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Abstract Cymbomonas tetramitiformis is a peculiar green
alga that unites in one cell the abilities of photosynthesis and
phagocytosis, which makes it a very useful model for the
study of the evolution of plastid endosymbiosis. We have
pondered over this issue and propose an evolutionary scenario
of trophic strategies in eukaryotes, including primary and sec-
ondary plastid endosymbioses. C. tetramitiformis is a proto-
troph, just like the common ancestor of Archaeplastida was,
and can synthesize most small organic molecules contrary to
other eukaryotic phagotrophs, e.g. some metazoans,
amoebozoans, and ciliates, which have not evolved tight en-
dosymbiotic relationships. In order to establish a permanent
photosynthetic endosymbiont they do not have to become
prototrophs, but have to acquire the genes necessary for plas-
tid retention via horizontal (including endosymbiotic) gene
transfer. Such processes occurred successfully in the ancestors
of eukaryotes with permanent secondary plastids and thus led
to their great diversification. The preservation of phagocytosis
in Cymbomonas (and some other prasinophytes as well)
seems to result from nutrient deficiency in their oligotrophic
habitats. This forces them to supplement their diet with phago-
cytized prey, in contrasts to the thecate amoeba Paulinella
chromatophora, which also successfully transformed
cyanobacteria into permanent organelles. Although
Paulinella endosymbionts were acquired very recently in
comparison to primary plastids, Paulinella has lost the ability
to phagocytose, most probably due to the fact that it inhabits
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nutrient-rich environments, which renders the phagotrophy
nonessential.

Keywords Cymbomonas - Endosymbiosis - Green algae -
Mixotrophy - Paulinella - Phagocytosis

1 Introduction

About 1.5 billion years ago, a phagotrophic eukaryote ac-
quired a cyanobacterium that was subsequently transformed
into the two-membrane-bounded photosynthetic organelle
called a primary plastid (Parfrey et al. 2011; McFadden
2014; Zimorski et al. 2014). Before the transformation, how-
ever, the cyanobacteria were hunted and phagocytized by their
prospective eukaryotic host. This initially hostile interaction
triggered the evolution of Archaeplastida (Plantae), a super-
group of eukaryotes that comprises three photosynthetic line-
ages: glaucophytes (Glaucophyta), red algaec (Rhodophyta),
and green algae & higher plants (Viridiplantae) (De Clerck
et al. 2012; Loftelhardt 2014; Mackiewicz and Gagat 2014).

Recently, a draft genome sequence of Cymbomonas
tetramitiformis, a marine green alga with a peculiar trophic
strategy, has been published (Burns et al. 2015). This early
diverging prasinophyte not only performs photosynthesis, as
the other archaeplastidians do, but also feeds by phagocytosis
like a typical heterotroph and the presumed Archaeplastida
progenitor (Moestrup et al. 2003; Maruyama and Kim
2013). Interestingly, bacterivorous prasinophytes have also
been found in the genera of Pterosperma, Halosphaera,
Pyramimonas, and Micromonas (Inouye et al. 1990;
O’Kelly 1992; Bell and Laybourn-Parry 2003; McKie-
Krisberg and Sanders 2014). Due to their mixotrophy, these
green algae may represent an ancestral state of Archaeplastida
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evolution and thus help to understand the process of endosym-
biosis and plastid evolution in general.

The ancestral nature of C. fetramitiformis is not only sup-
ported by its phylogenetic position among prasinophytes and
by its feeding strategy, but also by the fact that its genome
carries genes involved in lipid-A and peptidoglycan metabo-
lism, two components of the bacterial cell wall derived from
the cyanobacterial endosymbiont (Moestrup et al. 2003;
Leliaert et al. 2012; Maruyama and Kim 2013; Burns et al.
2015). These genes, although uncommon, are also present in
some other representatives of green plants (e.g. the green alga
Micromonas pusilla, the moss Physcomitrella patens), and
their phylogenies indicate that they are evolutionarily con-
served among Viridiplantae species and have originated from
a common ancestor (Burns et al. 2015). Genes involved in
peptidoglycan (but not lipid-A synthesis) were also found in
Glaucophyta, however, their plastids have additionally
retained a clear peptidoglycan layer between the outer and
inner plastid membranes (Pfanzagl et al. 1996; Jackson et al.
2015). Interestingly, Hirano et al. (2016) have recently visu-
alized a peripherally distributed peptidoglycan layer in
P patens plastids using confocal microscopy, and Sato and
colleagues (University of Tokyo, personal communication)
have pinpointed its location to the intermembrane space ap-
plying a new method involving electron microscopy and den-
sity analysis of digital images at the resolution of 1 pixel.
Their results indicate that the peptidoglycan layer might still
be present in other Viridiplantae species, including
C. tetramitiformis, and that it was lost independently at least
three times in the Archaeplastida evolution: once in red algae,
and twice in the green lineage, i.e. in chlorophytes and land
plants (Takano and Takechi 2010).

The presence of lipid-A and peptidoglycan metabolism
among members of green plants, and the mixed mechanism
of feeding found in bacteriovorous prasinophytes (a sine qua
non for plastid acquisition) suggest that the Viridiplantae clade
might be the earliest branch of the Archaeplastida as some
phylogenies indicate (e.g. the trees based on rRNA operon
genes), although this contrasts with the prevailing belief that
the root of the supergroup lies within Glaucophyta (see
Mackiewicz and Gagat 2014 and references therein, and
Jackson et al. 2015). The latter hypothesis is based on trees
of nuclear genes and is supported by the presence of many
ancestral traits typical of cyanobacteria preserved in
glaucophyte plastids, including the peptidoglycan layer and
unstacked thylakoid membranes with phycobilisomes
(Mackiewicz and Gagat 2014; Jackson et al. 2015). Since
these and other ancient characteristics represent preserved
rather than derived traits, they do not lend decisive support
for the Viridiplantae-first or Glaucophyta-first evolutionary
scenarios. This issue could be resolved by phylogenetic anal-
yses but their results are still controversial (see Mackiewicz
and Gagat 2014 and references therein). More sequence data
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is required from glaucophytes and other poorly studied eu-
karyotic lineages, as well as new computational methods to
eliminate stochastic and systematic errors in phylogenies
(Mackiewicz and Gagat 2014). Nevertheless, the
Cymbomonas case can provide interesting insight into the
acquisition of permanent plastids and endosymbiosis in
general.

2 Gene transfer and plastid establishment

It is assumed that the ancestor of Archaeplastida was a unicel-
lular eukaryote with phagotrophic and prototrophic abilities,
i.e. it could phagocytize and synthesize small organic mole-
cules (e.g. amino acids, coenzymes, and vitamins) required for
its growth, respectively (Fig. 1; Martin and Muller 1998;
Martin 2005; Burns et al. 2015). These features helped it to
acquire and retain endosymbionts, and in the long term to
become fully independent of heterotrophy, i.e. evolve into a
strict phototroph (photoautotroph). C. tetramitiformis is well-
suited to this concept as a transitional form resorting to
phagotrophy under phosphate-limited conditions (Paasch
et al. 2016). Analyses of its genome have revealed that it has
retained genes related to both phagocytic feeding and synthesis
of small molecules (Burns et al. 2015). In contrast, heterotro-
phic phagotrophs lost the latter genes and became auxotrophic,
i.e. they cannot synthesize some organic compounds needed for
their growth and must obtain them through their diet.
According to Burns et al. (2015), these losses prevented, for
example, some metazoans, amoebozoans, and ciliates from
establishing permanent relationships with their transient
photosynthetic endosymbionts (Fig. 1). However, this
“transiency” does not have to mean an evolutionary dead end
at all. Eukaryotes that have lost genes involved in the synthesis
of some small compounds can obtain them by horizontal (and
also endosymbiotic) gene transfer (Timmis et al. 2004)
according to the “you are what you eat” hypothesis (Doolittle
1998), the “shopping bag” model (Larkum et al. 2007), and the
“minor mistargeting” mechanism (Martin 2010).

The uptake of foreign DNA is of great importance for the
expansion of metabolic capabilities and as a result can prepare
the host to develop a more stable relationship with its transient
endosymbiont. There is no doubt that gene transfer was one of
the key processes behind the primary plastid establishment
(Timmis et al. 2004; Keeling and Palmer 2008; Keeling
2009). Ample evidence for such transfers is found in the high-
ly reduced plastid genomes of Archaeplastida and their mosaic
nuclear genomes (Martin et al. 2002; Reyes-Prieto et al. 2006;
Deusch et al. 2008; Green 2011). The latter genomes include
not only 10-20 % genes of cyanobacterial origin, but also
sequences acquired from o-proteobacteria and chlamydia
(Martin et al. 2002; Reyes-Prieto et al. 2006; Deusch et al.
2008). The mitochondrial ancestor is responsible for the o~
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Fig. 1 Evolution of trophic strategies in eukaryotes in the context of
plastid endosymbiosis and phylogenetic position of Cymbomonas
tetramitiformis. It is assumed that the early eukaryotes were prototrophs
feeding via phagocytosis (1). This trophic strategy played an important
role in the acquisition of a cyanobacterium (2), which was transformed
into a primary plastid in the ancestor of Archaeplastida (3). Modern
members of this supergroup lost the ability to phagocytose (4) with the
exception of some marine prasinophytes including C. tetramitiformis (5).
On the other hand, heterotrophic eukaryotes lost genes involved in the
synthesis of small molecules and became auxotrophic phagotrophs (6).
Some of their descendants are still auxotrophic phagotrophs (7), however,

proteobacterial share, however, the gene transfer from chla-
mydia is much less expected. Recently, it has sparked a very
interesting debate and the formulation of the “ménage a trois”
hypothesis (Ball et al. 2013). According to Ball et al. (2013) a
chlamydia-like symbiont facilitated the acquisition of the
cyanobacterial endosymbiont. The chlamydial infection was
to provide the enzymes necessary for the host to be able to use
the ADP-glucose produced in cyanobacterial photosynthesis,
which was inaccessible for its UDP-glucose-dependent glucan
synthases (Ball et al. 2013). Moreover, chlamydial effector
proteins and transporters could have also helped
cyanobacteria to evade the host defence mechanisms and thus
proliferate in the cytoplasm (Ball et al. 2016). When all the
necessary genes were transferred to the host nuclear genome, a
metabolic link that tightened the primary endosymbiosis was
forged making the chlamydial co-symbiont redundant (Ball
et al. 2013; see also Deschamps 2014 for discussion).

others have learned to profit from the prolonged upkeep of their
photosynthetic prey (transient endosymbionts) and have become
phototrophs (8). These phagocytizing phototrophs could, in the long
term, acquire necessary genes via horizontal (including endosymbiotic)
gene transfer to tighten the relationships with their endosymbionts
following in footsteps of many secondary plastid-containing algae (9).
Finally, they could reacquire the lost genes for small compounds,
abandon phagotrophy, and become strict phototrophs (i.e.
photoautotrophs) (10). The horizontal (including endosymbiotic) gene
transfer plays an important role also at all presented stages of the model

Horizontal (including endosymbiotic) gene transfer from
various sources has also facilitated the acquisition of second-
ary and tertiary plastids (Fig. 1, Larkum et al. 2007), i.e. green
and red alga-derived organelles of heterokonts (Bowler et al.
2008; Deschamps and Moreira 2012), chlorarachniophytes
(Curtis et al. 2012; Yang et al. 2014), haptophytes (Miller
and Delwiche 2015), cryptophytes (Curtis et al. 2012), and
dinoflagellates (Patron et al. 2006; Wisecaver et al. 2013;
Burki et al. 2014). Interestingly, many members of these lin-
eages still retain the phagotrophic ability like
C. tetramitiformis does, despite being obligatory phototrophs
(Urban 1998; Stoecker et al. 2006; Burkholder et al. 2008;
Jeong et al. 2010; Hansen 2011; Unrein et al. 2014; Mitra
et al. 2016). The fact that phagotrophic protists often carry
many foreign genes suggests that the feeding strategy plays
an important role in gene acquisition (Doolittle 1998; Yue
et al. 2013; Grant and Katz 2014).
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One can argue that a single gene, e.g. involved in the synthe-
sis of small compounds, may not constitute a unit of selection
but only the entire set of genes engaged in a metabolic pathway.
However, reacquisition of a lost pathway does not have to mean
building it from scratch because its ‘remnants’ or homologous
genes may function in the host metabolic network. This reason-
ing is well supported by the phylogenetic mosaicism of meta-
bolic pathways, which, however, can also be explained by gene
replacement events, and the general flexibility and robustness of
the metabolic network (Curtis et al. 2012; Deschamps and
Moreira 2012; Reyes-Prieto and Moustafa 2012; Qiu et al.
2013; Burki et al. 2014; Yang et al. 2014).

Even assuming that all the genes involved in a metabolic
pathway are required for plastid establishment, their gain may
be as simple as the acquisition of a single gene if the transfer
sources are bacteria or unicellular eukaryotes with a simple
organization of their genomes. Genes associated with meta-
bolic pathways in prokaryotes are often organised into op-
erons, which highly increases the probability of their simulta-
neous transfer to a potential host. Such a transfer was de-
scribed in the case of the parasitic nematode Heterodera
glycines, which acquired the genes for the synthesis of vitamin
B6 from bacteria (Craig et al. 2008). This particular example
shows that an entire metabolic pathway can be acquired, even
in multicellular organisms.

Although horizontally transferred genes involved in the
synthesis of small compounds can transform an auxotroph
into a prototroph, it is important to emphasize that prototrophy
is not required to maintain a permanent endosymbiont. This
trophic ability is only necessary to become a true photoauto-
troph (strict phototroph). Accordingly, many phototrophic
protists with permanent plastids simultaneously feed on eu-
karyotic microorganisms or bacteria, gain nutrients by other
endocytic processes, and perform osmotrophy (Urban 1998;
Stoecker et al. 2006; Burkholder et al. 2008; Jeong et al. 2010;
Hansen 2011; Unrein et al. 2014; Mitra et al. 2016).

3 Acquired phototrophy in the light of the “luggage”
hypothesis

The lack of permanent endosymbionts can also be explained
by the “luggage” hypothesis proposed by Wouters et al.
(2009) on the pages of “Symbiosis” nearly seven years ago.
It states that as long as symbionts or plastid donors are present
and abundant in the host environment, the most favoured host
strategy will be preying on them. Because the prey can be
easily acquired from the environment, there is no selective
pressure to evolve energy-expensive mechanisms for their
permanent upkeep. Therefore some metazoans, amoebozoans,
and ciliates may host only transient endosymbionts (Burns
et al. 2015). In the case of ciliates, nearly one fourth is esti-
mated to apply this cost-effective strategy. Their
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kleptoplastids or endosymbionts provide photosynthetic me-
tabolites and oxygen, enabling them to grow faster and find
refuge in hypoxic or anoxic waters (Stoecker et al. 2009). On
the other hand, the fewer symbionts or plastid donors in the
environment, the more likely the host is to hold them as per-
manent luggage. The hosts that are able to maintain endosym-
bionts or kleptoplastids for a longer time are favoured, for
example, in dynamic environments or when the host finds
itself in a new environment (see next section for an example;
Wouters et al. 2009).

The only obstacle to establish a permanent endosymbiont
or plastid in a unicellular eukaryote is, perhaps, exemplified
by foraminiferans. They transmit their endosymbionts verti-
cally during asexual reproduction but the large size of most
endosymbionts constrains them from entering gametes.
Therefore, the endosymbionts have to be reacquired after
gametogamy, resulting in a cyclic nature of the endosymbiotic
relationship (Nowack and Melkonian 2010). This kind of in-
teraction is indeed an evolutionary dead end from the endo-
symbiotic point of view, contrary to auxotrophy suggested by
Burns et al. (2015). Given evolutionary time and possibilities,
i.e. gene donors, the evolution of endosymbiotic relationships
is possible if there is a selective pressure favouring them. The
mechanisms driving transient endosymbionts into permanent
plastids are described in the “luggage” hypothesis. Although
endosymbiosis is sometimes treated as an example of non-
Darwinian evolution via the inheritance of acquired character-
istics (e.g., the acquisition of new genes), it still comes under
the law of natural selection, resulting in the survival (and
reproduction) of those best adapted to the environment.

4 The case of Paulinella chromatophora

Besides C. tetramitiformis, another interesting model of endo-
symbiosis is the thecate amoeba Paulinella chromatophora,
which harbours two photosynthetic cyanobacteria-derived
bodies (called chromatophores), acquired independently of
archaeplastidian primary plastids (Bodyt et al. 2012;
Nowack 2014). The chromatophores are deeply integrated
with the host and a substantial number of their genes has been
transferred to the host nuclear genome (Nowack et al. 2011).
Consequently, a transport system to import these host-
encoded proteins has evolved in chromatophores’ membranes
(Bodyt et al. 2010; Mackiewicz et al. 2012a, b; Nowack and
Grossman 2012; Gagat and Mackiewicz 2014). Therefore, the
chromatophores should be considered true cell organelles,
though they represent an early step of organelle transforma-
tion. The case of Paulinella fits well into the “luggage” hy-
pothesis as there are marine heterotrophic Paulinella species
feeding on bacteria (including cyanobacteria) and two photo-
synthetic P. chromatophora strains, FKO1 and CCAC 0185,
found in brackish and freshwater environments worldwide.



Cymbomonas tetramitiformis and plastid evolution

That suggests the change of the habitat and consequently the
change of the prey supply to be the cause behind the chro-
matophores’ establishment. Interestingly, another photosyn-
thetic Paulinella (P. longichromatophora) has recently been
discovered in marine sand flats on the western coast of Korea
(Kim and Park 2016). This species groups significantly with
the two other photosynthetic Paulinella on both nuclear and
chromatophore rDNA trees indicating a single acquisition of a
cyanobacterium by their ancestor. However, the two freshwa-
ter Paulinella are not monophyletic because Paulinella FKO1
is closer related to the marine P. longichromatophora than to
the CCAC 0185 strain. It seems that P. longichromatophora
returned secondarily to the sea if we assume that the ancestor
of the three amoebas lived in freshwater (Kim and Park 2016).

It is noteworthy to mention that contrary to its heterotrophic
relatives and also to mixotrophic prasinophytes, Paulinella
has lost the ability to phagocytose (see Nowack et al. (2011
and references therein). However, taking into account the time
that has passed since the primary endosymbiosis (~1500 mil-
lion years) and Paulinella endosymbiosis (~60 — 140 million
years), the opposite should be expected (Nowack et al. 2008;
Parfrey et al. 2011; Delaye et al. 2016). It is interesting to
ponder which selective pressure could be responsible for the
maintenance of phagocytosis among prasinophytes.
Experimental data indicates that the opportunity to receive
additional carbon compounds is not the answer, but combined
with the acquisition of other nutrients, such as for example:
nitrogen, phosphorus, and iron, it may constitute the selective
advantage, especially in oligotrophic (low-nutrient) environ-
ments that offer little to sustain life (Flynn et al. 2013; Mitra
et al. 2016; Paasch et al. 2016). Such conditions, in general,
support mixotrophy as a dominant way of feeding. In accor-
dance with this, another marine phagotrophic prasinophyte
Micromonas CCMP2099 increases its grazing on bacteria in
low light and poor nutrient conditions (McKie-Krisberg and
Sanders 2014). In contrast, P. chromatophora thrives in small
eutrophic (nutrient-rich) ponds. In such environments,
phototrophs can easily acquire simple compounds by alterna-
tive to phagocytosis endocytic processes and osmotrophy, and
therefore do not need to resort to phagotrophy. Nutrient-rich
conditions have been shown to drive protist diversification
into photoautotrophs and heterotrophs with specialized tro-
phic strategies (Troost et al. 2005).
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