

amongst the soluble fraction of the plastids and the insoluble starch granules in rice endo-

sperm [7, 27]. Some of these enzymes might physically associate [13] and assemble into func-

tional complexes [28].

Starch in rice endosperm is mainly synthesized in the amyloplast by a series of enzymes

[10–16, 19–26]. Except for some soluble enzymes existing in the amyloplast stroma [16, 29,

30], most enzymes involved in starch biosynthesis are entirely or partially starch granule-asso-

ciated and starch is deposited in a well-organized structure with layers of crystalline lamella

and amorphous lamella arranged alternatively [7, 8, 31–34]. Given that senescence immedi-

ately follows starch synthesis in rice seeds and the unique structure of starch granule prevents

Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm

PLOS ONE | DOI:10.1371/journal.pone.0168467 December 19, 2016 2 / 20

Competing Interests: The authors declare that they

have no competing interests.



other enzymes from freely entering and leaving the starch granule [35, 36], it is for good reason

to hypothesize that many starch synthesis related proteins are entrapped in the matured starch

granules. Identification of these proteins would provide insight into mechanisms of starch syn-

thesis, regulation of rice grain quality and the structure of starch granules. Unfortunately, little

is known about the starch granule proteome in rice thus far although several studies have been

published in maize, wheat, barley and other plants [37–39]. To better understand all the pro-

teins associated with the starch granule and the packaging of starch granule components, we

developed a protocol for rice starch granule purification from mature endosperm, examined

the starch granule proteome using LC-MS/MS, and compared the proteomes extracted by two

different protein extraction methods. The results provided a reliable method for starch granule

purification and novel insight into starch granule proteome composition as well as post trans-

lational modification of some starch granule associated proteins.

Results and Discussion

Starch granule purification from mature rice endosperm and examination

To study the starch granule proteome of rice, we developed a protocol to purify starch granules

from mature rice endosperm with reference to other cereal’s starch granule purification proto-

cols [7, 38, 40]. The general procedure used for rice starch granule extraction is shown in a

work flow diagram (Fig 1). With this method, highly purified starch granules were obtained in

a large scale.

To examine the quality of the purified starch granules, the resulting starch granules were

stained by I2 and examined under a microscope (Fig 2A). The blue color indicated that the

purified particles could be stained by I2 and the estimated size of the purified particles was

about 10 μm in diameter, which is consistent with the reported starch granule size [41].

To further evaluate the purity of the starch granules that we obtained, SEM observation was

carried out. The rice endosperm fragments, the intermediate products of the starch granule

purification steps, and the purified starch granules were monitored (Fig 2B–2I). As shown in

Fig 2, individual starch granules could hardly be seen in intact endosperm (B), large endo-

sperm fragments (C and D), and the large sediments of spin washing (F). While, an individual

starch granule can be seen in partially purified starch granules (E), and purified starch granules

(G, H, and I). In addition, the crystal structure is very clear under SEM. Given that the purified

starch granules were well stained by I2 (Fig 2A), the results suggested that our starch granule

preparation was of good quality.

SDS-PAGE and Western blot analyses of purified rice starch granule

proteome

To examine and identify the starch granule proteome, we extracted the proteins using phenol

extraction method as reported previously [42, 43] and compared the starch granule proteome

with the rice endosperm total proteome on a SDS-PAGE. As shown in Fig 3, glutelins were the

predominant proteins of rice endosperm total proteome as we reported before [44]. The most

abundant protein (the thickest band) in the purified starch granule proteome was not visible

in the total protein lane, suggesting a good enrichment of the protein during purification. This

thick band, verified by LC-MS/MS identification, was GBSS I (granule-bound starch synthase

I) (Fig 3), which is consistent with GBSS I being the major component in starch granules [10,

45–47], Meanwhile, the most abundant proteins (the glutelins) in the endosperm total prote-

ome became barely visible in the purified starch granule proteome. These results demonstrated

that glutelins were mostly removed and starch granule associated proteins were effectively
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Fig 1. Work flow diagram showing the steps of the starch granule purification. Mature rice endosperm were used as the

starting materials for this experiment. The final products were the purified starch granules used for further experiments in this

report.

doi:10.1371/journal.pone.0168467.g001
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enriched. Given that the storage proteins are highly abundant in the seeds, however, it is

impossible to completely remove the storage proteins during purification unless highly specific

affinity purification steps are used.

To further validate the effectiveness of starch granule purification, we carried out Western

blot analysis with antibodies specific for known cytosolic and organelle proteins. The Western

Fig 2. Image of purified starch granules and the intermediate products of purification. A: I2 stain image of the purified starch granules.

Microscope observation with 40 × amplification; B: Cross section image of rice endosperm viewed by SEM. 6k amplification; C: Large

endosperm fragment image under SEM. 6k amplification; D: Endosperm fragment image under SEM. 6k amplification; E: Partially purified

starch granule image under SEM, 6k amplification; F: The sediments of grounded endosperm image under SEM, 6k amplification; G-I:

Purified starch granule image at different magnifications under SEM. G: 1 k amplification; H: 6k amplification; I: 24 k amplification.

doi:10.1371/journal.pone.0168467.g002
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blot results showed that plant vacuolar proteins VHA-E and VHA-A were detected in the rice

endosperm total proteins but were not detected in the protein preparation of purified starch

granules (Fig 4A). Similarly, cytosolic protein cFBPase and chloroplast protein Rubisco were

also detected in the rice endosperm total protein but not in the protein preparation of purified

starch granules (Fig 4A). These results indicated that the cytosolic and other organelle proteins

were effectively removed during purification.

LC-MS/MS analysis of the starch granule proteome

To identify the proteins associated with starch granules, we extracted the proteins from the

enriched starch granules by both phenol extraction method [42, 43] and Tris-HCl buffer

extraction methods [45] with three replicates followed by protein identification with LC-MS/

MS.

The proteins identified by LC-MS/MS are listed in S1 and S2 Tables (each of the sheets

shows one replicate in the table), respectively. Mass analyses of all the replicates identified 695

proteins in the samples extracted by Tris-HCl buffer (listed under A in Table 1 and the details

are provided in S3 Table) and 1157 proteins in the samples extracted by phenol buffer (listed

under B in Table 1 and the details are provided in S3 Table), respectively. Since the proteome

extracted by the phenol buffer contained more proteins, covering almost all the proteins iden-

tified in the sample extracted by Tris-HCl buffer, the phenol extraction method appears to be a

better method for starch granule proteome recovery. In the following analysis, we will mainly

focus on the proteins identified with the phenol extraction method.

The probability of a protein being detected in mass analysis is positively proportional to its

abundance in the sample when the protein size is normalized [48–50]. The peptide count is

Fig 3. The pattern of starch granule proteins and total proteins of rice endosperm on SDS PAGE. The

proteins extracted from rice endosperm and rice starch granules using phenol extraction method were

separated by 12% SDS-PAGE and visualized by Coomassie blue stain. M: Marker; T: Total proteins; G:

Starch granule proteins.

doi:10.1371/journal.pone.0168467.g003
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Fig 4. Western blot image of the starch granule proteome. Same amount of proteins (25 μg per lane)

were loaded. A: Western blot images with different antibodies. The anti-bodies used were for V-ATPase E,

V-ATPase A, Anti-Rubisco, cFBPase (Agrisera, Sweden). T: Total proteins; G: Starch granule proteins. B:

Western blot image of protein acetylation of endosperm and starch granule proteins. Antibodies for acetylated

Lysine (ImmuneChem) were used for Western blots. The source of proteins is indicated on the top of the lane.

M: Protein marker; T: Total proteins extracted from endosperm; G: Proteins extracted from starch granules.

doi:10.1371/journal.pone.0168467.g004
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used to measure protein abundance by counting the number of times a peptide was identified

for a given protein [48–50]. Therefore, comparison of peptide counts of the proteins being

identified in the sample is informative in determining protein abundance. We ranked all the

identified proteins in order by their peptide counts in S3 Table. S3 Table shows that the known

starch granule associated protein GBSS1 ranked highest on the list of identified proteins, with

a peptide count of 2769 after MS/MS analysis in the phenol extraction sample. In addition,

most of the other known starch granule associated proteins were also identified with peptide

counts over 100 and mostly ranked in the upper portion of the S3 Table. The results suggested

Table 1. GO Distribution of the Starch Granule Proteins.

Items A B

Identify Proteins 695 1157

GO Analysis Biological Process metabolic process 366 683

cellular process 329 606

response to stimulus 227 366

single-organism process 155 260

localization 81 127

developmental process 57 95

biological regulation 54 97

multicellular organismal process 51 86

cellular component organization or biogenesis 41 84

multi-organism process 36 66

other 58 103

Cellular Component cell 429 764

organelle 347 610

membrane 268 440

macromolecular complex 155 271

membrane-enclosed lumen 89 127

extracellular region 59 89

other 3 5

Molecular Function binding 335 589

catalytic activity 251 523

structural molecule activity 83 123

transporter activity 31 52

nutrient reservoir activity 19 26

enzyme regulator activity 16 25

other 28 90

Subcellular Localization extracellular 43 72

mitochondria 50 75

chloroplast 240 407

nuclear 97 130

cytoskeleton 11 18

nuclear 2 2

endoplasmic reticulum 8 20

vacuolar membrane 13 22

plasma membrane 33 51

chloroplast, mitochondria 1 2

peroxisome 3 9

cytosol 194 349

doi:10.1371/journal.pone.0168467.t001
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that we had a highly in depth analysis of the starch granule proteome using LC-MS/MS

approach and our purification worked well. The known starch synthesis related proteins are

summarized in Table 2 with peptide counts listed, namely GBSS 1 (Q0DEV5, peptide count

2769), SBE3 (Q6H6P8, peptide count 472), SBE1 (Q0D9D0, peptide count 448), SSS1

(Q0DEC8, peptide count 386), pullulanase (Q7X834, peptide count 269), Pho 1 (Q9AUV8,

peptide count 260), AGPS (P15280, peptide count 206), AGPLar (Q5VNT5, peptide count

193), SSII-3 (Q0DDE3, peptide count 179), GBSSII (Q8GTK0, peptide count 103), SSII-1

(Q7XE48, peptide count 63), DULL1 (Q6Z1D6, peptide count 21), AGPLar3 (Q6AVT2, pep-

tide count 16), putative DBE, ISO2 (Q6AU80, peptide count 8). Given that the protein size dif-

ference among these proteins is within a few folds, the peptide count numbers can roughly

reveal the protein quantity.

In addition to the well-known starch granule associated proteins listed above, we also iden-

tified a few other candidate proteins for involvement in starch synthesis related functions.

Hsp70 (Q2QV45) has been considered to play a role in protein folding in amyloplast stroma

and maintaining enzyme activity in starch granule in maize endosperm [51]. Therefore, it is

probable to consider it as an essential component of the starch granule. Interestingly, amylo-

plastic Hsp70 was detected with a peptide count of 205. Furthermore, putative Brittle-1 protein

(Q6Z782), a transporter of phosphor-glucose that is critical for starch synthesis based on

genetic studies [19], was identified with a peptide count of 259 in the starch granule associated

proteome, suggesting that this protein may also function as a starch granule protein as well.

Other candidates for possible starch synthesis related functions included alpha-1, 4 glucan

phosphorylase (Q9AUV8) (Pho 1) with a peptide count of 260 and sucrose synthase (P30298)

also referred to as sucrose-UDP glucosyltransferase with a peptide count of 187. Alpha-1, 4

glucan phosphorylase functions through releasing alpha-D-glucose 1-phosphate by using

phosphate to break alpha 1, 4 bond linkages between pairs of glucose residues at the end of

long glucose polymers [52]. Genetic studies by Satoh et al. (2008) have shown that mutation of

plastidial alpha-glucan phosphorylase gene in rice has effect on the biosynthesis and structure

of starch in endosperm [53]. Identification of this protein in the starch granule proteome puri-

fication further suggests that this enzyme may be starch granule associated.

Table 2. Starch Synthesis and Related Proteins Identified in Starch Granules Proteome.

UniProtKB Counts Protein names Gene names

Q0DEV5 2769 Granule-bound starch synthase 1 (GBSS 1) WAXY, Os06g0133000

Q6H6P8 472 Starch Branching enzyme-3 (SBE 3) SBE3, Os02g0528200

Q0D9D0 448 Starch Branching enzyme-1 (SBE1) SBE1, Os06g0726400

Q0DEC8 386 Soluble starch synthase 1 (SSS I) Os06g0160700

Q7X834 269 pullulanase (PUL), plastidial ADP-glucose transporter OSJNBa0019G23.2

Q9AUV8 260 Alpha-1,4 glucan phosphorylase (SP) (Pho1) OSJNBa0040E01.3

P15280 206 Glucose-1-phosphate adenylyltransferase small subunit (AGPS) AGPS Os08g0345800, Os09g0298200

Q5VNT5 193 Glucose-1-phosphate adenylyltransferase large chain (AGPLar) P0663E10.9

Q0DDE3 179 Soluble starch synthase 2–3 (SSII-3) SSII-3,Os06g0229800

Q8GTK0 103 Starch synthase (GBSSII) P0710F09.134 or GBSSII,Os07g0412100

Q7XE48 63 Soluble starch synthase 2–1 (SSII-1) SSII-1,Os10g0437600

Q6Z1D6 21 Putative starch synthase DULL1 OSJNBa0056O06.4–1

Q6AVT2 16 Glucose-1-phosphate adenylyltransferase (AGPLar 3) OSJNBa0027J18.8, Os03g0735000

Q6AU80 8 Putative isoamylase-type starch debranching enzyme ISO 2 (DBE) OSJNBa0014C03.3

Q6YZC3 4 Glucose-6-phosphate/phosphate translocator B1099H05.2, P0020B10.26

doi:10.1371/journal.pone.0168467.t002
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Sucrose synthase has been shown to display both synthetic activity and degradative activity

in maize endosperm [54]. Its specific role in granule starch synthesis and its association with

starch granule is not known thus far. Our observation suggests sucrose synthase (P30298) may

have direct interaction with the starch granule and it is worthwhile to further explore whether

this enzyme is related to starch biosynthesis.

Moreover, Q0DA62, a glycoside hydrolase family member, was identified with a peptide

count of 164. Since this enzyme is probably involved in the breakdown of amylose and/or amy-

lopectin and other degradation enzymes have been shown to be critical for starch synthesis

[55], it will be interesting to further study if this enzyme is involved in starch synthesis in the

endosperm. Another possible starch granule associated protein included protein Q6ZBH2

with a peptide count of 153. This protein belongs to the alcohol dehydrogenase superfamily

(zinc-type) and maybe involved in fructose biosynthesis [56]. Its connection with starch syn-

thesis is still not clear.

Additionally, Pyruvate, phosphate dikinase 1 (Q6AVA8, PPDK) was identified with a

peptide count of 291. PPDK functions in catalyzing the conversion of a pyruvate to

phosphoenolpyruvate (PEP) [57]. In the process, this reaction uses up 1 molecule of ATP

and makes one molecule of AMP [55, 57]. A protein similar to PPDK in function, phospho-

glucan water dikinase (EC 2.7.9.5) has also been proposed to play a role during starch degra-

dation [58]. Due to the high abundance of PPDK in the starch granule associated proteome,

it will be interesting to further test if PPDK also plays any role in starch synthesis in rice.

In depth analysis of the proteome introduces the possibility of uncovering many contami-

nating proteins, even if the contaminating proteins are in lesser abundance. Here, the most

abundant contaminating proteins identified were the storage proteins known as glutelins.

Comparison of summary peptide counts of identified glutelins with GBSS1 protein showed

glutelins were identified with roughly 30% or less of the peptide count of the GBSS1 protein.

Glutelins are the most abundant storage proteins in the rice endosperm proteome. Before

starch granule purification, GBSS1 was not detected on SDS page (see Fig 3, lane T), the fact

that fewer peptides of glutelins were detected in LC-MS/MS analysis when compared with

GBSS1 is consistent with our observation on SDS-PAGE that GBSS1 was substantially

enriched and glutelins were removed during starch purification (Fig 3, lane G). Given that

glutelins are contaminating proteins during purification, they were not included in further

analysis. Other detected seed storage proteins included cupin family protein (Q75GX9 and

Q852L2), allergenic protein (Q8H4M4), and allergen RAG2 (Q0D7S4).

The diagram in Fig 5 examines the protein distribution versus the protein peptide counts

(Fig 5A). Among the 1157 identified proteins, 91 proteins were identified with a peptide count

of 50 or more (S3 Table). And 1066 identified proteins were identified with a peptide count of

less than 50 (S3 Table), which is less than roughly 1.9% of the peptide count of the GBSS1 pro-

tein, suggesting that these proteins were in a low abundance. Additionally, 720 proteins were

identified with<10 peptide count, which is less than roughly 0.37% of the peptide count of the

GBSS1 protein. These proteins were either in extremely low abundance in the starch granule

or they were contaminating proteins with very low abundance in the sample.

GO and KEGG pathway analysis

To better understand the proteins associated with starch granules, we carried out gene ontol-

ogy (GO) analysis. The results showed that 683 (59.03%, 683/1157) phenol extracted proteins

were associated with metabolic processes (Table 1, S4 Table). Protein subcellular localization

analysis showed that chloroplast/amyloplast was the dominant category of cellular localization

(S5 Table), which is consistent with the subcellular distribution nature of starch granules. 69%
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of the identified peptide counts from the 40 proteins with highest peptide counts (excluding

storage proteins) were located in the chloroplast/amyloplast, suggesting that the enriched pro-

teins were mainly from starch granules (Fig 5B and S6 Table).

We further investigated the enriched pathways in which starch granule associated proteins

were involved by using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Func-

tional Annotation Tool of DAVID against the background of rice (Oryza sativa L.) protein

database was specifically employed. The result showed that the starch and sucrose metabolism

pathway were significantly enriched in the purified starch granule proteome (Figs 6 and 7).

These proteins included 15 in starch and sucrose metabolic pathways, 13 in glycolysis and glu-

coneogenesis pathway, 7 in citrate cycle (TCA cycle) pathway, and 28 in carbon metabolism

pathway, respectively (S7 Table). These metabolic pathways are all related to carbohydrate bio-

synthesis or catabolism.

Protein modification in starch granule proteome

Many reports have shown that metabolic pathway enzymes are subject to extensive posttrans-

lational modifications such as acetylation [59–62]. In this study, we achieved significant cover-

age of the starch granule associated proteins with deep mass analysis, including GBSS 1, with

up to 85.7% coverage of its protein sequence (S2 Table). Taking advantage of this, we searched

various modifications against identified peptides based on a mass shift in the corresponding

residue induced by the modifications. We found lysine acetylation modifications in multiple

key enzymes of the starch synthesis pathway, including modifications of P15280 (AGPS),

Q0D9D0 (SBE 1), Q0DEV5 (GBSS 1), Q5VNT5 (AGPLar), Q6H6P8 (SBE 3), Q9AUV8 (Pho

1), (S8 Table and mass peak shown in S1 Fig). Protein modification by lysine acetylation in

starch granules was further verified by western blot with anti-lysine acetylation antibody

Fig 5. Distribution of identified proteins based on their peptide counts. A: Protein peptide count numbers vs numbers of proteins. The

proteins identified with the same peptide counts were grouped together to obtain the protein numbers. X-axis: protein peptide counts; Y-axis:

number of proteins. B: Peptide count percentage distribution of 40 proteins with highest peptide counts (excluding storage proteins) in the

chloroplast/amyloplast (red) and other organelles (blue).

doi:10.1371/journal.pone.0168467.g005
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(Fig 4B). The functional significance of these modifications on these proteins requires further

investigation. It has been reported that some of the starch synthesis enzymes and their iso-

forms assembled into functional complexes [28], and the formation of these complexes maybe

regulated by protein modifications such as protein phosphorylation [13, 28]. It is worthwhile

to investigate the function of lysine acetylation on enzymes which are involved in starch syn-

thesis in regulating complex assembly and enzyme functions.

Conclusions

We have developed a protocol to effectively purify starch granules from mature endosperm of

rice. The enrichment of the starch granules was verified by light and SEM microscopy, I2 stain-

ing, and Western blot examinations. We found that phenol extraction method is highly effec-

tive in the recovery of starch granule associated proteins. Mass analysis of the purified starch

granules proteomes identified the previously known starch granule associated proteins, as well

as several candidate proteins for possible functional involvement in starch synthesis. More-

over, lysine acetylation was identified on multiple starch synthesis pathway proteins, indicating

a possible role of this modification in regulation of starch synthesis.

Fig 6. KEGG pathways enriched in the starch granule proteome. KEGG pathway enrichment analysis of starch granule

proteome. The value of -log10 (Fisher’s test p value) is shown.

doi:10.1371/journal.pone.0168467.g006
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Materials and Methods

Plant materials and growth conditions

Rice (Oryza sativa L., Nipponbare) plants were grown at 28˚C during day and 23˚C at night in

the greenhouse of the Department of Biochemistry and Molecular Biology, Mississippi State

University, MS, USA. The top five spikelets were labeled and harvested after maturation. Col-

lected seeds were dried and incubated for 15 h at 40˚C in 0.3% (W/V) sodium metabisulphite

and 85% (v/v) lactic acid (pH 3.8) to inactivate proteases during rehydration [7]. Endosperm

tissues were manually dissected from pericarps and embryo tissues.

Starch granule extraction

Starch granules from mature rice endosperm were purified with a method modified from the

reported protocol developed in maize [7]. Endosperm tissue was ground and passed through a

100 μm mesh size sieve. The resulting fine powders were mixed with starch extraction buffer

(50 mM Tris-HCl pH 7, 10% glycerol, 10 mM EDTA, and 1.25 mM DTT) at 4˚C. The

Fig 7. Proteins enriched in starch and sucrose metabolic pathways. The enzymes marked with yellow and blue color are proteins enriched in rice

starch granule proteome.

doi:10.1371/journal.pone.0168467.g007
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homogenate was centrifuged at 15,000 rpm for 15 min at 4˚C, and the viscous layer which was

on the top of the starch was removed carefully. The precipitate was re-homogenized in the

starch extraction buffer and passed through a 20 μm mesh size sieve. The starch pellet was

washed twelve times with starch extraction buffer, three times with cold 95% ethanol, and

three times with acetone, each wash was followed by centrifugation at 8000 rpm for 10 min at

4˚C, and then the pellet was dried under a speed vacuum drier (model LYPH-LOCK 6, LAB-

CONCO). At this point of the procedure, the starch granules were considered as crude because

they still contained contaminating proteins attached to their surface. To obtain more purified

granules, the crude granules were washed three times in water, three times in gelatinization

buffer (62.5 mM Tris-HCl, pH 6.8; 2% SDS, and 5% β-mercapto ethanol), and three times in

95% ethanol, then lyophilized under a vacuum drier. The dried starch granules were stored in

-80˚C for optical observation and protein extraction.

Microscopic and SEM observation

The purity of the extracted starch granules was monitored by staining with I2 solution at a con-

centration of 0.08 mg/100ml and observed under the microscope. For SEM (Scanning Electron

Microscope) examination, the dried pellets from different stages during starch granule extrac-

tion were dusted on the surface of a carbon-adhesive tab and sputter-coated with 45nm plati-

num particles using EMS 150-T (Electron Microscopy Sciences) [63, 64]. SEM examination of

starch granules and the intermediates from purification steps was performed using a Zeiss

EVO-50 scanning electron microscope at 10.0 kV [63, 64].

Protein extraction

Two methods were used to extract proteins from starch granules, which are the Tris-HCl

extraction method and Phenol extraction method.

Tris-HCl method for protein extraction from starch granules. The process of protein

extraction from rice starch granules by Tris-HCl method was as follows: starch granules were

minced into powder, Tris-HCl buffer (50mM Tris-HCl pH 8.8, 5 mM EDTA, 20 mM DTT,

100Mm KCl, and 2mM PMSF added freshly) was added, boiled for 5 min, and then homoge-

nized for more than 30 minutes at 4˚C by vortex. The homogenate was centrifuged at 10

000rpm for 10 minutes at 4˚C, and the supernatant was collected. The extraction was repeated

three times by adding Tris-HCl buffer, vortex and then centrifugation. The final collected

supernatant was mixed with five volumes of 100% acetone to precipitate the proteins at -20˚C,

incubating for more than 2 h or overnight. The precipitant was obtained by centrifugation at

10, 000 rpm for 15 minutes at 4˚C and the pellets were washed more than four times with cold

80% acetone. The protein pellets were lyophilized in a speed vacuum and stored at -80˚C for

further analysis [42].

Phenol method for protein extraction from starch granules. Proteins of starch granules

were extracted by phenol extraction method as reported with some modifications [42, 43].

Briefly, the materials were mixed with a protein extraction buffer (0.9 M sucrose, 0.5 M Tris-

HCl pH 8.7, 0.05 M EDTA, 0.1 M KCl, 1% Triton X-100 and 2% β-mercaptoethanol added

freshly), boiled for 5 min to release the granule proteins and inactivate the protease. Equal vol-

ume of saturated phenol (pH 8.0) was added and then homogenized for more than 30 minutes

at 4˚C. The homogenate was centrifuged at 7000 rpm for 15 minutes at 4˚C, the phenol phase

was collected. The phenol extraction was repeated three times by adding protein extraction

buffer, vortexing and centrifugation. The final collection of phenol phase was mixed with five

volumes of precipitation buffer (methanol with 0.1 M ammonium acetate and 1% β-mercap-

toethanol added freshly), vortexed and stored at -20˚C overnight. The precipitant was collected
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by centrifugation at 12000 rpm for 15 minutes at 4˚C and the pellets were washed three times

with cold precipitation buffer followed by three times with ice cold 70% ethanol. The protein

pellets were lyophilized in a speed vacuum and stored at -80˚C for further analysis [42].

SDS PAGE analysis

For SDS-PAGE, proteins extracted by phenol method from rice endosperm and starch gran-

ules were separated on 12.0% SDS PAGE gel and were stained with Coomassie Brilliant Blue

(CBB) for protein visualization.

Western blot analysis

Proteins were separated on a 12% SDS-PAGE gel and electro-transferred onto a PVDF mem-

brane (Millipore) for Western blots. The membrane was treated with a block solution (5% m/

V non-fat milk, 0.05% v/v tween-20, and 1 X TBS) overnight at 4˚C. After blocking, the mem-

brane was incubated with corresponding primary antibody for 2 hours at room temperature,

followed by incubation with respective quantity of alkaline phosphatase conjugated secondary

antibody for 90 minutes. After three 10 min washes, signal detection was carried out using

NBT/BCIP (nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate) detection system.

Protein identification by LC-MS/MS and bioinformatics analysis

Trypsin digestion. Trypsin digestion procedure was the same as previously reported [42,

43] with minor modifications. The proteins extracted by Tris-HCl method and phenol meth-

ods, with three replicates each, were re-dissolved in urea buffer (8 M urea, 100 mM TEAB (tet-

raethylammonium bromide), pH 8.0) and the protein concentration was determined with a

2-D Quant kit (GE Healthcare Life Sciences) according to the manufacturer’s instructions.

Prior to protein digestion, proteins were reduced with 10 mM DTT (for 1 h at 37˚C) and alkyl-

ated with 20 mM IAA for 45 min at room temperature in the dark. Before the addition of tryp-

sin, the protein solution was diluted by adding 100 mM TEAB to reduce urea concentration to

less than 2 M. Then, the sequencing grade trypsin (Promega Corporation) was added at a 1: 50

(w/w) trypsin-to-protein mass ratio for digestion overnight. In order to make certain of com-

plete protein digestion, 1: 100 (w/w) trypsin-to-protein mass ratio was added for another 4 h

digestion at 37˚C. After digestion was completed, peptides were desalted by a Strata X C18

SPE column (Phenomenex), followed by vacuum drying.

LC-MS/MS analysis. Desalted peptides were dissolved in 0.1% FA (Formic acid) and 2%

ACN (Acetonitrile) (Solvent A), directly loaded onto a reversed-phase pre-column (Acclaim

PepMap 100, Thermo Scientific). Peptides separation with a reversed-phase analytical column

(Acclaim PepMap RSLC, Thermo Scientific) at a constant flow rate of 300 nl/min with a 70

min linear gradient from 5 to 25% solvent B (0.1% FA in 98% ACN) was performed, followed

by an increase from 25 to 35% solvent B for 12 min, further climbing to 80% in 4 min holding

at 80% for the last 4 min on an EASY-nLC 1000 UPLC system.

After peptide separation, the resulting peptides were analyzed by Q Exactive hybrid

quadrupole-Orbitrap Plus mass spectrometer (ThermoFisher Scientific). Peptides were sub-

jected to a NanoSpray Ionization (NSI) source followed by tandem mass spectrometry in Q

Exactive (Thermo Fisher Scientific) coupled online to the UPLC. A resolution of 70,000 was

used to detect intact peptides with the Orbitrap. For peptide selection, 28% NCE was used

for MS/MS and a resolution of 17,500 was used to detect ion fragments in the Orbitrap. A

procedure which was data dependent was used, alternating between one MS scan followed

by 20 MS/MS scans was used for the topmost 20 precursor ions above a threshold ion count

of 1×104 in the MS survey scan with 30.0s dynamic exclusion. A 2.0 kV electrospray voltage
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was applied, as well as automatic gain control (AGC) to overfilling of the ion trap; 5×104

ions were accrued for generation of the MS/MS spectra. The m/z scan range was 350 to

1800Da for MS scans.

Database search. The subsequent MS/MS raw data was processed by using Mascot search

engine (version 3.2) [65]. Tandem mass spectra were searched against the UniProt_Oryza
sativa (63,195 sequences) concatenated with reverse decoy database. Two missing cleavages

were allowed for the trypsin/P (indicated as the cleavage enzyme) per peptide. The mass error

was set to 10 ppm and 0.02 Da for precursor ions and fragment ions, respectively. Acetylation

on the protein N-terminal was found from the mass peak of the peptides. The peptide ion

score was set to>20.

Protein annotation and subcellular localization. The UniProt-GOA database (http://

www.ebi.ac.uk/GOA/) was used to obtain the gene ontology (GO) annotation for identified

proteins. Protein IDs were first converted into a UniProt ID, followed by mapping to GO iden-

tifications. If an identified protein was not annotated by the UniProt-GOA database, a protein

sequence alignment method using InterProScan software was used to annotate the protein’s

gene ontology functions. Gene Ontology annotation was based on the following three catego-

ries: biological process (BP), cellular component (CC) and molecular function (MF).

Prediction of the subcellular localization of identified proteins was achieved by using

Wolfpsort, which is an updated version of PSORT/PSORT II for the prediction of the subcellu-

lar localization of eukaryotic proteins.

KEGG pathway and enrichment analyses. Kyoto Encyclopedia of Genes and Genomes

(KEGG) database was used to identify enriched pathways. The annotation result was mapped

on the KEGG pathway database using KEGG online service tool KEGG mapper. Moreover,

enriched pathways were identified using the KEGG database by the Functional Annotation

Tool of DAVID against the background of Oryza sativa.

To test for enrichment of proteins in a specific category and pathway enrichment analyses,

a two-tailed Fisher’s exact test was conducted which tested the enrichment of the differentially

expressed proteins against all identified proteins. Correction for multiple hypothesis testing

was performed utilizing standard false discovery rate (FDR) control methods. A corrected p-

value< 0.05 was considered significant for gene annotation and those pathways were classified

into hierarchical categories according to the KEGG website.
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