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Abstract

A major contributor to the scientific reproducibility crisis has been that the results from 

homogeneous, single-center studies do not generalize to heterogeneous, real world populations. 

Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data 

from diverse populations into a single analysis. To make the multi-cohort analysis process more 

feasible, we have assembled an analysis pipeline which implements rigorously studied meta-

analysis best practices. We have compiled and made publicly available the results of our own 

multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, 

through a novel and interactive web application. As a result, we have made both the process of and 

the results from multi-cohort gene expression analysis more approachable for non-technical users.
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1. Introduction

Prior to translation of the results of a biological experiment into clinical practice, they must 

be replicated and validated in multiple independent cohorts. However, the majority of 

findings fail to validate, leading to a ‘reproducibility crisis’ in science.1,2 One of the factors 

in this lack of reproducibility is that traditional, single cohort studies do not represent the 

heterogeneity observed in the real world patient population.3 As a result, observed and 

reported effects are often specific to a population subset instead of generalizable across the 

population.
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More than two million publicly available gene expression microarrays present novel 

opportunities to incorporate the real-world heterogeneity observed in patient populations 

into analysis.4,5 However, the biological (tissue, treatment, demographics) and technical 

(experimental protocol, microarray) heterogeneity present in such data poses a daunting 

challenge for their integration and reuse. Consequently, many tools, which allow reuse of 

these data, are unable to combine evidence across multiple data sets and place that burden on 

the end user, leading to under-utilization of these datasets.6,7

Previously, we have described a novel multi-cohort analysis framework for integrating 

multiple heterogeneous datasets to identify robust and reproducible signatures by leveraging 

the biological and technical heterogeneity in these datasets. We have repeatedly 

demonstrated the utility of our framework for identifying novel diagnostic and prognostic 

biomarkers, drug targets, and repurposing FDA-approved drugs in diverse diseases, 

including organ transplantation, cancer, infection, and neurodegenerative diseases.8–16 In 

each of these analyses, we analyzed more than a thousand human samples from more than 

10 independent cohorts to generate and validate data-driven hypotheses. Many of these 

results also been further validated in experimental settings.8,11,16 These results have further 

demonstrated the ability of our framework to create “Big Data” by combining multiple 

smaller studies that are collectively representative of the real word patient population 

heterogeneity.

We recently published a systematic comparison of gene expression meta-analysis to evaluate 

existing tools, including GeneMeta, MAMA, MetaDE, ExAtlas, rmeta, and metafor,17–21 

and described best practice guidelines for gene expression meta-analysis.22 While these 

existing packages perform both generic and gene expression meta-analysis, none provide 

coverage of the entire gene expression meta-analysis workflow: downloading data from 

public repositories, rigorously implementing gene expression meta-analysis best practices, 

and providing visualizations of the final results.

2. Multi-Cohort Gene Expression Analysis with MetaIntegrator

Despite its demonstrated utility in identifying robust, reproducible, and biologically as well 

as clinically relevant disease signatures, our multi-cohort analysis framework has previously 

required manual dataset download, pipeline set up, and visualization generation. To lower 

this barrier to entry, we have developed MetaIntegrator, an R package that automates most of 

the multi-cohort analysis framework. Our package guides the user from data download to 

execution of statistical analysis to evaluation of the results [Figure 1].

2.1. Data Processing

The first step in the multi-cohort analysis is downloading the requisite experimental 

information, notably the class labels (case or control), the gene expression data, and any 

interesting phenotypic information about the samples. Since we have found that most users 

will download data from the NCBI's Gene Expression Omnibus (GEO), we have integrated 

an automatic downloading and processing of GEO data into our analysis pipeline. 

MetaIntegrator will automatically download the expression data and all available 
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annotations, perform sanity checks that the data have been appropriately normalized, and 

compile the data into the MetaIntegrator object format.

2.2. Multi-cohort Analysis

2.2.1. Combining effect sizes—Our meta-analysis approach computes an Hedges g 

effect size for each gene in each dataset defined as:

(1)

where X̄1 and X̄0 are the average expression for cases and controls, S1 and S0 are the 

standard deviations for cases and controls, and n1 and n0 are the number of cases and 

controls.8,23 J is the Hedges' g correction factor, which is computed as:

(2)

where df are the degrees of freedom.

To pool these effect sizes across datasets, the summary effect size gs is computed using a 

random effect model as:

(3)

where n is the number of studies, gi is the Hedges' g of that gene within dataset i, Wi is a 

weight equal to 1/(Vi + T2), Vi is the variance of that gene within a given dataset i, and T2 is 

the inter-dataset variation as estimated by the DerSimonian-Laird method.23,24 The standard 

error for the summary effect size is . Given gs and SEgs, we calculate a p-

value based on a standard normal distribution and perform a Benjamini-Hochberg FDR 

correction for multiple hypothesis testing across all genes.25

2.2.2. Heterogeneity of effect size—We calculate Cochrane's Q value for evaluating 

heterogeneity of effect size estimates between studies:

(4)
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where Wi, gi, and gs are the same as above.23 The p-value of Cochrane's Q is calculated 

against a chi-squared distribution and adjusted for multiple hypothesis testing using the 

Benjamini-Hochberg FDR method across all genes.25 A statistically significant Cochrane's 

Q indicates significant heterogeneity of effect sizes between studies.

2.2.3. Combining p-values—We use Fisher's method for combining p-values across 

studies.26 We calculate the log sum of p-values that each gene is up-regulated as:

(5)

where n is the number of studies and pi is the t-test p-value that the gene of interest is up-

regulated in study i. Similarly, we calculate Fdown as the log-sum of p-values that each gene 

is down-regulated.

For each gene, we calculate the p-value of Fup and Fdown under a chi-squared distribution 

and perform a Benjamini-Hochberg FDR correction across all genes.25

2.3. Signature Selection

Once meta-analysis is performed, a subset of genes must be identified as the disease 

signature. MetaIntegrator allows the user to identify these genes by varying the filtering 

parameters based on gene effect size, effect size false discovery rate, Fisher's method false 

discovery rate, heterogeneity of effect size, and the number of studies in which the gene was 

present. In order to avoid disproportionate influence of a single study, MetaIntegrator allows 

the user only include genes which were similarly significant across all leave-one-dataset-out 

analyses. By varying these criterion, the user may control whether they identify a larger set 

of genes, which may be ideal for understanding molecular pathogenesis and identifying drug 

targets, or a smaller set of genes, which may be optimal developing a parsimonious clinical 

diagnostic.

For users that are particularly interested in developing a powerful diagnostic, we have 

integrated forward and backward search, which reduce gene set size to optimize the area 

under the receiver operating characteristic curve on the training data.10

2.4. Score Calculation

For a set of signature genes, a signature score can be computed for every sample, i, as:

(6)

where pos and neg are the sets of positive and negative genes, respectively, and xi(gene) is 

the expression of any particular gene in sample i (a positive score indicates an association 
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with cases and a negative score with controls). This score Si is normalized to a z-score to 

center the samples for each study around zero.

2.5. Visualization

With scores calculated for each sample, we are able to visualize comparisons of cases vs. 

controls, regression of continuous variables against the score, and consistency of gene 

expression across datasets. Some of the built in visualizations, in counter-clockwise order 

from Figure 1:

• Forest plots. Examine the effect sizes and standard errors for a single 

gene across studies, including the summary effect size.

• Regression plots. Evaluate the relationship of the signature score with 

continuous variables like clinical severity and time.

• Heatmap plots. Observe consistency of differential expression for all 

signature genes across studies.

• Violin plots. Compare signature scores across categorical variables like 

disease subtypes, treatment protocols, and demographic groups.

• ROC plots. Evaluate classification performance for signature score on a 

single dataset in terms of specificity and sensitivity.

3. Data-Driven Biological Hypotheses with MetaSignature

We have created MetaSignature (http://metasignature.stanford.edu), a web application which 

empowers researchers to generate data-driven hypotheses by enabling access to the results of 

our multi-cohort gene expression analysis framework. We focused on enabling intuitive data 

access for researchers with specific interest in either a disease, a gene, or several genes, 

while requiring little or no analytic background.

3.1. Data

Thus far, we have aggregated 615 gene expression studies composed of more than 35,000 

human samples with approximately 1.5 billion data points from 103 diseases, a number 

which we will continue to grow. For each disease, we applied our multi-cohort analysis 

approach to compute the gene expression differences between the manually curated cases 

and controls. To perform these multi-cohort analyses, we searched for relevant studies in 

GEO, identified cases and controls in every study, and calculated disease effect sizes using 

the MetaIntegrator R package. We stored the multi-cohort analysis results in a MySQL 

database for rapid retrieval. As more studies are incorporated into our database, we 

recalculate the disease summary effect sizes.

3.2. Gene-centric Analysis

For researchers that are interested in the expression of a particular gene, MetaSignature 

provides visualizations that allow researchers to quickly identify the diseases in which 

specified gene is most differentially expressed [Figure 2a], study-level data of the gene 
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expression in particular diseases [Figure 2b], and cell type-specific gene expression patterns 

[Figure 2c].

For instance, consider a researcher who has developed a drug, such as atorvastatin, that 

effectively reduces plasma levels of CXCL10, and seeks to identify the most promising 

clinical applications. Using MetaSignature, she determines CXCL10 is significantly up-

regulated in transplant rejection [Figure 2a]. A drilldown further identifies eight separate 

studies that have measured CXCL10 in transplant rejection, indicating a highly positive 

effect size in all except one of these studies [Figure 2b]. The researcher further observes that 

CXCL10 is up-regulated in monocytes, compared to other immune cell types. [Figure 2c]. 

Taken together, these findings would motivate a clinical investigation of the use of a 

CXCL10 inhibitor, such as atorvastatin, in monocytes of patients at risk for transplant 

rejection. We have already verified this data-driven hypothesis in mouse models and patient 

electronic health records, where, in both cases, atorvastatin increases graft survival.8

Beyond single gene analysis, MetaSignature empowers users to examine gene sets in terms 

of correlation of those genes based on their disease effect sizes [Figure 2e] and correlation of 

diseases based on expression of that set of genes [similar to Figure 2f]. These visualizations 

enable dissection of positively- and negatively-correlated members of gene families.

3.3. Disease-centric Analysis

If a researcher is more interested in a particular disease, then MetaSignature enables 

identification of genes that are most up- or down-regulated in that disease [Figure 2d] and 

exploration of that disease's relationship to other diseases based on gene expression [Figure 

2f]. When we compute disease-disease correlation based on gene expression data, we 

observe clustering patterns that map to established disease categories.

To follow our example from the gene-centric analysis, consider a researcher who is 

interested in improving transplant rejection outcomes. To gain a global understanding of 

transplant rejection, the researcher observes that transplant rejection falls into a cluster of 

inflammatory diseases, including discoid lupus, Crohn's disease, and interstitial cystitis 

[Figure 2f]. By examining the transplant rejection expression data in MetaSignature, he or 

she would recognize that CXCL10, a chemokine important in inflammatory response, is one 

of the most up-regulated genes in transplant rejection [Figure 2d].27 After verifying that this 

observation is consistent across studies [Figure 2b], the researcher identifies that CXCL10 is 

a reasonable target for therapeutic inhibition in transplant rejection. Looking at other genes 

which are up- and down-regulated in transplant rejection, he or she recognizes that CXCL10 

expression is in a positively correlated with several other genes, including TRAF2 and CD38 
[Figure 2e]. Collectively from these observations, the researcher has learned that transplant 

rejection is related to inflammatory diseases, which is consistent with the observed up-

regulation of CXCL10, an inflammatory chemokine. As noted in the gene-centric analysis 

above, we have observed increased graft survival through administration of atorvastatin.8
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4. Discussion

The reproducibility crisis in biomedical research has led to erroneous conclusions and 

wasted resources. Here, we present a vertically integrated platform that can both assist with 

gene expression multi-cohort analysis (MetaIntegrator) and provide aggregated results for 

users who wish to rapidly test hypotheses (MetaSignature). By leveraging the growing 

public data available for study, this new resource can drastically reduce the time and effort 

for biological hypothesis testing across numerous studies and diseases. While many software 

packages exist for similar analyses,17–21 ours offers simple, custom software for plotting and 

analysis, automated downloading of data from GEO, and integration to the MetaSignature 

database.

Our package is complementary to the recently published OMiCC platform, which enables 

curation and meta-analysis of GEO studies.28 OMiCC relies on the RankProd package for 

performing meta-analysis using rank-based statistics for identifying differentially expressed 

genes.29 While others have provided thorough comparisons of the different meta-analysis 

methods, the most notable difference between RankProd and MetaIntegrator is that rank-

based statistics fail to produce a summary effect size across multiple studies.30,31 By 

leveraging our MetaIntegrator package, OMiCC could produce differential gene expression 

profiles across multiple studies instead of internal to single studies.

Although MetaIntegrator is currently applicable to microarray gene expression data, we plan 

to expand the MetaIntegrator package to handle the count data which is generated by 

RNAseq experiments. Additionally, we intend to enable download from additional data 

repositories including ArrayExpress and, once RNAseq processing is implemented, 

Sequence Read Archive.?,5

Our work promises to increase reproducibility of research for both data analysts and wet lab 

researchers. For data analysts, we have made multi-cohort gene expression analysis publicly 

available through a straightforward R package. By performing integrative, multi-cohort 

analyses, these analysts will generate more reproducible results. For wet lab researchers, we 

are empowering data-driven hypotheses prior to experimentation. Rather than performing 

broad assays to identify disease related genes, researchers can focus on performing targeted 

experiments on genes which are reproducible across cohorts.

5. Package and Source Code Distribution

The MetaIntegrator R package, including an introductory vignette, may be installed using 

the following command in R:

install.packages(“MetaIntegrator”)

The source code for MetaIntegrator is available at: https://

cran.rstudio.com/web/packages/MetaIntegrator/

MetaSignature was developed using R and Shiny and is hosted at: http://

metasignature.stanford.edu/
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Fig. 1. 
Gene expression meta-analysis workflow with MetaIntegrator utility functions.
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Fig. 2. 
Diagram of the MetaSignature web application.
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