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Abstract

The recent discovery of reversible mRNA methylation has opened a new realm of post-

transcriptional gene regulation in eukaryotes. The identification and functional characterization of 

proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification 

that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation 

directs mRNAs to distinct fates by grouping them for differential processing, translation and decay 

in processes such as cell differentiation, embryonic development and stress responses. Other 

mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and 

pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of 

information that controls protein synthesis.

RNA from all living organisms can be post-transcriptionally modified by a collection of 

more than 100 distinct chemical modifications1. Among these modifications, N6-

methyladenosine (m6A) has been identified as the most abundant internal modification in 

eukaryotic mRNA since its discovery in the 1970s2–7. In early experiments, radioactive 

labelling of methylation sites in mRNAs revealed that internal regions harboured significant 

radioactivity2,3 in addition to 5′ caps. These internal regions were later characterized as 

primarily m6A; the remaining fraction included 5-methylcytosine (m5C)7,8. RNA m6A is 

widely conserved across plants9–12 and vertebrates2,3,13–18, and is also found in viruses19–23 

as well as in single-cell organisms such as archaea24,25, bacteria26 and yeast27 

(Supplementary information S1 (box)). The amount of m6A in isolated RNA is estimated to 

constitute 0.1–0.4% of all adenosine nucleotides in mammals18,28, 0.7–0.9% of adenine 

nucleotides (all within GA dinucleotides) in meiotic Saccharomyces cerevisiae29, and 1–15 

sites per virion RNA molecule in various viruses30. Mutation and in vitro enzymatic studies 

have identified a consensus motif of RRm6ACH ([G/A/U][G>A]m6AC[U>A>C])31–34. 

However, owing to the low abundance of m6A in mRNA and the lack of effective 

techniques, functional characterizations of m6A have been largely absent over the past few 

decades.
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The deposition of m6A is carried out by a multicomponent methyltransferase complex that 

was first reported in 1994 (REF. 35). A key protein, methyltransferase-like 3 (METTL3), was 

subsequently identified as an S- adenosyl methionine-binding protein with 

methyltransferase capacity36. Recent studies have identified other components of the m6A 

methyltransferase complex in mammals, including METTL14 (REFS 37,38), Wilms tumour 

1-associated protein (WTAP)37,39 and KIAA1429 (REF. 40) (FIG. 1). Homologues of human 

WTAP have been identified in yeast (MUM2)41 and in plants (FKBP12-interacting protein 

37 (FIP37))12. In 2010, we speculated that RNA modifications such as m6A in mRNA could 

be dynamic and reversible42. This hypothesis was confirmed in 2011 with the discovery of 

the first m6A demethylase43, which rekindled interest in the biological relevance of m6A. 

The removal of m6A is facilitated by fat mass and obesity-associated protein (FTO) and 

alkB homologue 5 (ALKBH5)43,44 (FIG. 1), with each possessing distinct subcellular and 

tissue distributions44–48 and potentially affecting different subsets of target mRNAs. The 

demonstration that both these enzymes can catalyse the demethylation of m6A in 

mRNA43,44 provided the first evidence of reversible post-transcriptional modification in 

RNA transcribed by RNA polymerase II, including mRNAs and certain non-coding RNAs.

Following the use of a m6A-specific antibody to identify m6A sites in S. cerevisiae29, m6A-

specific antibodies were used for immunoprecipitation followed by high-throughput 

sequencing to generate transcriptome-wide maps of m6A, charting the m6A 

epitranscriptome49,50. These studies have uncovered the presence of more than 10,000 

m6A sites in over 25% of human transcripts, with enrichment in long exons, near stop 

codons and in 3′ untranslated regions (3′ UTRs). 5′ UTRs and regions surrounding the 

start codon have also been shown to harbour varied levels of m6A in different species or cell 

types, or in certain growth conditions49,51,52. These observations confirmed that m6A is a 

prevalent modification in mRNA and confirmed its presence in the consensus sequence 

RRm6ACH. Many other m6A detection methods have since been developed, including 

advances in single-nucleotide resolution mapping and high-resolution characterization53–56 

(reviewed in REFS 57,58).

Proteins that mediate the effects of m6A have also been uncovered (see below), together 

establishing a complex interplay among m6A deposition, removal and recognition factors 

(‘writers’, ‘erasers’ and ‘readers’, respectively)59. Writers and erasers determine the 

prevalence and distribution of m6A, whereas readers mediate m6A-dependent functions. The 

YT521-B homology (YTH) domain family of proteins (YTHDF1, YTHDF2, YTHDF3 and 

YTHDC1) are direct readers of m6A and have a conserved m6A-binding pocket49,60–65. In 

addition, the heterogeneous nuclear ribonucleoprotein (HNRNP) proteins HNRNPA2B1 and 

HNRNPC selectively bind m6A-containing mRNAs66,67. HNRNPC recognizes m6A-

induced changes in mRNA secondary structures67, whereas the exact mechanism for 

selective m6A binding by HNRNPA2B1 remains to be elucidated.

The writers, erasers and readers impart the biological functions of m6A (TABLE 1). Recent 

work has uncovered molecular mechanisms of m6A-dependent control of mRNA fate, along 

with its biological consequences. In this Review, we discuss the advances in our 

understanding of the biological effects of this prevalent mRNA modification. We propose a 

role for m6A in sorting groups of mRNAs for accelerated metabolism through the activity of 
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reader proteins, which then affects numerous biological processes such as cell differentiation 

and development. Furthermore, we discuss additional mRNA chemical modifications that 

have potential roles in post-transcriptional gene regulation.

m6A modulates mRNA metabolism

N6-adenosine methylation affects almost every stage of mRNA metabolism, from processing 

in the nucleus to translation and decay in the cytoplasm. Two distinct modes of function 

have been identified for m6A readers: indirect reading and direct reading. Indirect reading 

involves m6A alterations to RNA secondary structures, thereby rendering the RNA 

accessible to a unique set of RNA-binding proteins (RBPs). Direct reading involves m6A 

selectively binding to RBPs with diverse cellular functions (TABLE 1).

m6A alters RNA folding and structure

The methyl group at the N6 position of m6A does not change Watson–Crick A•U base 

pairing but weakens duplex RNA by up to 1.4 kcal per mol68. In unpaired positions, m6A 

stacks better than an unmodified base, thereby stabilizing surrounding RNA structures69,70 

or promoting the folding of adjacent RNA sequences71. Transcriptome-wide RNA structure 

mapping has confirmed that methylated RNA regions prefer single-stranded structures to 

double-stranded structures70,72–74. In addition, a recent report revealed that m6A within 

coding regions could induce steric constraints that destabilize pairing between codons and 

tRNA anticodons, thus affecting translation dynamics75.

Owing to these thermodynamic effects, m6A-triggered structural remodelling may change 

the accessibility of RBP interaction motifs to RNA, a phenomenon termed the m6A 

switch67. The methylation of an RRACH motif in a stem structure in several genes, for 

example, in metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and CDP-

diacylglycerol synthase 2 (CDS2), causes its destabilization and the opening of the duplex. 

A single-stranded U-tract is then exposed, which can be recognized by HNRNPC to regulate 

the splicing of these transcripts67,76 (FIG. 2a). m6A switches may be widespread across the 

transcriptome and therefore may have profound roles in mediating interactions between 

RNA and RBPs67,76.

m6A affects mRNA maturation

Processing of pre-mRNA to mature mRNA consists of three main steps: 5′ capping, 3′ 
polyadenylation and splicing. m6A was initially proposed to function as a splicing regulator, 

as early studies found it to be more abundant in pre-mRNA than in mature mRNA77, with 

many m6A sites concentrated in introns78,79. mRNAs that undergo alternative splicing also 

have more METTL3-binding sites and more N6-adenosine methylation sites39,49. Writers 

and erasers of m6A localize predominantly in nuclear speckles39,43,44,63, which are sites of 

mRNA splicing and storage. PAR-CLIP (photoactivatable-ribonucleoside-enhanced 

crosslinking and immunoprecipitation) data showed that most METTL3-binding sites reside 

in introns39, and the depletion of Mettl3 in mouse embryonic stem cells (mouse ES cells) 

generally favours exon skipping and intron retention80. These results indicate that the 

recruitment of METTL3 to pre-mRNA is a co-transcriptional event, with methylation 
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potentially preceding and influencing splicing. FTO also modulates alternative splicing by 

removing m6A around splice sites and by preventing binding of serine- and arginine-rich 

splicing factor 2 (SRSF2)81. m6A readers also affect splicing. YTHDC1 recruits SRSF3 

while blocking binding by SRSF10, leading to exon inclusion63 (FIG. 2a). HNRNPA2B1 

and HNRNPC are also active splicing regulators67,82,83. HNRNPA2B1 regulates alternative 

splicing events in a similar manner to METTL3 (REF. 66), as well as microRNA (miRNA) 

biogenesis from intronic sequences, which is a process closely coupled with splicing66,84 

(Supplementary information S2 (box)).

Alternative polyadenylation (APA) is coupled to splicing of the last intron85 and 

associated with mRNA N6-adenosine methylation. Two-thirds of m6A sites in the last exon 

are found at the 3ʹ UTR, where APA sites reside56, and the knockdown of m6A writers can 

cause APA56. Recent studies of APA mRNA isoforms have revealed that isoforms with m6A 

tend to utilize proximal APA sites and have shorter 3′ UTRs compared to non-methylated 

isoforms86. Collectively, these results demonstrate that m6A methylation is intimately linked 

to early mRNA processing.

m6A enhances nuclear processing and export of mRNAs

mRNA nuclear export is a key process that connects transcription and processing in the 

nucleus to translation in the cytosol, and can selectively modulate gene expression87. N6-

adenosine methylation was suggested to promote mRNA export: depletion of METTL3 
inhibited mRNA export88, whereas depletion of ALKBH5 enhanced mRNA export to the 

cytoplasm44. Mechanistic details are yet to be reported, but it is conceivable that nuclear 

readers have an active role in this process. Facilitating mRNA export to the cytoplasm could 

be a major mechanism by which m6A regulates gene expression.

m6A promotes mRNA translation

Translation is promoted by N6-adenosine methylation through several mechanisms. 

YTHDF1 globally promotes translation of m6A-methylated mRNAs by binding m6A-

modified mRNA and recruiting translation initiation factors, thereby significantly improving 

the efficiency of cap-dependent translation61. YTHDF1 not only couples methylated 

transcripts with ribosomes but also recruits the translation initiation factor complex 

eukaryotic initiation factor 3 (eIF3) (FIG. 2a) to promote the rate-limiting step of translation. 

METTL3 was recently shown to function also as an m6A reader by enhancing eIF4E-

dependent translation in a specific subset of mRNAs by recruiting eIF3 during translation 

initiation89. This effect was independent of its methyltransferase activity or the YTHDF1–

eIF3 pathway89. Two recent studies have further indicated that the presence of m6A at the 5′ 
UTR improves cap-independent translation52,90, and eIF3 was proposed to interact with 

m6A and facilitate ribosome loading90. Collectively, these findings suggest several distinct 

mechanisms by which m6A promotes mRNA translation.

m6A marks mRNA for decay

Decay is the final step in mRNA metabolism, during which mRNA is destabilized and 

degraded. m6A has been linked to reduced mRNA stability, as knockdown of METTL3 and 

METTL14 in human and mouse cells has been shown to lead to increases in the expression 
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of their respective target mRNAs37,38. Although most m6A sites appear to accelerate mRNA 

decay, the impact on the transcriptome, including both methylated and unmethylated 

transcripts, can be more complex. This reasoning is because many mRNAs encoding 

transcription repressors are target substrates of the methyltransferase complex; reduced 

methylation of these transcripts could cause transcription repression.

Mechanistic studies of the cytoplasmic m6A reader YTHDF2 (REFS 49,60) provided the first 

direct evidence of an m6A-dependent mRNA decay pathway60. Similar to YTHDF1, 

YTHDF2 is a two-domain protein: the carboxy-terminal YTH domain selectively binds 

methylated transcripts, whereas the amino-terminal functional domain delivers the 

YTHDF2-bound transcripts to cytoplasmic RNA decay machinery for dedicated 

degradation60. Knockdown of YTHDF2 prolonged the stability of its target mRNAs, 

indicating that it promotes mRNA decay of N6-adenosine methylation. YTHDF2 was shown 

to associate with CCR4–NOT transcription complex subunit 1 (CNOT1)60, which facilitates 

the recruitment of the CCR4–NOT complex and induces accelerated deadenylation of 

YTHDF2-bound mRNA91. The YTHDF2-dependent degradation of N6-adenosine-

methylated mRNAs represents a crucial role for m6A, which is in accordance with increased 

gene expression observed with the knockdown of m6A writers37,38.

Additionally, the YTHDF2-bound m6A sites may also be recognized by other effectors of 

mRNA stability, such as ELAV-like RNA binding protein 1 (ELAV1; also known as 

HuR)38,92, miRNAs93 and the Toll-like receptor (TLR) family protein members TLR3 and 

TLR7 (REF. 94). Considering the proposed role of m6A in miRNA biogenesis 

(Supplementary information S2 (box)), these pathways could intersect to cooperatively 

control the stability of target mRNAs. The decay of methylated transcripts appears to be a 

major factor in promoting mouse ES cell differentiation and facilitating mouse 

embryogenesis80. In summary, m6A generally functions as a destabilizer of mRNAs and 

facilitates the degradation of methylated transcripts in various biological contexts.

m6A sorts transcripts into a fast track for mRNA metabolism

The life cycle of mRNAs is regulated by transcriptional and post-transcriptional regulatory 

processes, including processing, export, translation and decay. Recent studies have revealed 

that m6A and its related factors influence each of these steps. As these processes are 

generally coupled, we propose that mediators of N6-adenosine methylation may work in 

concert to shape the methylation pattern and protein binding of specific transcripts, thereby 

affecting their metabolism. One example of such cooperation is the co-regulation of 

translation and decay by YTHDF1 and YTHDF2 of their shared targets61. Both the 

translation efficiency and the degradation of these mRNAs are reduced by double 

knockdown of YTHDF1 and YTHDF2. The combined function of the YTHDF1-dependent 

translation promotion and YTHDF2-dependent decay may result in a spike in protein 

production61 (FIG. 2b). This effect, along with other m6A-mediated effects such as 

accelerated export of certain methylated mRNA, suggests a critical function for m6A-based 

gene regulation: writers and erasers dictate the levels of target-specific m6A. In turn, readers 

decode these messages and may functionally sort methylated mRNAs into distinct functional 

groups. During cell differentiation and development, when the translation of groups of 
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transcripts is accomplished within a short time span, methylation could sort these transcript 

groups into a fast track for processing, translation and decay. Methylation could be 

particularly beneficial in grouping and synchronizing the expression of hundreds to 

thousands of mRNAs that otherwise may possess markedly different properties with varied 

stabilities and translation efficiencies. Such a mechanism may also help in generating 

translation ‘pulses’ to satisfy the need for bursts of protein synthesis as well as rapid decay 

to regulate cell differentiation during early development (FIG. 2b).

m6A shapes cell function and identity

The molecular functions of m6A collectively translate into the control of complex cellular 

functions. Such controls may be required during the cellular transition between distinct 

states during differentiation and development, when cells rapidly replace their stage-specific 

transcriptomes to re-establish a new identity. m6A could be important in shaping the levels 

of mRNAs of various transcription factors and therefore may serve as barriers to or act as 

facilitators of these transitions.

m6A functions in circadian rhythm maintenance and cell cycle regulation

One of the earliest identified effects of m6A on cell function was discovered during a study 

of the mammalian circadian rhythm88. Maintenance of the circadian rhythm (clock) involves 

a negative feedback loop of gene expression, in which clock proteins downregulate the 

transcription of clock genes. However, only one-fifth of these rhythmic genes are driven by 

de novo transcription95, indicating that post-transcriptional regulation has prominent roles in 

circadian rhythm control. Transcripts of numerous clock genes and clock output genes are 

modified by N6-adenosine methylation88. METTL3 knockdown leads to reduced N6-

adenosine methylation of two key clock genes, period circadian clock 2 (PER2) and aryl 

hydrocarbon receptor nuclear translocator like (ARNTL), which prolongs their nuclear 

retention and thereby the circadian period88. These results demonstrate how changes in 

mRNA metabolism can have prolonged effects. Similarly, the cell cycle is an oscillating 

process that is functionally coupled with the circadian clock96. A notable shift in cell cycle 

duration following perturbation of m6A in mRNAs of transcription factors was also reported 

in mouse ES cells97. More detailed studies are needed to fully elucidate the mechanism of 

cell cycle regulation by m6A.

m6A functions in cell differentiation and reprogramming

Cell differentiation is an essential process during which a cell changes its identity and 

specialization. N6-adenosine methylation in mRNAs affects cell differentiation and the 

expression of numerous transcription factors. For instance, m6A affects the differentiation of 

pre-adipocytes during adipogenesis81,98. FTO controls m6A levels, which in turn affects 

SRSF2 binding, thereby affecting the alternative splicing of numerous key genes that are 

required for adipogenesis81,98. ALKBH5 affects cell differentiation in human breast cancer 

stem cells (BCSCs)99. Exposure of BCSCs to hypoxia induces m6A demethylation by 

ALKBH5 of the key pluripotency factor NANOG, which increases transcript stability and 

promotes BCSC proliferation.
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In-depth mechanistic studies carried out in mouse ES cells have demonstrated that proper 

differentiation requires m6A. Decreased m6A levels and reduced self-renewal of mouse ES 

cells were observed upon partial short hairpin RNA-mediated knockdown of Mettl3 and 

Mettl14 (REF. 38). By contrast, a CRISPR–Cas9 knockout of Mettl3 resulted in improved 

self-renewal and impaired differentiation69. Using homologous recombination to completely 

inactivate Mettl3, a subsequent study confirmed the crucial role of METTL3 in stem cell 

differentiation and detailed how m6A may drive mouse ES cells away from the pluripotent 

state80. Mettl3 knockout is embryonic lethal, which is probably due to the retention of 

pervasive NANOG expression and severely limited embryonic priming. Specifically, 

m6A supports the timely transition from naive pluripotency to lineage commitment, 

potentially by facilitating the decay of naive pluripotency-promoting transcripts80. Cell 

reprogramming, the reverse process of cell differentiation, was shown to be affected by 

METTL3 in the same study, in which the reprogramming of differentiated mouse epiblast 

stem cells to mouse ES cells was blocked by inactivation of Mettl3 early during 

development but facilitated by inactivation late during development. Zinc finger protein 217 

(ZFP217) is partially responsible for stabilizing key pluripotency and reprogramming 

transcripts by inhibiting their METTL3-mediated methylation, thus promoting self-renewal 

of mouse ES cell and reprogramming of somatic cells97.

m6A facilitates cell state transitions

The collective influence of m6A affects cell function most probably through the regulation 

of a subset of key transcription factors that determine cell fate. N6-adenosine methylation 

has been found on transcripts of numerous transcription factors that control cellular state and 

lineage commitment. Such transcription factors include the core pluripotency factors 

NANOG and the so-called Yamanaka reprogramming factors100 — the transcription factors 

POU domain, class 5, transcription factor 1 (POU5F1; also known as OCT4), SOX2, MYC 

and Krueppel-like factor 4 (KLF4) — that are necessary and sufficient to induce the 

formation of pluripotent stem cells69,97,99. The cellular composition of expressed 

transcription factors can either maintain cell state or promote cell differentiation. By 

facilitating the downregulation of transcripts encoding such dominant transcription factors, 

the barrier to cell-state transition could be tuned by changes in mRNA m6A levels (FIG. 3). 

Thus, in cells in which N6-adenosine-methylated transcripts maintain pluripotency (or any 

other cell state), reducing m6A levels may increase the barrier for differentiation by reducing 

the decay and prolonging the lifetime of these mRNAs. Conversely, in cells in which 

methylated transcripts drive a transition to a new cell state, reducing m6A levels could 

promote cell differentiation, whereas increased overall methylation could induce stemness 

and suppress cell differentiation. Experimental results so far suggest that m6A is crucial for 

shaping cell states during cell differentiation and development. The effects of m6A on 

mammalian development and human diseases such as cancer progression and metastasis are 

only beginning to emerge (BOX 1).

m6A functions in stress responses

Owing to rapid response kinetics and potential for both short-term and long-term effects, the 

regulation of mRNA metabolism is particularly crucial under stress conditions such as 

extreme temperatures, deprivation of oxygen or nutrients, and exposure to toxins. Early 
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work suggested that N6-adenosine methylation on key transcripts in budding yeast is crucial 

for meiosis initiation in response to nitrogen starvation74. The m6A reader protein YTHDF1 

was shown to localize to stress granules along with stalled translation machinery following 

arsenite-induced oxidative stress, and to facilitate a post-stress recovery response by 

promoting translation restoration61. During the heat shock response, YTHDF2 localizes to 

the nucleus and promotes 5′ UTR methylation by inhibiting FTO binding. This process 

enables selective cap-independent translation under stress conditions despite global 

translation suppression52. In addition, hypoxic stress induces hypoxia-inducible factor 

(HIF)-dependent ALKBH5 expression and subsequent removal of m6A from the transcripts 

encoding the pluripotency factor NANOG, leading to increased NANOG expression and 

BCSC proliferation99. These results indicate that the proposed m6A-mediated fast-tracking 

mechanism of mRNA processing could also be employed in response to various cellular 

stresses in addition to affecting cell state transitions.

Other mRNA modifications

Several distinct chemical modifications are abundant in many RNA species, in particular on 

tRNAs, for which modifications are known to affect translation101–104. Apart from the 5′ 
cap modifications and the 3′ poly(A) tail found on eukaryotic mRNA, coding transcripts 

feature several chemical modifications with emerging regulatory functions. The availability 

of high-throughput sequencing techniques, combined with highly sensitive mass 

spectrometry technology, has aided the discovery of new modifications that have potential 

regulatory functions.

N1-methyladenosine

First discovered in total RNA samples decades ago105, N1-methyladenosine (m1A) is a 

modification that was previously known to regulate the structure and stability of tRNA and 

rRNA106,107. Recent studies have also revealed the presence of m1A in eukaryo tic 

mRNAs108,109. The positive charge associated with this modification could potentially 

augment its biological impact by strengthening RNA–protein interactions or by altering 

RNA secondary structures. A recent study showed that m1A disrupts RNA base-pairing and 

induces local RNA duplex melting110. In addition to the structural modifications induced by 

m1A, two recent reports have described the transcriptome-wide distributions of m1A in 

human and mouse cells and tissues108,109. Methylated RNA immunoprecipitation followed 

by high-throughput sequencing was used to map more than 7,000 m1A locations in coding 

and long non-coding RNAs, and a combination of immunoprecipitation followed by 

sequencing with the Dimroth rearrangement of m1A to m6A was used to obtain high-

resolution information of RNA N1-adenosine methylation108. The other study exploited the 

inherent ability of m1A to stall reverse transcription and identified more than 900 m1A sites 

in 600 genes109. Both studies suggested that each modified transcript contains on average 

one m1A, in contrast to m6A-containing transcripts, which tend to be methylated in multiple 

sites. The distribution of m1A in mRNAs is unique in its proximity to translation starting 

sites and the first splice site — a pattern distinct from the 3′ UTR enrichment of m6A (FIG. 

4a). The function of m1A remains unclear, although it probably promotes translation108. 
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Future work to identify key mediators of N1-adenosine methylation as well as its biological 

functions will be essential to understanding this new component of the epitranscriptome.

5-Methylcytosine

m5C (FIG. 4b) has long been studied as an epigenetic modification in DNA. m5C is known 

to exist in eukaryotic mRNA at levels well below that of m6A levels8, but, until recently, its 

distribution and function in mRNAs have not been characterized. Adopting the bisulfite 

treatment that was originally developed for m5C detection in DNA, several m5C sites in 

tRNA and rRNA have been characterized111–113, followed by the report of high-resolution 

maps of m5C in mRNAs114. Following the report in yeast that tRNA methyltransferase 4 

(Trm4) is a tRNA 5-cytosine methyltransferase115, tRNA aspartic acid methyltransferase 1 

(also known as Dnmt2) was reported to be a tRNA m5C writer in several eukaryotic species 

and shown to have protective functions against stress-induced tRNA cleavage111,116–118. 

Another tRNA methyltransferase, NOP2/Sun RNA methyltransferase family member 2 

(NSUN2, a homologue of yeast Trm4)119, was reported to also methylate 5-cytosine in 

mRNAs and in various non-coding RNAs114,120–122. Nevertheless, biological functions of 

m5C in eukaryotic mRNAs remain largely elusive, although the oxidative derivatives of 

m5C, 5-hydroxymethylcytosine and 5-formylcytosine, have been detected in RNA from 

Drosophila spp. to mammalian cells and brain tissues123–126, suggesting that it is a dynamic 

modification with potential regulatory roles.

Pseudouridine

The most abundant modification in cellular RNA is pseudouridine (ψ)127 (FIG. 4b). 

Generated by the isomerization of uridine, this modified base is relatively highly abundant in 

rRNA and tRNA. Pseudouridine mapping has been recently accomplished at single-base 

resolution, identifying hundreds of sites in yeast mRNAs128,129 as well as 96 sites in 

mammalian mRNAs129. A chemical biology approach was used to effectively enrich for 

pseudouridine-containing transcripts, revealing thousands of modified sites in mammalian 

mRNAs130. The ability of pseudouridine to alter base-pairing interactions allows it to affect 

not only RNA structures but also mRNA coding131, underscoring its potential as a 

regulatory element. Known pseudouridine synthase enzymes have been shown to mediate 

isomerization in mRNA as well as tRNA, suggesting that they may serve as mRNA writer 

proteins132.

2′-O-methylnucleosides

2′-O-methylation (2′OMe) is a common RNA modification that resides on the 2′ hydroxyl 

ribose moiety of all four ribonucleosides (FIG. 4b). 2′OMe has been found in all major 

classes of eukaryotic RNA133–135, and its existence in human mRNA was reported at the 

same time that m6A was discovered2. 2′OMe can inhibit A to I RNA editing in vitro136. 

Small nucleolar RNAs (snoRNAs) are known to guide 2′OMe on eukaryotic rRNA137, and 

recent studies have suggested that certain snoRNAs may also target other RNA species such 

as mRNA137,138. Several methods exist for 2′OMe detection139, including PCR-based 

quantitative methods140,141 and a high-throughput sequencing strategy (RiboMeth-Seq)142, 
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which have the potential to be applied to study mRNA modifications. However, the precise 

sites of 2′OMe in eukaryotic mRNA or its function are currently unclear.

Concluding remarks and perspectives

The main features of m6A on mRNA are its prevalence, unique distribution patterns along 

transcripts and dynamic nature. The biologically relevant reversibility of m6A distinguishes 

it from irreversible RNA cis elements. Additionally, although more than 7,000 human genes 

contain m6A sites (making m6A the most widespread mRNA functional element), the 

majority of potential m6A sites (RRACH motifs) are unmethylated, and most methylated 

sites are only partially (6–80%) modified67. Such sub-stoichiometry suggests that a large 

dynamic margin exists for m6A-based regulation across the transcriptome and that N6-

adenosine methylation provides greater capacity (compared to binary regulatory elements) 

for fine-tuning regulatory mechanisms. The notion of incompleteness is further supported by 

the highly uneven distribution of m6A along transcripts and the tissue-specific m6A patterns 

observed in many organisms. These features indicate that for each m6A site on a given 

transcript the ratio between methylated and unmethylated forms can be dynamic, potentially 

allowing for a rapidly tuned response to various internal and external stimuli.

The effects of incomplete N6-adenosine methylation may be accomplished by numerous 

mechanisms, and methylation patterns of individual transcripts may function as molecular 

markers decoded by relevant readers. mRNA transcripts could therefore be sorted into 

different groups with differential downstream metabolism. This hypothesis is supported by 

the recent report that methylated transcript isoforms have shorter 3′ UTRs and lower 

stability than non-methylated transcripts86. We propose that the ‘fast-track’ group of 

methylated transcripts enjoys accelerated nuclear export, translation and degradation, which 

are facilitated by the concerted binding of m6A readers. This process means that methylated 

mRNAs, in particular those encoding transcription factors and regulatory proteins, can be 

synchronized in response to differentiation, development and other stimuli. The stimuli-

triggered changes of writer and/or eraser activities may themselves be induced by 

transcription factors (for example, HIF-dependent ALKBH5 activity99 and ZFP217-

dependent METTL3 activity97) or miRNAs (such as miRNA-dependent METTL3 

activity143), suggesting a complex interplay between m6A and other regulatory pathways.

We propose two hallmarks to mRNA N6-adenosine methylation: that it serves as a marker to 

group and synchronize cohorts of transcripts for fast-tracking mRNA processing and 

metabolism; and that it considerably affects cell-state transition during cell differentiation. 

How selectivity and transcript grouping are achieved and how writers, erasers and readers 

are coordinated in response to different signalling pathways are unknown. We propose that 

the same stimuli and regulatory processes that tune transcription and translation may also 

affect these writers, erasers and readers through different forms of post-translational 

modifications. For example, when certain transcription factors are activated they may 

directly affect the accessibility and recruitment of writers. The same signalling pathway may 

coordinately activate or inactivate erasers and readers through direct recruitment or post-

translational modifications (FIG. 5). This process could be a fundamental mechanism that 

mammalian cells exploit to coordinate gene expression during development. Defects in such 

Zhao et al. Page 10

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processes may cause or contribute to human diseases. For example, various human cancers 

are known to have perturbations in the expression of m6A writers, erasers and readers (BOX 

1). Thus, the epitranscriptome may contribute to tumorigenesis.

Finally, m6A is but one of many post-transcriptional modifications in mRNA with regulatory 

roles that have been discovered or re-discovered in recent years. In addition to m6A, m1A, 

m5C, pseudouridine and 2′OMe, we suggest that additional regulatory chemical 

modifications may be discovered in mRNA. Each of these modifications may have a 

dedicated set of writers, erasers and readers, although some of them might be shared. The 

potential to decorate distinct parts of the pre-mRNA (5ʹ UTR, coding sequence, 3′ UTR, 

splice sites) could be used to modify different groups of transcripts in response to various 

stimuli. These mRNA chemical modifications could be regulated individually or 

combinatorially to affect the fate of individual mRNA species. More quantitative 

technologies will need to be developed to precisely map locations of these mRNA chemical 

modifications. Future work will also need to test and confirm the hallmarks of mRNA N6-

adenosine methylation we have proposed above and to explore the effects of various mRNA 

modifications in biological processes such as cell differentiation and development. Further 

understanding is also needed in how transcript selectivity and site selectivity are achieved, 

how these mRNA chemical modification processes and their connections with different 

signalling pathways are regulated, the interplay and potential synergy between modification 

regulators and other cellular components, and their roles in human physiology.
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Glossary

S-Adenosyl methionine
A biochemical cofactor and methyl donor for mRNA N6-methyladenosine methylation and 

other methyl group transfer processes

Epitranscriptome
The biochemical features of the transcriptome that are not genetically encoded in the 

ribonucleotide sequence

m6A switch
mRNA sequence that adopts a secondary structure in dependence on N6-adenosine 

methylation

Zhao et al. Page 11

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alternative polyadenylation
(APA). The alternative use of different polyadenylation sites at 3′ ends of transcripts

CCR4–NOT complex
The complex multi-subunit carbon catabolite repression 4 (CCR4)–negative on TATA-less 

(NOT) is one of the major deadenylases in eukaryotic cells

Clock output genes
A set of genes that are regulated transcriptionally by clock genes usually they control 

metabolic processes.

Embryonic priming
The molecular transition of mouse embryonic stem cells from a naive cell state to a more 

differentiated or primed cell state, resembling transitions that occur during embryonic 

development in vivo

Dimroth rearrangement
A rearrangement of 1,2,3-triazoles in which the endocyclic and exocyclic nitrogen atoms 

change place (here, allowing conversion of N6-methyladenosine to N1-methyladenosine in 

basic conditions)

Bisulfite treatment
Treatment of nucleic acid with bisulfite to convert cytosine to uracil, leaving 5-

methylcytosine unchanged and distinguishable by reverse transcription or PCR
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Box 1

m6A-related phenotypes in various organisms

In this Box, we summarize the reported phenotypic effects associated with N6-

methyladenosine (m6A) and its regulatory factors in multicellular eukaryotes.

Plants

m6A was first found in monocot plants9–11 and subsequently in Arabidopsis thaliana, in 

which the writer protein MT-A70-like protein (homologue of the mammalian 

methyltransferase-like 3 (METLL3)) is required for embryogenesis12. Depletion of m6A 

during development affects normal growth patterns and apical dominance144. In A. 
thaliana, m6A is enriched in 3′ untranslated regions (3′ UTRs)144 near stop codons and, 

uniquely, around start codons51. Genes with these unique m6A sites are enriched in plant-

specific pathways involving chloroplast components51. m6A deposition is also positively 

correlated with the abundance of a large fraction of A. thaliana transcripts, suggesting 

that it has regulatory roles in plant gene expression51. Another study found that m6A 

patterns differ between plant organs, suggesting that m6A affects organogenesis and has 

cell-type specific functions145. Numerous homologues of mammalian m6A demethylases 

and the YT521-B homology (YTH) domain reader proteins exist in plant genomes. At 

least one A. thaliana alkB homologue (ALKBH) protein can catalyse m6A 

demethylation, which regulates floral transition and vegetative growth (G. Jia, personal 

communication, 2016).

Insects

Drosophila melanogaster was among the first organisms in which internal mRNA m6A 

was detected146. Inducer of meiosis 4 (homologue of mammalian METTL3) affects 

Notch signalling during egg chamber development147, and another potential component 

of the m6A writer complex, female lethal d (homologue of the mammalian Wilms tumour 

1 associated protein (WTAP)), affects sexual determination via splicing regulation of two 

key genes148,149.

Fish

In zebrafish, the knockdown of mettl3 or wtap leads to several developmental defects, 

whereas a combined knockdown leads to increased apoptosis39. As zebrafish 

development requires rapid mRNA clearance during the maternal-to-zygotic 

transition150, an m6A-dependent mRNA degradation mechanism was proposed and 

shown to be crucial for zebrafish embryogenesis based on the function of Ythdf2 (B.S.Z. 

and C.H., unpublished observations).

Mouse

In mice, in addition to the regulation of embryonic development by METTL3 discussed 

in the main text, Alkbh5 knockout mice suffer from impaired spermatogenesis and male 

infertility44, whereas fat mass and obesity-associated protein (Fto)-deficient mice exhibit 

reduced body mass and early mortality45,151.

Human
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m6A is linked to numerous human diseases. Several cancer types have been linked to 

m6A, although many of these connections are indirect152–163. More direct evidence 

emerged from the depletion of METTL3, which caused apoptosis and reduced 

invasiveness of cancer cells14,89, and from the activation of ALKBH5 by hypoxia, which 

caused cancer stem cell enrichment99. m6A has also been implicated in the regulation of 

metabolism and obesity: FTO was suggested to influence pre-adipocyte 

differentiation81,98,164, and SNPs in FTO associate with body mass index in human 

populations and the occurrence of obesity and diabetes165–169, despite a recent work 

arguing that the functional target of these obesity-associated SNPs is not FTO170. The 

connection between m6A and neuronal disorders has also been documented. For instance, 

dopamine signalling is dependent on FTO and on N6-adenosine methylation of key 

signalling transcripts46, and mutations in the prion-like domain of the reader protein 

heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) are known to cause 

neurodegeneration through dysregulated protein polymerization171. FTO and ALKBH5 

have been associated with the developments of depressive disorders172–175, and 

addiction, epilepsy, attention deficit disorder and other neurological disorders have also 

been associated with m6A regulators176–178. Reproductive disorders, viral infection, 

inflammation are also among the diseases influenced by m6A158,179–183. Viral RNAs 

carry internal m6A (Supplementary information S1 (box)), which is deposited by host 

enzymes and could be utilized by viruses to enhance their survival in mammalian host 

cells183.
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Figure 1. The writer, eraser and reader proteins of m6A
The deposition, removal and recognition of N6-methyladenosine (m6A) are carried out by 

cognate factors termed writers, erasers and readers, respectively. Mammalian m6A writers 

function as a protein complex with four identified components so far: methyltransferase-like 

3 (METTL3), METTL14, Wilms tumour 1-associated protein (WTAP) and KIAA1429. Two 

m6A erasers have been reported: fat mass and obesity-associated protein (FTO) and alkB 

homologue 5 (ALKBH5). The function of m6A is mediated partly by reader proteins, which 

have been identified in members of the YT521-B homology (YTH) domain-containing 

protein and the heterogeneous nuclear ribonucleoprotein (HNRNP) protein families.
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Figure 2. m6A-dependent mRNA processing promotes translation and decay, and affects splicing
a| After being deposited by the methyltransferase core catalytic components 

methyltransferase-like 3 (METTL3) and METTL14, N6-methyladenosine (m6A) is 

recognized by various reader proteins. In the nucleus, heterogeneous nuclear 

ribonucleoprotein C (HNRNPC) functions as an indirect m6A reader by binding 

unstructured m6A switch regions and regulating splicing, whereas YT521-B homology 

(YTH) domain-containing 1 (YTHDC1) regulates alternative splicing by binding m6A 

directly and recruiting the splicing factors serine and arginine-rich splicing factor 3 (SRSF3) 

while blocking binding by SRSF10. HNRNPA2B1 also mediates alternative splicing in a 

manner similar to YTHDC1. In the cytoplasm, YTHDF1 mediates translation initiation of 

m6A-containing transcripts by binding directly to m6A and recruiting eukaryotic initiation 

factor 3 (eIF3), thereby facilitating the loading of the eukaryotic small ribosomal subunit 
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(40S). YTHDF2 promotes mRNA decay by binding to CCR4–NOT transcription complex 

subunit 1 (CNOT1), thereby facilitating the recruitment of the CCR4–NOT complex and 

inducing accelerated deadenylation. b | Methylated transcripts may be sorted by reader 

proteins into a fast track (right) for processing, translation and decay. This fast-tracking 

effectively groups transcripts with otherwise markedly different properties to ensure their 

timely and coordinated translation and degradation, possibly generating a sharp ‘pulse’ of 

gene expression to satisfy a need for translational bursts and subsequent clearance of these 

transcripts.
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Figure 3. m6A affects mouse embryonic stem cell differentiation
The N6-methyl-adenosine (m6A) methyltransferase METTL3 (methyltransferase-like 3) is 

required for the transition of mouse embryonic stem cells (mouse ES cells) from a naive to 

the more differentiated primed state. During this process, the key pluripotency factor 

transcripts POU domain, class 5, transcription factor 1(Pou5f1), Krueppel-like factor 4 

(Klf4) and Sox2 must be cleared. In mouse ES cells lacking Mettl3, this clearance is 

defective because non-methylated mRNAs are less subjected to decay, which prevents the 

establishment of a differentiated transcriptome required to achieve a primed mouse ES cell 

state.
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Figure 4. m6A and other mRNA post-transcriptional modifications
a| Qualitative distribution profiles of N1-methyladenosine (m1A; purple) and N6-

methyladenosine (m6A; red) in mRNA. m1A is found primarily near translation start codons 

and first splice sites108, whereas m6A is primarily found in long exons and within 3′ 
untranslated regions (3′ UTRs)49. b | In addition to m6A and m1A, other chemical 

modifications found on eukaryotic mRNA with emerging regulatory functions include 5-

methylcytosine (m5C), pseudouridine (ψ) and 2′-O-methylation (2′OMe). CDS, coding 

DNA sequence.
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Figure 5. m6A synchronizes mRNA processing in response to various internal and external 
stimuli
The activities of N6-methyladenosine (m6A) writers, erasers and readers may be regulated 

by the same signalling pathways and stimuli that tune transcription and translation, 

potentially through various post-translational modifications (not shown) on writers, erasers 

and readers. This process could constitute an additional mechanism to post-transcriptionally 

coordinate the expression of large groups of genes in response to internal and external 

stimuli, which may affect many physiological processes that require rapid responses 

involving multiple genes. ALKBH5, alkB homologue 5; CCR4–NOT, carbon catabolite 

repression 4–negative on TATA-less; eIF3, eukaryotic initiation factor 3; FTO, fat mass and 

obesity-associated protein; METTL, methyltransferase-like; Pol II, RNA polymerase II; 

WTAP, Wilms tumour 1-associated protein; YTHDF2, YT521-B homology domain-

containing family protein 2.
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Table 1

m6A regulators in humans

Protein Functional classification m6A-associated biological function(s) Refs

Methyltransferase-like 3 (METTL3) Catalytic subunit of m6A 
methyltransferase

Installs m6A; promotes translation 
independently of its catalytic activity

36, 37, 89

Methyltransferase-like 14 (METTL14) A core subunit of m6A 
methyltransferase

A key component for m6A installation 37

Wilms tumour 1-associated protein (WTAP) Regulatory subunit of m6A 
methyltransferase

Facilitates m6A installation 37,39

KIAA1429 Regulatory subunit of m6A 
methyltransferase

Facilitates m6A installation 40

Fat mass and obesity-associated (FTO) m6A demethylase mRNA splicing, translation and adipogenesis 43,52, 81,98

AlkB homologue 5 (ALKBH5) m6A demethylase mRNA nuclear processing, mRNA export, 
promotes stemness phenotype of breast cancer 
stem cells

44,52, 99

Heterogeneous nuclear ribonucleoprotein 
A2/B1 (HNRNPA2B1)

m6A reader mRNA splicing, miRNA biogenesis 66

Heterogeneous nuclear ribonucleoprotein C 
(HNRNPC)

m6A reader that recognizes 
m6A-induced structural 
changes

m6A structural switch, mRNA splicing 67

YTH domain-containing 1 (YTHDC1) Direct m6A reader mRNA splicing, transcriptional silencing 62,63, 184

YTH m6A-binding protein 1 (YTHDF1) Direct m6A reader Translation initiation 60,61

YTH m6A-binding protein 2 (YTHDF2) Direct m6A reader mRNA decay 60

YTH m6A-binding protein 3 (YTHDF3) Direct m6A reader Unknown 60

m6A, N6-methyladenosine; YTH, YT521-B homology.
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