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Abstract

Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers, and lack 

of TDLU involution (higher TDLU counts, higher acini count per TDLU and the product of the 

two) is a breast cancer risk factor. Numerous breast cancer susceptibility single nucleotide 

polymorphisms (SNPs) have been identified, but whether they are associated with TDLU 

involution is unknown. In a pooled analysis of 872 women from two studies, we investigated 62 

established breast cancer SNPs and relationships with TDLU involution. Poisson regression 

models with robust variance were used to calculate adjusted per-allele relative risks (with the non-

breast cancer risk allele as the referent) and 95% confidence intervals between TDLU measures 
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and each SNP. All statistical tests were two-sided; P<0.05 was considered statistically significant. 

Overall, 36 SNPs (58.1%) were related to higher TDLU counts although this was not statistically 

significant (P=0.25). Six of the 62 SNPs (9.7%) were nominally associated with at least one 

TDLU measure: rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1) were 

associated with higher TDLU count (P=0.047, 0.045 and 0.031, respectively); rs1353747 

(PDE4D) and rs6472903 (8q21.11) were associated with higher acini count per TDLU (P=0.007 

and 0.027, respectively); and rs1353747 (PDE4D) and rs204247 (RANBP9) were associated with 

the product of TDLU and acini counts (P=0.024 and 0.017, respectively). Our findings suggest 

breast cancer SNPs may not strongly influence TDLU involution. Agnostic genome-wide 

association studies of TDLU involution may provide new insights on its biologic underpinnings 

and breast cancer susceptibility.

Introduction

Terminal duct lobular units (TDLUs) are the anatomical structures of the breast that produce 

milk and represent the predominant histological source of breast cancers1. During normal 

aging the number and size of TDLUs and acini (epithelial substructures within TDLUs) are 

reduced through a process known as TDLU involution. Reduced levels of TDLU involution 

has been found to be associated with increased breast cancer risk2, 3, yet whether a shared 

genetic basis exists is unknown.

Genome-wide association studies (GWAS) have identified numerous common breast cancer 

susceptibility loci4-24 but it is unclear if they exert their effects through TDLU involution. 

Understanding whether there are associations between breast cancer susceptibility loci and 

TDLU involution could provide important insights into the role of these susceptibility loci in 

breast microanatomy, which in turn is linked to breast cancer risk. We have recently 

developed quantitative measures of TDLU involution, including TDLU count standardized 

to tissue area and median acini count per TDLU, and found multiple associations with breast 

cancer risk factors including parity25, menopausal status25 and circulating hormones26 

among women who donated normal breast tissues. In women with benign breast disease, we 

have also found these TDLU measures to be related to breast cancer risk factors, including 

circulating insulin-like growth factors27, estrogens,28 and mammographic density (MD)29. 

This supports the notion that some breast cancer risk factors may influence their risk in part 

through delaying or inhibiting TDLU involution. Furthermore, studies demonstrating lesser 

TDLU involution among women with a positive family history of breast cancer2, 25 suggest 

that this trait may have a heritable component.

We investigated the relationships between 62 well-established breast cancer susceptibility 

loci and standardized measures of TDLU involution by pooling data from two studies, the 

Susan G. Komen Tissue Bank (KTB) at the Indiana University Simon Cancer Center30 and 

the NCI Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project31.
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Materials and Methods

Study Population

The Susan G. Komen Tissue Bank—The KTB is a repository of normal breast tissues 

that has been recruiting women volunteers, aged 18-91, since 2007. The current analysis 

targeted a subset of 2,321 participants recruited from January 10, 2009 through September 

14, 2012 and aged 18-84 years that have been previously analyzed for TDLU involution25. 

Details of this study population and subject ascertainment are described elsewhere (http://

komentissuebank.iu.edu/)30. All volunteers provided informed consent for the use of their 

donated specimens and questionnaire data for breast cancer research. Briefly, paired normal 

breast tissues and blood samples were collected along with a self-administered questionnaire 

(including demographic, lifestyle, reproductive, and cancer related data). Tissue cores were 

removed from the upper outer quadrant of the breast (left or right) using a standardized 

technique with a 10-gauge needle. One sample was fixed in 10% buffered formalin, 

routinely processed to prepare paraffin embedded blocks, sectioned at 5 microns, and stained 

with hematoxylin and eosin (H&E).

Of the 2,321 women, we excluded 801 subjects who were missing genotyping data for the 

single nucleotide polymorphisms (SNPs) of interest, previously diagnosed with cancer 

(n=177), pregnant (n=21), non-white (n=555) or currently taking hormone therapy (n=95). 

Repeated samples from the same donors were excluded (n=124) and one subject with 

uninterpretable tissue morphology was also excluded. The final analytic population was 548 

women. All KTB data were collected with the approval of the Indiana University 

Institutional Review Board (IRB) and the National Institutes of Health Office of Human 

Subjects Research (NIH OHSR #4508).

The Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp 
Project—Women diagnosed with benign breast disease enrolled in the BREAST Stamp 

Project, a cross-sectional molecular epidemiologic study of mammographic density, were 

also included in the study population31. A total of 465 women, 40-65 years of age, were 

clinically referred to undergo image-guided breast biopsy following an abnormal breast 

imaging exam at the University of Vermont College of Medicine and its affiliated academic 

medical center, the UVM Medical Center (formerly Fletcher Allen Health Care (FAHC)), 

and were enrolled from 2007 through 2010. Women who were diagnosed with in situ or 

invasive breast cancer (n=78), missing SNP (n=3) or tissue morphology data (n=14), non-

white (n=23), and/or currently taking hormone therapy (n=23) were excluded, leaving an 

analytic population of 324 BREAST Stamp participants in our analytic population.

Demographic and breast cancer risk factor information were collected via a self-

administered questionnaire and a supplementary telephone interview. Participants underwent 

clinically-indicated ultrasound-guided (14-gauge needle) or vacuum-assisted (9-gauge 

needle) breast biopsies, which were processed as formalin-fixed paraffin-embedded blocks, 

sectioned at 5 microns, and H&E stained.

Digital raw mammographic images were transferred to the University of California at San 

Francisco for quantitative density assessment29, 31. Area measures of density were estimated 
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using computer-assisted thresholding software. One trained experienced reader measured 

absolute dense area (cm2) by setting a pixel threshold for dense tissue. Nondense area was 

defined as the difference between the total breast area and the dense area. The percentage of 

dense area was calculated by dividing absolute dense breast area by total breast area (i.e., 

absolute dense area + absolute nondense area) and multiplying by 100. Participants provided 

written informed consent and the study was approved by the IRBs at the University of 

Vermont and the NCI.

KTB sample collection and DNA extraction

Details of the KTB samples collection are described in (http://komentissuebank.iu.edu/wp-

content/uploads/downloads/2012/10/SOP-002V3.0-Acquisition-of-Whole-Blood.pdf). 

Briefly, whole blood samples were collected using Vacuette ® EDTA tubes. DNA was 

extracted from blood cells at the Indiana CTSI Specimen Storage Facility (ICTSI-SSF) lab 

using an AutogenFlex Star (SN 401033) instrument and the Flexigene AGF3000 blood kit 

for DNA extractions from whole blood specimens following manufacturer’s specifications. 

For this study, a 50 μl aliquot of sample was stored using Biomatrica® DNAstable® 

Handbook. Samples were reconstituted at the Cancer Genomics Research laboratory (Leidos 

Biomedical Research, Inc., Frederick, MD) for genotyping.

BREAST Stamp sample collection and DNA extraction

Whole blood samples were collected pre-biopsy, allowed to clot for 30 minutes and 

processed at the University of Vermont General Clinical Research Center using standard 

techniques. Mouthwash samples were collected as previously described32. Blood samples 

were centrifuged at 3,000 rpm for 15 minutes, and the serum and clot fractions were frozen 

at −80°C. Mouthwash samples were centrifuged at 1500 × g for 15 minutes and buccal cell 

pellet was re-suspended with 3.0 mL TE buffer. The buccal cells were frozen at −80°C. 

Frozen samples were shipped to SeraCare Life Sciences (Gaithersburg, MD), where they 

were stored in liquid nitrogen. At SeraCare, leukocyte DNA was isolated from blood clots 

using phenol chloroform extraction methods, and DNA was isolated from buccal cells using 

Puregene methods (Gentra Puregene Buccal Cell Kits, Qiagen). DNA was quantified at the 

Cancer Genomics Research Laboratory with the QuantiFluor® dsDNA System (Promega) 

according to the manufacturer’s instructions.

Breast cancer susceptibility SNPs and genotyping

Sixty-two breast cancer susceptibility SNPs reported in GWAS identified as of 2013 and for 

which Taqman assays were available and validated were included in this analysis 

(Supplemental Table 1). DNA samples were extracted from buffy coat using the Qiagen 

method according to the manufacturer’s instructions. SNPs were genotyped at the Core 

Genotyping Facility utilizing a Taqman / Fluidigm platform.

TDLU Involution Assessment

Digitized images of sections were used for quantitative measurements of TDLU involution 

as described in detail elsewhere25, 29. Briefly, H&E slides were scanned as digital images 

suitable for web-based viewing, electronic marking of regions of interest, and image analysis 
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on Digital Image Hub software (SlidePath/Leica, Dublin, Ireland). The lasso tool in Digital 

Image Hub was used to outline and measure the total tissue area (mm2) on the slides. The 

study pathologist (MES) evaluated the images to measure the number of TDLUs (“TDLU 

count”). TDLU analyzer software26, 33 was used to quantify the acini count per TDLU for 

up to 10 TDLUs per woman and the median value was selected as a single summary 

measure for each woman. A high intra-observer agreement (Spearman’s r>0.90) for the 

TDLU measures was previously reported25, 29.

Statistical Analysis

Frequencies and percentages were used to describe selected characteristics of the study 

populations. Analyses were conducted using pooled data from the KTB study and BREAST 

Stamp Project. In sensitivity analyses, we also conducted analyses separately by study.

Poisson regression models with robust variance were used to calculate per-allele relative 

risks (RRs) and 95% confidence intervals (CIs) for the association of TDLU measures (i.e., 

TDLU count and acini count per TDLU) with each breast cancer susceptibility locus. SNPs 

were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). To 

account for the tissue area on the slide, an offset variable was included in the model. The 

Wald test was used to assess the linear trend between breast cancer susceptibility SNPs and 

morphometric TDLU measures. We additionally fitted linear regression models to confirm 

that the associations were not driven by model assumptions. Linear regression models were 

used to estimate the per-allele association (β) and 95% CIs with the log-transformed of 

TDLU count per 100mm2 plus one as the outcome, to better approximate the normal 

distribution, including zero TDLU count. Finally, the combination of TDLU count and acini 

count per TDLU, modeled as the product of the two variables, was also considered in the 

above described models.

All multivariable models were adjusted for study population (KTB or BREAST Stamp 

Project) and age (in categories: <30; 30-39; 40-49; 50-59; ≥60). Interactions between SNPs 

and other factors (e.g., menopausal status) were assessed by adding a multiplicative term in 

the regression model. A woman was considered postmenopausal if menstrual periods had 

stopped more than 12 months prior to interview, she had undergone a bilateral 

oophorectomy, or she had undergone a hysterectomy (or gynecologic surgery associated 

with cessation of menses) and was 55 years of age or older; otherwise, a woman was 

considered premenopausal. Associations between SNPs and MD measures were estimated 

for women in the BREAST Stamp Project for whom MD measures were available29, 31 

using linear regression models and the square root of the density measure as outcome.

All statistical tests were two-sided and P-values < 0.05 were considered statistically 

significant. Because SNPs examined in this analysis are well-established breast cancer 

susceptibility loci, we used a threshold of P<0.05 to define significant associations. Since 

our power to test for individual associations was limited, we also tested for enrichment of 

associations between SNPs and measures of TDLU involution34. We did this using binomial 

tests in two ways: (1) comparing the proportion of the SNP associations (regardless of 

statistical significance) in the direction consistent with our expectation (RR>1.0) based on 

the relationship of the SNPs with breast cancer to 50%, which is what would have been 
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expected by chance; and (2) comparing the proportion of SNPs with significant associations 

to 5%, which is expected by chance alone. We also present individual associations between 

SNPs and TDLU involution measures. All analyses were conducted in the R software 

environment (version 3.1.1).

Results

A total of 872 women were included in this analysis, 548 (63%) from the KTB and 324 

(37%) from the BREAST Stamp Project. Characteristics of the women are shown in Table 1. 

Women in both studies tended to be premenopausal (71.7% in KTB; 61.4% in BREAST 

Stamp) and enriched for family history of breast cancer compared with the general 

population (23.2% in KTB; 24.8% in BREAST Stamp). Measures of TDLU involution, 

including TDLU count, and acini count per TDLU were similar in both populations. After 

accounting for age, none of the TDLU involution measures were statistically significantly 

different between the two populations.

Of the 62 known independent breast cancer susceptibility loci evaluated in this study, 36 

(58.1%) were found to be associated with higher TDLU count in the Poisson model 

(RR>1.0), albeit the vast majority of associations with the individual loci were not 

statistically significant (Supplemental Table 1). Furthermore, statistical evidence of 

enrichment was not observed (58.1% vs 50%, P=0.25). While the direction of the estimates 

was generally consistent across the Poisson and linear models, when the linear model was 

used 40 SNPs (64.5%) were found to be associated with higher TDLU count, which is 

higher than what would have been expected by chance alone (64.5% vs 50%, P=0.031), 

suggesting an enrichment of associations with TDLU counts. Under the Poisson model, the 

top three SNPs associated with TDLU count were rs616488 (PEX14), rs11242675 (FOXQ1) 

and rs6001930 (MKL1), which were associated with higher TDLU count (P=0.047, 0.045 

and 0.031, respectively; Table 2), in directions consistent with their associations with breast 

cancer risk. None of the above associations showed significant heterogeneity by study 

(Supplemental Table 2).

Two breast cancer susceptibility SNPs were significantly associated with higher acini count 

per TDLU (Table 2; Supplemental Table 3): rs1353747 (PDE4D) (P=0.007) and rs6472903 

(8q21.11) (P=0.027). To account for the overall epithelial content in the slide, we studied the 

relationship between SNPs and the combination of TDLU count and acini count per TDLU, 

which were modeled as the product of these two TDLU measures (Table 2; Supplemental 

Table 4). Two SNPs were associated with the product of TDLU and acini counts: rs1353747 

(PDE4D) was associated with higher epithelial content (P=0.024) and rs204247 (RANBP9) 

was associated with lower epithelial content (P=0.017).

Five SNPs were statistically significantly associated with TDLU count in premenopausal 

women (rs616488 (PEX14), rs6828523 (ADAM29), rs11242675 (FOXQ1), rs3817198 

(LSP1) and rs6001930 (MKL1)) (Table 3), and two were significantly associated with 

TDLU count in postmenopausal women (rs1011970 (CDKN2A/B) and rs1292011 (TBX3)). 

Four SNPs, rs6678914 (LGR6), rs6828523 (ADAM29), rs1011970 (CDKN2A/B) and 

rs11199914 (10q26.12), showed statistically significant heterogeneity in their association 
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with TDLU count by menopausal status (P-values: 0.027, 0.036, 0.032 and 0.037, 

respectively; Table3).

Finally, we examined the association between breast cancer SNPs and MD measures, 

restricted to women in the BREAST Stamp Project for whom MD measures were available 

(Supplemental Table 5). Although some SNPs were suggestively associated with MD, none 

of the SNPs associated with TDLU measures was significantly associated with any of the 

MD measures analyzed.

Discussion

In this first study evaluating the association between established genetic variants associated 

with breast cancer risk and TDLU involution, we found six SNPs (9.7%) to be nominally 

associated with at least one standardized TDLU measure using data from two studies with 

benign tissues, the KTB and the BREAST Stamp Project. Of the six SNPs, TDLU 

associations for five were in the same direction as their relationship with breast cancer risk. 

However, there was no evidence for statistical enrichment by either of the two definitions 

used in our analysis, although this may be due to the small samples size. This suggests that 

the breast cancer loci included in this analysis do not strongly influence TDLU involution. 

Future genome-wide association analysis may help to elucidate the biologic underpinnings 

of TDLU involution and its relationship with breast cancer risk.

Three variants were nominally associated with TDLU count. The risk allele of rs6001930 

(MKL1), which we found to be associated with higher TDLU count, had been previously 

associated with increased risk of both estrogen receptor (ER)-positive and ER-negative 

breast cancers21. In addition, rs6001930 (MKL1) has also been significantly associated with 

MD35, 36, a strong breast cancer risk factor37. However, the direction of the association of 

rs6001930 (MKL1) with MD was not consistent with its associations with breast cancer risk: 

in a large pooled analysis, rs6001930 (MKL1) was associated with lower measures of MD, 

including absolute dense area and nondense area36. Among women in our analysis for whom 

MD measures were available, we also found rs6001930 (MKL1) to be inversely associated 

with absolute dense and non-dense areas. These divergent directions of association are 

consistent with analyses showing lower levels of TDLU involution and higher MD to be 

independent risk factors for breast cancer development37. Our findings suggest that the 

association between this SNP and breast cancer risk may be in part due to its influence on 

higher epithelial cell content and lower levels of TDLU involution, rather than mediated 

through higher levels of MD, which is thought to predominantly reflect stromal tissue38. 

This result highlights the importance of conducting genetic analysis in relation to both 

histologic and radiologic measures of breast tissue composition in order to better understand 

the role of these intermediate endpoints in breast carcinogenesis.

The other two variants associated with TDLU count have been differentially associated with 

ER-positive and ER-negative breast cancers20, 21. SNP rs616488 (PEX14) has been found to 

be associated with overall21 and ER-negative breast cancer specifically39. This SNP has 

been found to be more strongly associated with PEX14 expression in tumor tissues 

compared to normal tissues21. Our finding that rs616488 (PEX14) is associated with higher 
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TDLU count may indicate that the association of this SNP with breast cancer risk may be in 

part mediated through TDLU involution. We explored the interaction between SNPs and 

menopausal status and found that several SNPs had different associations with TDLU count 

for pre- and post-menopausal women. In particular, rs616488 (PEX14) variant was 

associated with increased TDLU count only in pre-menopausal women and has previously 

been associated with triple-negative breast cancer, which is more common in younger 

women. If replicated, future studies should further examine whether the association of 

PEX14 with breast cancer risk may be due in part to an influence of involution levels in 

younger women.

The SNP rs11242675 (FOXQ1) has been previously found to be associated with both ER-

positive and ER-negative breast cancers21, and FOXQ1 has been related to tumor 

aggressiveness40. Consistent with this relationship, we noted that the association with higher 

TDLU count was only observed among premenopausal women, who tend to be diagnosed 

with more aggressive breast cancers, suggesting a biologically plausible relationship with 

TDLU involution. In contrast, the rs6828523 (ADAM29) variant, which was previously 

found to increase risk of ER-positive breast cancer, was also associated with higher TDLU 

count. The ADAM family of proteins has been associated with cell proliferation and 

invasion41.

We found SNP rs1353747 (PDE4D) was significantly associated with both higher acini 

count per TDLU and overall higher epithelial content, but not with TDLU count alone. 

While the reasons for this are unclear, TDLU involution is thought to be a sequential 

process, with initial disappearance of acini and reduction of TDLU size, followed by the 

disappearance of TDLUs. Therefore, different genetic variants may be involved in different 

aspects of this complex process.

The biologic mechanisms that are associated with TDLU involution remain poorly 

understood. Animal models and in vitro studies suggest the involvement of insulin-like 

growth factors (IGFs) and their binding proteins in mammary gland development and 

involution 42, 43. Recent data also suggest that higher levels of circulating IGFs are related to 

decreased lobular involution44. Fine mapping data of the 2q35 susceptibility locus suggest 

that breast cancer risk may be mediated through regulation of the IGF binding protein 5 

(IGFBP5)45, but whether IGFBP5 plays a specific role in modulating TDLU involution in 

humans is unknown. In our analysis, we did not find the variant rs13387042 in 2q35 to be 

significantly associated with measures of TDLU involution, although a positive relationship 

was observed. Interestingly, we also saw positive, significant associations of rs13387042 

with both percent density and dense area measures (Supplemental Table 5), which was not 

observed in a recent pooled analysis of mammographic density36. The reasons for these 

contrary results with density compared to involution measures are unclear. It is possible that 

this SNP is not associated with involution or we did not have enough power to detect an 

association with involution measures, as rs13387042 is only associated with a 12% 

decreased breast cancer risk45. Alternatively, this SNP may influence breast cancer risk 

through other mechanisms such as stromal-epithelial signaling. Future research is needed to 

clarify whether the IGF family members beyond IGF1 and IGFBP3 influence breast tissue 

composition in humans.

Bodelon et al. Page 8

Int J Cancer. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The strengths of this study are the use of well-characterized data of non-malignant tissues 

and standardized, reproducible measures of lobular involution. While additional studies were 

not available for replication, we found that the reported associations were similar in the two 

study populations included in this analysis and generally in the same direction as the SNP-

breast cancer risk association. One of the major limitations of our study was the sample size, 

which may have precluded us from observing additional significant associations and none of 

the associations remained significant after Bonferroni correction for multiple testing. Sample 

size calculations indicated that double the sample size would be needed to observed 

significant associations at the 5% alpha level with 80% power. Another limitation was the 

differences between the KTB and the BREAST Stamp project. While the former consisted 

of volunteers for whom collection of tissue samples did not specifically target areas of the 

breast enriched by epithelial cells, the latter population consisted of women undergoing 

diagnostic image-guided breast biopsies that were likely enriched for TDLUs. However, 

associations were in the same direction in both studies and did not differ significantly for the 

reported SNPs, which gives confidence in the robustness of the results. For our sensitivity 

analysis, we evaluated these associations using two different models, each one with different 

underlying statistical assumptions, to further confirm that the reported associations were not 

driven by statistical properties of the models. We found that the majority of associations, 

including those reported, were in the same direction regardless of the model used, although 

the statistical significance varied by the underlying assumptions of the model. Future 

research should explore under which circumstances each model may be better suited.

In conclusion, we observed six of 62 breast cancer susceptibility loci nominally associated 

with TDLU involution, with limited evidence of statistical enrichment. Future approaches 

with larger sample sizes may provide further insights into the genetics of TDLU involution 

and its role in breast cancer etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and impact

Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers 

but whether breast cancer susceptibility loci influence their appearance in normal tissues 

is unknown. Six of 62 breast cancer susceptibility loci were nominally associated with 

TDLU appearance (TDLU involution), with limited evidence of enrichment. The genetics 

of TDLU involution may be independent of breast cancer and future agnostic genome 

wide association studies may provide new insights on its role in breast cancer.
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Table 1

Selected characteristics of women in the Komen Tissue Bank and BREAST Stamp Project.

Characteristics Komen Tissue Bank
(N=548)

BREAST Stamp Project
(N=324)

Age (years), n (%)

 < 30 183 (33.4) 0

 30 to 39 102 (18.6) 0

 40 to 49 124 (22.6) 161 (49.7)

 50 to 59 86 (15.7) 124 (38.3)

 ≥ 60 53 ( 9.7) 39 (12.0)

Menopausal Status, n (%)

 Premenopausal 393 (71.7) 199 (61.4)

 Postmenopausal 155 (28.3) 125 (38.6)

Parity, n (%)

 Nulliparous 268 (48.9) 82 (25.3)

 Parous 280 (51.1) 242 (74.7)

Family history of breast cancer, n (%)

 No 421 (76.8) 240 (75.2)

 Yes 127 (23.2) 79 (24.8)

TDLUs observed, n (%)

 No 170 (31.0) 87 (26.9)

 Yes 378 (69.0) 237 (73.1)

Involution measures, median (IQR)

 TDLU counts per 100mm2 22.9 (9.8 – 51.5) 18.0 (6.4 – 38.0)

 Median acini count per TDLU 13.0 (7.5 – 2.5) 11 (7.0 – 16.5)

 (TDLU counts)* (acini count per TDLU) 287.5 (93.9 – 835.8) 189.7 (48.5 – 477.1)

TDLU: Terminal duct lobular units; IQR: Interquartile range.
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