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To the Editor

Biochemical, epidemiologic, clinical, and genetic research over several decades has shown 

that any increment in fetal hemoglobin (HbF) reduces the clinical severity of sickle cell 

anemia, with significantly improved survival in U.S. patients with HbF levels above the 75% 

percentile (8.6%) or with an absolute HbF ≥ 0.5 g/dl with hydroxyurea (HU) treatment (1–

2). While having 100% F-cells results in a benign condition in compound heterozygotes for 

HbS and hereditary persistence of HbF (HPFH), a level of 70–75% F-cells has been 

observed in the milder haplotypes, such as the Arabian-Indian haplotype (3–5). Perhaps the 

most important protector of the sickle erythrocyte from deoxy HbS polymer induced injury 

is the concentration of HbF/F-cell. A recent analysis of a population of African patients 

found low concentrations of HbF/F-cells in sickle cell patients in Tanzania, supporting the 
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importance of this parameter. (6) The amount of HbF/F-cell required to entirely prevent HbS 

polymerization was recently proposed as a therapeutic target. (1)

To investigate the impact of HU on HbF expression parameters other than total HbF in adult 

patients, we analyzed F-cells and HbF/F-cell in 56 adult sickle cell disease patients attending 

a sickle cell clinic for routine care, of whom 33 (60%) were taking hydroxyurea at modest 

stable doses of 1000–1500 mg/day. Subjects were 20–65 years of age, with median age 31 

years; 45% were females. Patients with an acute illness or transfusion within 4 weeks were 

not included. Proportions of F-cells and mean fluorescent intensity (MFI) of F-cells were 

analyzed from heparinized peripheral blood by flow cytometry. Cells were stained with a 

specific HbF antibody (Becton–Dickinson). F-cells and mean fluorescence intensity of 

positive cells was determined using Cell Quest software and used as an estimate of HbF/F-

cell. HbF was analyzed by HPLC (Variant).

The mean HbF in HU-treated subjects was 8.8 % compared to 5.0 % in untreated subjects 

(Figure 1A), a level nearly identical to that observed in the Multi-Center Study of 

Hydroxyurea that led to its FDA approval. Mean % F-cells was 34% in HU-treated subjects 

compared to 22.9 % in untreated subjects, (p=0.01, t-test), shown in Figure 1B. Fourteen of 

the 33 (42%) of HU-treated subjects demonstrated F-cell proportions ≥ 40%. Mean 

fluorescent intensity of F-cells in untreated patients compared to HU-treated patients was 37 

vs 48 fluorescence units, respectively, shown in Figure 1B (p = 0.01). Several recently 

identified targeted HbF therapeutic inducing agents which act through differing mechanisms 

to increase fetal globin mRNA, HbF, and F-cells in vitro and in vivo, including sodium 2,2 

dimethylbutyrate (ST20), benserazide (BEN), and the LSD-1 inhibitor RN-1 were evaluated 

for effects on HbF expression in erythroid progenitor cells cultured from at least 10 sickle 

cell patients (3). All therapeutic candidates significantly induced fetal globin mRNA levels 

by 2.5–10-fold above untreated control cells from the same patients (Figure 1C); mean 

increases above control were 2.5 to 2.8-fold with HU, RN-1, or ST20, (all, p<0.01), 5.8-fold 

with BEN, p<0.001); and 7-fold with combined treatment with BEN and HU (p=0.01), 

analyzed by a nonparametric test.

Therapeutic targets for amelioration of clinical severity of sickle cell disease have been 

proposed as 20–30% HbF, 70–75% F-cells, and 10 pg HbF/cell, twice the threshold of 4–6 

pg/cell which is the minimum previously detectable in flow cytometry assays (1). F-cells 

undergo selective survival and have longer lifespans than non-F cells (3–5). We used a 

pathway analysis to deconstruct the total effects of hydroxyurea as either direct (HbF) or 

indirect (mediated by F-cell percentage). Pathway analysis tests a hypothetical pathway from 

predictors to responses against observed data using multiple regression equations. 

Standardized regression coefficients are computed for each relationship, adjusted for the 

other relationships, and shown next to each line connecting predictors to responses, and is 

shown for the patient data in Figure 1D. This analysis indicates that HU contributes first to 

higher proportions of F-cells (r=0.47, p< 0.001), and secondly to the amount of HbF (r=0.85, 

p<0.01), whereas, in contrast, a direct effect of HU to HbF was not statistically significant (r 

= 0.09, P = 0.3). In this analysis, 82% of the total effect of HU on HbF is an indirect effect 

mediated by F-cells. These data suggest that addition of a second, or perhaps multiple, HbF 

inducers may produce higher concentrations of HbF content in erythroid cells which 
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differentiate with, or are primed by, HU. The findings here particularly suggest that addition 

of benserazide as a second therapeutic with HU may induce HbF expression closer to 

therapeutic targets proposed. As individual patients have highly variable baseline HbF 

expression patterns, monitoring these parameters may guide treatments to ameliorate clinical 

severity and indicate when multiple therapies are warranted.
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Figure 1. 
A–B. Mean levels of HbF, F-cells, or MFI in sickle cell patients who were taking HU (dark 

bars) were significantly higher in treated than in untreated patients. C. Fetal (γ)-globin 

mRNA in erythroid progenitors cultured from sickle cell patients is significantly increased 

(*) with added therapeutics compared to untreated controls from the same patient, from 2.5 

to 2.8-fold with ST20, RN-1, or HU, 5.8-fold with BEN (p< 0.001), and 7-fold with BEN + 

HU (n=10, p = 0.011). Standard deviation is shown by the vertical bars. D. Diagram of the 

Pathway analysis, demonstrating that the main effect of Hydroxyurea (HU) is due to 

increases in % F-cells, which in turn contribute to total HbF.
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