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3 Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil, 4 Department of Biophysics,

Federal University of São Paulo, São Paulo, SP, Brazil, 5 Department of Physics, Federal University of Minas

Gerais, Belo Horizonte, MG, Brazil, 6 Department of Morphology, Federal University of Minas Gerais, Belo

Horizonte, MG, Brazil

☯ These authors contributed equally to this work.

* leitemd@ufmg.br

Abstract

Background

The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin

system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II

(Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression

level was demonstrated to be higher in melanoma cells compared to their normal counter-

parts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not

been defined yet.

Aim

Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration.

Results

We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the

binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE

translocates to the nucleus, through a clathrin-mediated process, triggering a transient

nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and

phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3

isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction.

Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation

through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril)

or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused

the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal

adhesion structural protein.
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Conclusion

ACE activation regulates melanoma cell proliferation and migration.

Introduction

The renin-angiotensin system (RAS), a peptidergic hormone system, is well known for its role

in the regulation of blood pressure, electrolyte balance and vascular remodeling [1, 2, 3]. Renin

cleaves angiotensinogen to produce the decapeptide angiotensin (Ang) I. Subsequently, after

cleavage of two carboxy-terminal amino acids by the angiotensin I–converting enzyme (ACE),

Ang-I is converted into the octapeptide Ang-II. Two distinct forms of ACE are expressed in

humans: a somatic form that is abundant on the surface of lung endothelial cells and a smaller

isoenzyme found exclusively in testis [4]. The activity of somatic ACE has a crucial role in cata-

lyzing the conversion of Ang-I to the Ang-II, which modulates blood pressure, vasoconstric-

tion, inflammation, cell proliferation and vascular rearrangement [5].

In addition to the classic participation of ACE in the above-mentioned functions, new roles

for ACE have recently been described [4, 6, 7]. The canonical Ang-II pathway is mediated by

activation of either AT1 or AT2 receptors, which typically mediate opposite functions [8].

However, recent findings have revealed that, despite the traditional enzymatic functions, ACE

is also capable of mediating intracellular signaling. Kohlstedt and colleagues [4] showed that

binding of an ACE inhibitor to ACE elicits outside-in signaling in endothelial cells, enhancing

the activity of ACE-associated kinase CK2 and increasing the phosphorylation of the intracel-

lular tail of ACE. This in turn promotes the activation of JNK as well as the accumulation of

phosphorylated c-Jun in the endothelial cell nucleus that ultimately increases ACE expression

in vitro and in vivo. Such mechanism suggested that ACE activation might control expression

of diverse proteins besides ACE itself. Indeed, Kohlstedt et al. [6] found that binding of rami-

pril (ACE inhibitor) to ACE directly induces a signaling cascade that results in the activation

of the transcription factor AP-1 and an increase in the expression/activity of cyclooxygenase-2

in endothelial cells. Furthermore, Guimarães et al. [7] demonstrated that ACE behaves as a

receptor for Ang-II triggering Ca2+ signaling, through inositol 1,4,5-trisphosphate (InsP3) for-

mation. Accordingly, a binding site for Ang-II was described on ACE [9]. However, the role of

Ang-II-mediated signaling through ACE is still unclear. In the current study, we investigated

novel roles of ACE as Ang-II receptor, demonstrating that ACE regulates cell proliferation and

migration in melanoma cells.

Materials and Methods

Material and Reagents

Dulbeccos’s Modified Eagle’s Medium (DMEM), RPMI 1640 medium, penicillin, streptomycin,

amphotericin and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, USA).

Fluo-4/AM, DAPI, secondary antibodies conjugated to Alexa-488, Alexa-633, Angiotensin-II

FITC conjugate and Lipofectamine1 2000 were purchased from Life Technologies (New York,

USA); rabbit IgG secondary antibody was purchased from Sigma-Aldrich, (St. Louis, USA).

Polyclonal anti-GAPDH and anti-PLC antibodies were purchased from Santa Cruz Biotechnol-

ogy (Santa Cruz, USA). Monoclonal anti-ACE antibody and mouse anti-Clathrin was obtained

from Merck Millipore (Darmstadt, Germany). Anti-BrDU-POD kit was obtained from Calbio-

chem (Damstadt, Germany). Ambion Silencer kits were purchased from Life Technologies
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(New, York, USA). Hydromount was purchased from National Diagnostics (St. Louis, USA).

Moloney murine leukemia virus was obtained from Invitrogen (California, USA), TaqMan Uni-

versal PCR Master Mix from Applied Biosystems (California, USA), enhanced chemilumines-

cence (ECL-plus Western Blotting Detection System) and peroxidase-conjugated antibodies

were purchased from Amersham Biosciences (Buckinghamshire, UK). Hydroxyurea was pur-

chased from Sigma-Aldrich, (St. Louis, USA), enzyme linked immunosorbent assay from Roche

Applied Science (Indianapolis, IN). Angiotensin II was purchased from Sigma-Aldrich

(St. Louis, USA) and Angiotensin-II FITC was purchased from Thermo Fisher Scientific (Mas-

sachusetts, USA).

Cell Culture

Chinese Hamster Ovary (CHO, kindly supplied by Dr François Alhenc-Gelas from the Institut

National de la Santé et de la Recherche Médicale, Paris, France) cells were stably transfected

with a plasmid containing the sequence of the human ACE (CHO-ACE), as previously

reported [7]. Similarly, CHO-AT1 cells were stably transfected with the plasmid pcDNA3, con-

taining the sequence of the human AT1. Also, we used Melan-a (murine melanocytes) and

TM-5 cells (murine melanoma cells). Cells were cultured in DMEM supplemented with 10%

FBS, while melan-a and TM-5 were cultured in RPMI 1640 medium supplemented with 5%

FBS. Cells were incubated at 37˚C in a humidified atmosphere of 95% air and 5% CO2.

Medium was changed every 3 or 4 days, and cells were subcultured, between days 6 and 8, by

harvesting with trypsin-EDTA. Semi-confluent (80% to 90%) cells were used in all of the

studies.

Preparation of siRNA

Potential target sites within the ACE gene were selected and then searched with NCBI Blast to

confirm specificity for the protein. The siRNAs for ACE and scrambled sequence were pre-

pared by a transcriptional-based method using the Ambion Silencer kit (Life Technologies,

New York, USA), according to the manufacturer’s instructions. The sense and antisense oligo-

nucleotides of siRNA were, respectively: siRNA ACE 5’ GCA GTA CAA CTC TCT GCT A 3’

and 5’ GCG GAT CAT AAA GAA GCT T 3’; siRNA scramble 5’ GCG ATG AGT AGC ATC

TCT A 3’ and 5’GCA TGC GAC GAT GAC ATA A 3’. Validated siRNAs for clathrin heavy

chain were obtained from Ambion (Life Technologies, New York, USA). The sense and anti-

sense sequences were, respectively: siRNA cla 50 UAA UCC AAU UCG AAG ACC AAU 30

and 50 GUA UGA UGC UGC UAA ACU A 30. Single wall carbon nanotubes (CNT) were used

to deliver each siRNA as previously described [10, 11]. Cells were used 48 hours after siRNA

treatment as indicated.

Western Blotting

CHO-ACE and TM-5 cells were harvested as described and protein content was quantified

according to Bradford protein assay. For GAPDH detection, mouse monoclonal anti-GAPDH

antibody was used at a dilution of 1:5000. For ACE detection, a mouse monoclonal antibody

was used at dilution of 1:1000. For Clathrin detection, a rabbit monoclonal anti-Clathrin was

used at a dilution of 1:1000. The antibody incubation proceeded for 2 hours at room tempera-

ture. After washing, blots were incubated with HRP conjugated goat anti-mouse or anti-rabbit

IgG secondary antibody at a dilution of 1:5000 at room temperature for 1 hour. Immuno

detection was carried out using enhanced chemiluminescence [12].
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Immunofluorescence

Confocal immunofluorescence was performed as described [12]. Briefly, CHO-ACE cells were

seeded onto 6 well culture dishes and 24 hours later, treated with 1 μM Ang-II for the indicated

times. Cells were fixed with 4% paraformaldehyde, permeabilized with PBS 1X/Triton 0.5%

and blocked (PBS, BSA 10%, Triton 0.5%, goat serum 5%) for 1 hour. Cells were then incu-

bated with anti-ACE (1:100), for 2 hours at room temperature. This was followed by incuba-

tion with DAPI and the specific secondary antibodies conjugated with Alexa-Fluor 488 or 633

(1:500) for 1 hour. Images were obtained using a Zeiss LSM 510 confocal microscope with

63X, 1.4 NA objective lens (Thornwood, USA) [10, 12].

Detection of calcium signals

Ca2+ signals were evaluated either by line-scanning or time-lapse confocal microscopy as

described [13, 14]. Cells were incubated with 6 μM Fluo-4/AM for 20 min at 37˚C. Coverslips

containing the cells were transferred to a custom-built perfusion chamber and were observed

using a 63X, 1.4 NA objective lens under a Zeiss LSM 510 confocal microscope. Fluo-4/AM

was excited at 488 nm using a krypton/argon laser. Global Ca2+ transients were measured in

both the nucleus and the cytosol.

Internalization assay

Internalization kinetic assays were performed as described previously (modified from Thomas

et al. [15]). Briefly, the transfected cells were exposed to 0.4 nM of 3H-AngII in a receptor-

binding buffer for 3 hours at 4˚C. Thereafter, cells were extensively washed with ice-cold

receptor-binding buffer and placed at 37˚C for 2, 5, 10, 20 and 40 min. Incubations were

stopped by placing the cells on ice. Acid-released and acid-resistant radioactive were separated

and measured [16]. The percentage of internalized ligand at each time point was calculated

from the ratio of the acid-resistant specific binding to the total (acid-resistant + acid-released)

specific binding.

Measurement of BrDU incorporation

Proliferation was measured by BrdU incorporation using an enzyme-linked immunosorbent

assay (Roche Applied Science, Indianapolis, IN), according to the manufacturer’s instructions.

Migration assays

Migration experiments were performed as previously described [17, 18]. TM-5 cells were

grown in 12-well plates and cultured in serum-free medium for 24 hours before the experi-

ments. The wound was achieved by scratching a pipette tip across the cell monolayer (approxi-

mately 1.3 mm in width). Hydroxyurea (1 mM) was always included in the tissue culture

media to prevent cell proliferation. Cells were stimulated with 1 μM of Ang-II for the indicated

times. The wound area was measured using the Northern Eclipse (Empix, Mississauga, Can-

ada) software, and the percentage of wound closure at each time point was derived by the for-

mula: (1 –[current wound size/initial wound size]) × 100.

Quantitative RT-PCR analysis of ACE mRNA in TM-5 and melan-a cells

Total RNA (750 ng) was reverse transcribed to cDNA using Moloney murine leukemia virus

(Invitrogen, California, USA) according to the manufacturer’s instructions. The reaction prod-

uct was amplified by real-time PCR on the 7000 Sequence Detection System (ABI Prism,

Applied Biosystems, California, USA) using the TaqMan Universal PCR Master Mix (Applied
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Biosystems, California, USA). The thermal cycling conditions consisted by an initial denatur-

ation step of 95˚C for 10 minutes, 50 cycles at 95˚C for 15 seconds, and 60˚C for 1 minute. The

experiments were performed in triplicate for each data point. The ACE mRNA abundance was

quantified as a relative value compared to an internal reference - β-actin. The primers used for

real-time PCR were: ACE (forward primer: 5’ TGA GAA AAG CAC GGA GGT ATC C 3’;

reverse primer: 5’ AGA GTT TTG AAA GTT GCT CAC ATC A 3’); murine β-actin (GenBank

accession No. NM007393), forward primer 5’ CTG GCC TCA CTG TCC ACC TT 3’ and

reverse primer 5’ CGG ACT CAT CGT ACT CCT GCT T 3’. The ACE and β-actin mRNA

expressions were obtained from the cycle threshold (Ct) associated with the exponential

growth of the PCR products. Quantitative values for ACE mRNA expression were obtained by

the parameter 2ΔCt, in which ΔCt represents the subtraction of the β-actin Ct values from the

ACE receptor values.

Measurement of ACE activity using the fluorescent peptide Abz-FRK

(Dnp)P-OH

ACE activity measurements in all the transfected and non-transfected cells were performed

using the FRET peptide Abz-FRK(Dnp)P-OH as described [19].

In silico studies

To perform the protein-protein docking calculations, we used the structural coordinates of

ACE (PDB entry 1O8A) [20] and PLCβ3 (PDB entry 3OHM) [21], obtained by X-ray crystal-

lography. To predict the structures of the complex ACE-PLCβ3 [21] we performed a rigid-

body protein-protein docking with the program ZDOCK 3.02, a freely protein docking server.

The result presenting the lowest interaction energy was selected and subsequently evaluated as

a function of the centroid-centroid distance in order to estimate the potential energy profile

for the ACE-PLC β3 complex within the Universal classical force field [22] available in the For-

cite Module of Materials Studio 5.5.

Statistical analysis

The results are expressed as mean values ± SEM, except where otherwise noted. Prism (Graph-

Pad Prism Software, San Diego, CA) and Image J (NIH; Bethesda, MD) softwares were used

for data and image analysis, respectively. Statistical significance was tested using One-way

ANOVA followed by Bonferroni test, and p value< 0.05 was taken to indicate statistical

significance.

Results

Binding of Ang-II to ACE leads to the complex internalization

In addition to the well-known effects of ACE as an enzyme that converts Ang-I to Ang-II [23],

ACE has also been reported as a new receptor for Ang-II [7, 9]. In order to investigate the

role Ang-II plays through ACE binding, we used CHO cells stably expressing somatic human

ACE expression (CHO-ACE cell), in comparison with cells transfected with AT1 receptor

(CHO-AT1 cell). Since it is well known that upon stimulation, AT1 receptors internalize

[24, 25], we tested whether ACE undergoes a similar process upon Ang-II stimulation. In

CHO-AT1 and CHO-ACE cells treated with radiolabeled Ang-II (3H-Ang-II), we found a

more pronounced 3H-Ang-II internalization upon binding to ACE than to AT1 (Bmax in

CHO-AT1: 69.6 ± 10.3%; Bmax in CHO-ACE: 79.6 ± 5.7%, n = 3, p<0.05), (Fig 1A). In order

to check if this observation was not due to a matter of a difference on the expression level of
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AT1 and ACE, we performed western blotting and observed that the total expression levels of

ACE and AT1 was the same (CHO-AT1: 0.46 ± 0.045 vs CHO-ACE: 0.42 ± 0.07), (Fig 1B).

Similarly, the amount of internalized Ang-II-FITC on CHO-ACE was significantly higher

than that on CHO-AT1 (CHO-ACE: 69.2 ± 9.3 a.u. vs CHO-AT1: 22.6 ± 1.3 a.u., n = 3,

p<0.01), (Fig 1C). Cell membranes of both cells were counterstained with Wheat Germ

Agglutinin (WGA). The purpose of using WGA as a probe is that it is a member of the lectin

family that binds to N-acetyl-D-glucosamine and sialic acid residues found on the surface of

cell membranes. It has been used extensively to stain surface of membranes [26] better than

the usage of phalloindin toxins, for example, which in turn label the actin cytoskeleton, provid-

ing an indirect labeling of the membrane and not this component itself. A WGA staining of

unstimulated cells is shown in order to exclude any possible membrane reorganization due to

Ang-II (Fig 1D).

Additionally, we observed that after Ang-II stimulation, ACE itself is also routed to the

nucleus (Fig 1E). Nuclear and non-nuclear protein fraction, before and after Ang-II stimulation,

confirmed the translocation of ACE from the cell membrane into the nuclear compartment

(Nuclear fraction: Control = 0.1 ± 0.001 a.u., 5 min = 0.99 ± 0.09 a.u., 15 min = 1.08 ± 0.07 a.u.;

Non-nuclear fraction: Control = 1.10 ± 0.01 a.u., 5 min = 0.94 ± 0.03 a.u., 15 min = 0.49 ± 0.04

a.u.; n = 3, p<0.01), (Fig 1F and 1G). Together, these results show that Ang-II induces internali-

zation of ACE, and a subpopulation of these complexes translocates to the nucleus.

Phospholipase-C mediates the Ca2+ signals induced by ACE activation

The binding of Ang-II to ACE is known to cause intracellular Ca2+ increase, through InsP3 for-

mation [7]. We then investigated whether the membrane-associated phospholipase C (PLC)

plays any role in the InsP3-mediated Ca2+ signals induced by ACE activation. Our in silico
modeling studies of ACE [27] and PLC Beta 3 (β3) isoform [28] structures, suggested that

there is a direct interaction between these molecules, which is independent of G-protein (Fig

2A–2D). The ten top ranked docking poses obtained with ZDOCK are presented in Fig 2A.

The interaction energy obtained for the best docking pose of PLCβ3, Pose 9 (Fig 2B), possess

an energy value of -194.06 kcal/mol, within the Universal classical force field. Fig 2C shows the

amino acid residues located at the interface between the best docking pose of PLCβ3 (left

panel) and ACE (right panel), Pose 9, explored through docking protocols.

The importance of this interaction between PLC and ACE was experimentally validated by

silencing of specific PLC isoforms followed by evaluation of Ang-II triggered Ca2+ signals in

CHO-ACE cells. The effectiveness of silencing PLCβ3 or the PLC gamma (γ) isoforms was con-

firmed by western blotting (PLCβ3: Control = 100% vs siRNA PLCβ3 = 12 ± 0.15%; PLCγ: Con-

trol = 100% vs siRNA PLCγ = 24.5 ± 0.36%, n = 5, p<0.01 for each condition), (Fig 3A–3C).

Fig 1. Ang-II induces ACE translocation to the nucleus. (A) Internalization of AT1 and ACE in the

presence of 4 nM 3H-Ang-II. Data are shown as mean from three independent experiments, each performed

in duplicate. (B) CHO-ACE and CHO-AT1 cells present the same relative protein level of each respective

receptor. (Values are mean ± S.E.M, *p<0.05, n = 63 individual experiments). (C) Representative confocal

images of internalized Ang-II-FITC (1 μM) in CHO-ACE and CHO-AT1 cells after 30 seconds of Ang-II

stimulation. DAPI (blue) and Wheat Germ Agglutinin (red), scale bar = 10 μm. On the right, quantification of

internalized Ang-II-FITC is presented. Values are mean ± S.E.M, *p<0.05, n = 6. (D) Representative confocal

images of unstimulated CHO-ACE and CHO-AT1 cells, labeled for DAPI and WGA. (E) Immunolocalization of

ACE after stimulation with Ang-II (1μM), for the indicated times. ACE is shown in green, actin filaments in red,

and nucleus in blue (DAPI). Right panel represents a 3D reconstruction of CHO-ACE cell after 15 minutes of

incubation with Ang-II (1μM). Scale bar = 10μm. (F) Western blotting of nuclear and non-nuclear protein

fractions from CHO-ACE cells, before (control) and after Ang-II (1 μM) stimulation for the indicated times.

Histone-3 and GAPDH were used to shown the purification of nuclear and non-nuclear protein fractions,

respectively. (G) Densitometry analysis of the western blot. Values are mean ± S.E.M., n = 3 (*** p<0.01).

doi:10.1371/journal.pone.0165371.g001
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Silencing of PLCβ3 but not PLCγ in CHO-ACE decreased Ca2+ signaling induced by Ang-II

(Control: 19.52 ± 2.2%, Lipo: 19.15 ± 0.85%, siRNA PLCβ3: 16.6 ± 1.9% and siRNA PLCγ:

16.57 ± 0.12% n = 3, p<0.01), (Fig 3D). Additionally, Ca2+ signals induced by Ang-II/ACE acti-

vation initiate and predominate in the nuclear compartment (Nucleus: 166.6 ± 43.2% vs Cyto-

sol: 49.5 ± 15.8%, n = 3, p<0.05), (Fig 3E–3G). Together, these results indicate that upon Ang-

II stimulation, ACE interacts with PLC to trigger an intracellular Ca2+ increase predominantly

in the nucleus of CHO cells.

Clathrin regulates endocytosis of ACE

Since our previous demonstrated that nucleoplasmic Ca2+ regulates cell proliferation [12, 29,

30] and the activation of ACE by Ang-II caused preferential nuclear Ca2+ increase, we investi-

gated the role of ACE in cell growth. Ang-II stimulated CHO-ACE cells to proliferate faster

Fig 2. Molecular interaction between ACE and PLC by computational analysis in silico. (A) Representation

of the ten top ranked docking poses for ACE (blue) with PLCβ3 protein superimposed (the color of the PLC protein

pose correspond to the colors of the labels). (B) Structure of the complex between ACE (blue) and PLC-β3 (Pose

9, red). The binding energy for the best docking pose of ACE and PLC-β3, Pose 9, is -194.06 kcal/mol. C) Amino

acid residues located at the interface between the best docking pose of PLC-β3 (left panel) and ACE (right panel),

Pose 9, explored through docking protocols.

doi:10.1371/journal.pone.0165371.g002
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Fig 3. Effect of Ang-II on intracellular Ca2+ signaling in CHO-ACE cells. (A) Western immunoblotting to

confirm the silencing of PLC isoforms. Densitometric analysis are shown on (B) for PLCβ3 and (C) for PLCγ1.

(D) Quantitative representation of intracellular [Ca2+] in CHO-ACE cells transfected with siRNA-PLCβ3 and

PLCγ1 using Lipofectamine and stimulated with Ang-II (1μM). (E) Line scanning of Ca2+ signal in CHO-ACE.

Ang-II promotes Ca2+ increase with greater intensity in the nuclear region. (F) Time course of Ca2+ signaling

in the nucleus (red traces) and cytosol (blue traces). (G) Quantification of fluorescence intensity signal in the

nucleus and cytosol. Values are mean ± S.E.M., (* p<0.01), 45 cells, n = 3 individual experiments.

doi:10.1371/journal.pone.0165371.g003

ACE Regulates Cell Proliferation and Migration

PLOS ONE | DOI:10.1371/journal.pone.0165371 December 19, 2016 9 / 20



compared to control non-stimulated group (CHO-ACE cells reached 1.1 ± 0.28 x 104 cells vs
1.5 x 103 ± 0.25 cells from the control group, after 15 hours of incubation in the presence of

Ang-II, n = 4, p<0.05), (Fig 4A). Next, we investigated whether the nuclear translocation of

ACE is necessary for the proliferative response. For that, we performed silencing of clathrin

(Cla), which is involved in classic receptor endocytosis [31]. Our result showed an efficient

silencing of Cla in CHO-ACE cells (siRNA SCR: 1.39 ± 0.01 vs siRNA Cla: 0.46 ± 0.025), (Fig

4B). BrDU assay showed that silencing of Cla inhibited cell proliferation stimulated by Ang-II

on CHO-ACE cells (Data expressed as percentage of the control group. Ang-II: 25 ± 4.34%,

siRNA Cla + Ang-II: 0 ± 5.4%, siRNA Scr + Ang-II: 20 ± 6.56%, n = 3, p<0.05), (Fig 4C).

These results demonstrate that clathrin-mediated endocytosis is necessary to promote cell pro-

liferation induced by Ang-II.

Fig 4. Cell proliferation induced by Ang-II/ACE involves clathrin- mediated internalization process. (A) Cell

growth assay of CHO-ACE cells 12, 24 and 48 hours after stimulation with Ang-II (1μM), triplicate in 3 individual

experiments. (B) Western blot to confirm the silencing of clathrin (upper panel) and densitometry analysis (bottom

panel). Mean ± S.E.M., n = 5 (* p<0.05). (C) BrDU incorporation is decreased in CHO-ACE cells transfected with

siRNA-Cla (Clathrin) and stimulated with Ang-II (1μM). Mean ± S.E.M., n = 6 (* p<0.05).

doi:10.1371/journal.pone.0165371.g004
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Ang-II/ACE regulates melanoma cell proliferation and migration

To further investigate the role of ACE on cell proliferation, we used the murine melanoma

cells (TM-5), since TM-5 cells endogenously express ACE, but do not express AT1 and AT2

receptors [32]. ACE expression level is higher in TM-5 cells than in its control melanocyte

counterpart, Melan-a cells (TM-5 cells: 1.1 ± 0.1 a.u. vs Melan-a cells: 0.14 ± 0.05 a.u., n = 5,

p<0.01), (Fig 5A). As expected, ACE activity is also more pronounced in TM-5 compared to

Melan-a (0.42 ± 0.1 in melan-a vs 1.80 ± 0.42 in TM-5, n = 3, p<0.05), (Fig 5B). No prolifera-

tion was observed in response to Ang-II stimulation in Melan-a cells (Control: 1.3± 0.2 Ang-

II: 0.9 ± 0.1, Lisi: 1.2 ± 0.3, Lisi + Ang-II: 1 ± 0.2, n = 3, p = ns), (Fig 5C). Conversely, BrDU

incorporation was increased in TM-5 upon Ang-II, an effect that was prevented by pre-treat-

ment with ACE inhibitor, Lisinopril (Control: 0.2± 0.1, Ang-II: 0.6 ± 0.1, Lisi: 0.2 ± 0.1, Lisi +

Ang-II: 0.19± 0.1, n = 3, p =<0.01), (Fig 5D).

To address the potential direct involvement of ACE in TM-5 cell proliferation, ACE expres-

sion was silenced in this cell type (Control: 5.93 ± 0.2%, CNT: 5.78 ± 0.16%, siRNA SCR:

4 ± 0.1% and siRNA ACE: 0.3 ± 0.01%, n = 3, p<0.01), (Fig 6A). In cells with reduced levels of

Fig 5. Ang-II stimulates proliferation in melanoma cells. (A) Real-Time PCR analysis for expression of ACE in

melan-a and TM-5 cells. (B) ACE activity measured by cleavage of Abz-FRK(Dnp)P-OH in melan-a and TM-5 cells.

For A and B, mean ± S.E.M, n = 6 (**p<0.01). (C-D) BrDU uptake assay 24 hours after stimulation with Ang-II

(1μM) in the presence of lisinopril (1μM), showing inhibition of cell proliferation in TM-5 cells (D) but not in melan-a

cells (C). Mean ± S.E.M., n = 6. (*p<0.05).

doi:10.1371/journal.pone.0165371.g005
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ACE, Ang-II was unable to induce TM-5 cell proliferation (Control: 147 ± 23%, siRNA SCR:

172 ± 9% and siRNA ACE: 0 ± 2%, n = 4, p<0.05), (Fig 6B), indicating that ACE activation is

involved in melanoma proliferative response triggered by Ang-II.

Melanoma is the most aggressive form of skin cancer [33]. When it has spread (metastatic

melanoma), the prognosis is very poor. Indeed, this type of skin cancer has a great capacity of

migration [33]. To investigate whether Ang-II induces migration of melanoma cells, we per-

formed a scratch assay in the presence or absence of Ang-II. Ang-II stimulateed a faster healing

process (Results expressed as the percentage of healing. FBS 12h: 37.7 ± 3.1%, Ang-II 12h:

47.9 ± 4.4%, FBS 24h: 44 ± 5.1%, Ang-II 24h: 58.2 ± 7.2%), (Fig 7A and 7B). Some recent find-

ings showed that the filamentous (F)-actin-binding protein vinculin is required for cell polari-

zation and migration [34], having a key role on the formation of focal adhesion points. In

order to check if the increased healing observed during stimulation with Ang-II is due to alter-

ations on the focal adhesion points, we performed immunofluorescence for vinculin. Under

stimulation with Ang-II, TM-5 cells showed a decreased focal adhesion formation/1000μm2

(Control: 95.5 ± 23, Ang-II 6h: 69.9 ± 15.4, Ang-II 24h: 18.7 ± 9.8, n = 5, p<0.05), (Fig 7C–

7E). Taken together, these data suggest that the reduction of focal adhesion observed in Ang-II

stimulated melanocytes might contribute to the detachment and migration of melanoma cells.

Discussion

The major form of somatic ACE involves two very similar protein domains (N- and C-

domains) [35, 36], with the C-domain of ACE responsible for Ang-II formation [37, 38], the

principal final product of the renin-angiotensin system. However, ACE is a relatively

Fig 6. ACE silencing inhibits the proliferative effect of Ang-II in melanoma cells. (A) Western bot (upper panel) to

confirm the silencing of ACE and densitometry analysis (bottom panel). Mean ± S.E.M, n = 8. (***p<0.01 compared to

respective columns). (B) BrDU uptake in Tm5 cells silenced for ACE and stimulated for 24 hours with Ang-II (1μM),

showing a decrease in BrDU incorporation in the absence of ACE. Mean ± S.E.M., n = 12 (*p<0.05; ns = non-significant).

doi:10.1371/journal.pone.0165371.g006
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nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this,

ACE and its peptide products affect many physiologic processes, involving blood pressure

regulation, handling of electrolytes in the kidneys, hematopoiesis, reproduction, immune

response among others [39]. Recently, evidence has been provided that ACE has kinase activity

[4, 5] and also functions as a membrane receptor for Ang-II [7, 9]. Indeed, crystal structure of

ACE c-domain in complex with Ang-II revealed detailed molecular interaction site between

ACE and the peptide [9]. Once bound to ACE, Ang-II was shown to cause an InsP3-dependent

Fig 7. Ang-II promotes cellular migration and reduces focal adhesion formation in melanoma cells.

(A-B) Wound healing assay using TM-5 cells stimulated with Ang-II (1μM). C) Representative confocal

images of TM-5 cells double-labeled with vinculin (green) and phalloidin (red). Scale bar = 10 μm. (D-E)

Quantification of the focal adhesion formation. Mean ± S.E.M., n = 6 (* p<0.05).

doi:10.1371/journal.pone.0165371.g007
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intracellular Ca2+ increase [7]. In the current work, we showed that through ACE, Ang-II

increases Ca2+ signals preferentially in the nucleus and modulates cellular functions such as

proliferation and migration. We also demonstrated that ACE and Ang-II complex internalizes

in a clathrin-dependent way.

Upon activation by ligand stimulation, several membrane receptors are internalized

through the clathrin-coated endocytic pathway, suggesting an intranuclear signaling of both

ligands and receptors [40]. For AT1 receptor, its internalization is initiated by G protein-cou-

pled receptors (GPCRs) kinases that promote phosphorylation of aminoacid residues within

the cytoplasmic tail of the receptor [41]. After that, the phosphorylated receptor can interact

with arrestins (β- arrestins-1and-2), which in turn, promotes entry of the receptor into cla-

thrin-coated pits [42]. Although we showed Cla took part on the ACE internalization, we have

no evidences whether ACE interacts with β -arrestin in order to entry on clathrin-coated pits,

as it has already been demonstrated for AT1 and other GPCRs [41, 43, 44, 45].

In the endosome-mediated nuclear translocation, the internalized endosome is usually

directed by the nuclear transporter importin proteins, which recognize the nuclear localization

signal of the proteins and direct them to the nucleus through the nuclear pore complex [46,

47]. However, the nuclear localization signal is not predicted in the entire ACE sequence [48],

therefore nuclear import of ACE may require other mechanisms. Indeed, several receptors

tyrosine kinases (RTKs), that lack the nuclear localization signal, have also been reported to

localize in the nucleus [48]. In this aspect, we have previously described that the nuclear accu-

mulation of the hepatocyte growth factor (HGF) receptor requires Gab1 participation [13].

Gab1 is an adaptor protein that contains a nuclear localization sequence and by binding to the

target protein regulates its active import to the nucleus [49]. It is possible that a similar mecha-

nism mediates ACE nuclear translocation. Additional questions include whether Ang-II

remains bound to nuclear ACE and whether the nuclear localization of ACE may take place

only at specific stages of the cell cycle. While more studies need to be done to characterize the

nuclear translocation of ACE/Ang-II complex, we are now demonstrating that this internaliza-

tion process is essential to cause a preferential nuclear Ca2+ increase.

Intracellular Ca2+ signals mediated by InsP3 rely on activation of PLC that causes hydrolysis

of phosphatidylinositol bisphosphate (PIP2) [50]. This activation typically depends on hetero-

trimeric G protein subunits, but can also be triggered by protein tyrosine kinases, small G pro-

teins, and phospholipids [51]. We now show that ACE may directly interact with PLC, and

that in CHO cells, the PLCβ3 isoform, but not the PLCγ1, regulates the Ca2+ signals triggered

by Ang-II/ACE pathway. One can thus speculate that the subpopulation of activated ACE that

translocates to the nucleus might locally activate PLCβ3 to generate nuclear Ca2+ signals upon

Ang-II stimulation. This is supported by data from other cell systems, which show expression

of PLC family members not only at the plasma membrane, but also preferentially in the inner

nuclear compartment [52]. Furthermore, a link between nuclear inositol lipid cycle and

nuclear Ca2+ signal is well established, and the activation of this pathway has been shown to

act independently from that at the plasma membrane [13, 53–58]. Moreover, it is known that

mitogens such as insulin [53] and hepatocyte growth factor, once bound to their respective

receptors [13] can lead to hydrolysis of the nuclear pool of PIP2, through a PLC-dependent

mechanism, leading to a nuclear Ca2+ increase [50]. It is conceivable that a similar phenome-

non occurs with ACE/Ang-II. However, since the selectively silencing of PLCβ3 did not

completely abolish intracellular signals triggered by Ang-II and ACE interaction, we cannot

exclude a partial contribution of other signaling molecules as well. Indeed, Guimarães and

Alvarenga, 2011 [7] showed that either 2-APB (InsP3R antagonist) or Nifedipine (L-type volt-

age-gated Ca2+ channel blocker) were able to partially block ACE-evoked Ca2+ signaling in

CHO-ACE cells, suggesting that, besides mobilizing intracellular Ca2+ stores, Ang-II binding
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to ACE also affects the opening of the voltage-gated Ca2+ channels. Therefore, the partial

blockage of Ca2+ signaling due PLCβ signaling dumight be explained due the different Ca2+

pathways that are activated by Ang-II binding to ACE. Another possibility is that ACE/Ang-II

links to a specific isoform of the InsP3R to trigger nuclear Ca2+ release. For instance, it is

known that three InsP3 receptor isoforms exist and they have distinct sensitivity to InsP3 [50]

and subcellular localizations, which would enable InsP3-mediated Ca2+ signals to occur prefer-

entially in the nucleus, compared to the cytosol, after ACE activation [50].

Ca2+ signals within the nucleus are particularly important in cancer cell progression [50, 59,

60]. Buffering nuclear Ca2+ arrests adenocarcinoma cells in the early phase of mitosis [61],

and sensitizes head and neck cancer cells to radiotherapy [59]. Therefore, the effect of Ang-II/

ACE on nuclear Ca2+ signaling might explain the observed Ang-II’s action as a mitogen, in

the melanoma cell line (TM-5), a murine cell type that endogenously expresses ACE, but lack

Ang-II type 1 or type 2 receptors. We further show that ACE is involved in TM-5 cell migra-

tion, another aspect of melanoma carcinogenesis. Melanoma is a common cancer in the West-

ern world with an increasing incidence highly due to sun exposure [62]. Transformation of

melanocytes into melanoma encompasses a complex interplay of both endogenous and exoge-

nous factors and it is known that its metastasis pattern can occur during either an earlier or a

later phase, being guided by genetic or phenotypic drivers [63, 64]. Although Ang-II has been

reported to regulate growth, adhesion, invasion and cell migration in certain cancer cells [65],

this is the first report of Ang-II-induced melanocytes proliferation and migration mediated by

binding to ACE.

It is well-accepted that either ACE inhibitors or AT1 blockers are the gold standard drugs

in order to manage hypertension, due their survival benefits provided on patients with heart

failure, high cardiac risk profile and also proteiunuric chronic kidney disease [66]. However, a

combination therapy with ACE inhibitors and Ang-II receptor blockers has been extensively

explored since the monotherapy has been shown efficient in only a quite limited number of

hypertensive patients [67]. Another evidence that supports the usage of a combined therapy is

the fact that monotherapy with ACE inhibitor increases the concentration of circulating Ang-I

and this can partially mitigate inhibition of ACE, what turns out to restore the concentration

of active Ang-II towards pretreatment levels [68, 69]. In addition to that, it is known that other

enzymes distinct from ACE, and therefore not blocked by ACE inhibitors, can form Ang-II

[70]. Indeed, patients with mild to moderate hypertension demonstrated a more prominent

decrease in diastolic blood pressure when a combination therapy was used [71, 72]. However,

the long-term effects of these combination therapies on blood pressure have still been ques-

tioned since they showed no benefits in terms of the composite of cardiovascular death,

myocardial infarction, stroke and hospitalization for heart failure. In fact, it caused more

symptoms attributable to hypotension, increased decline in renal function and need for dialy-

sis compared to ACE inhibitor monotherapy [73].

There are several clinical evidences showing the chemopreventive effects of ACE-blocking

in cancer [74]. The first evidence for the antitumor effects of ACE blockers was demonstrated

in 1998 [75] in which the relative risk of fatal, incident and female-specific cancers was lower

in women on ACE inhibitors [75]. In human squamous skin cancer cells, it was observed a

prominent inhibitory effect on tumor growth and angiogenesis mediated by perindopril [76].

A similar finding was observed in a cohort study performed among a high-risk group of veter-

ans using ACE inhibitors, showing a lower incidence of keratinocyte cancer when compared

to nonusers. [77]. Specifically for cutaneous melanoma, captopril presented an antitumor

activity in human melanoma xenograft model [78]. Additionally, it is already known that AT1

receptor plays an important role in angiogenesis and growth of tumor cell [79]. Administra-

tion of the AT1 blocker, TCV-116, significantly decreased melanoma tumor volume in mice

ACE Regulates Cell Proliferation and Migration

PLOS ONE | DOI:10.1371/journal.pone.0165371 December 19, 2016 15 / 20



[80]. However, more clinical studies are still needed in order to justify the usage of ACE inhibi-

tors or AT1 blockers for treating melanoma and other malignancies.

Taken together, our findings here suggest a novel function of ACE in the pathology of mela-

noma and open new paths to further studies, where ACE, as a receptor, might function as a

possible therapeutic target aiming to avoid the progression of the disease.
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