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Summary

We consider the problem of estimating the marginal mean of an incompletely observed variable 

and develop a multiple imputation approach. Using fully observed predictors, we first establish 

two working models: one predicts the missing outcome variable, and the other predicts the 

probability of missingness. The predictive scores from the two models are used to measure the 

similarity between the incomplete and observed cases. Based on the predictive scores, we 

construct a set of kernel weights for the observed cases, with higher weights indicating more 

similarity. Missing data are imputed by sampling from the observed cases with probability 

proportional to their kernel weights. The proposed approach can produce reasonable estimates for 

the marginal mean and has a double robustness property, provided that one of the two working 

models is correctly specified. It also shows some robustness against misspecification of both 

models. We demonstrate these patterns in a simulation study. In a real data example, we analyze 

the total helicopter response time from injury in the Arizona emergency medical service data.
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1. Introduction

Data collected for scientific research often contain missing values. For example, the Arizona 

emergency medical service (AZEMS) data contain valuable information for studying 

relationships between total EMS response time from injury and transportation types of 

traumatically injured patients. However, the variable recording the total response time from 

injury has around 66% of data missing. These missing data, if inadequately accounted for, 

might lead to invalid inferences in relevant analyses (e.g., comparing the mean total response 

time between different types of transportation) and misleading policy implications (e.g., 

misjudging which type of transportation is more efficient for sending traumatically injured 

patients to hospitals).

An increasing number of multiple imputation (MI) (Rubin, 1987) approaches have been 

proposed for dealing with missing data problems. In general, MI involves replacing each 

missing datum with several (M) sets of plausible values drawn from a specified imputation 

model, resulting in several completed datasets (i.e., data with missing values filled in by 

imputations). Each completed dataset is analyzed separately by a standard complete-data 

method. The resulting inferences, including point estimates, covariance matrices, and p-

values, can then be combined to formally incorporate imputation uncertainty using the 

formula given in Chap. 3 of Rubin (1987) and refinements in Chap. 10 of Little and Rubin 

(2002). The implementation of MI in several major statistical packages including SAS 

(www.sas.com), R (www.r-project.org), and STATA (www.stata.com) has made this missing 

data strategy increasingly popular among practitioners (Harel and Zhou, 2007).

The challenges of MI often lie in constructing good imputation models. For ease of 

illustration, suppose Y is the incomplete variable and X contains the fully observed 

predictors. The development of imputation models has been largely focused on the outcome 

model f(Y|X). These methods usually pose parametric assumptions regarding the 

distribution of the missing data and the underlying regression relationships. See van Buuren 

(2007) for a recent review. In addition, there exist several less-parametric alternatives. One 

strategy is to use smoothing techniques for modeling f(Y|X). For example, Titterington and 

Sedransk (1989), Cheng (1994), Chu and Cheng (1995) and Aerts et al. (2002) used kernel 

estimators, and developed kernel-based sampling weights to create imputations. In theory, 

the kernel-based MI may be more robust than parametric alternatives against the 

misspecification of the outcome model. However in practice, these kernel-based MI might 

become more cumbersome to implement as the number of predictors in X increases, due to 

the curse of dimensionality. In addition, model misspecification can still occur, for example, 

if important predictors are omitted from X (Fan and Gijbels, 1996). Then the resultant 

kernel-based MI inference can still be invalid.

Other methods have been developed to handle the misspecification of the outcome model. 

The popular doubly robust methods (van Buuren, 2012; Cassel et al., 1976; Horvitz and 

Thompson, 1952; Robins et al., 1994; Robins et al., 1995; Rotnitzky et al., 1998; Scharfstein 

et al., 1999; Wang et al., 2004; Qin et al., 2008) construct two working models, the outcome 

model and the model predicting the probability of missingness (propensity model). Missing-

data inferences based on the information from two models can still be valid as long as one of 
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them is correctly specified. To weaken the parametric assumption of the outcome model for 

the doubly robust methods, a semi-parametric doubly robust method (Hu et al., 2010) has 

been developed in which nonparametric regression is proposed to estimate the outcome 

model. See Section 2.3 for more details.

In this paper, we combine the strength of the above two strategies and develop a kernel-

based doubly robust MI approach. The remainder of the paper is organized as follows. 

Section 2 introduces notation and briefly reviews the ideas behind the kernel-based MI and 

doubly robust approaches. Section 3 describes the proposed method. Section 4 assesses its 

performance through a simulation study. Section 5 presents a real data example. Finally, 

Section 6 concludes with a discussion and points out directions for future studies.

2. Background

2.1 Setup

For simplicity, we consider one incomplete continuous outcome Y, although the proposed 

method can be extended to categorical variables and multivariate settings (see Section 6 for a 

discussion). Denote the response indicator as δ, where δ = 0 (1) if Y is missing (observed). 

We also assume that there exist K fully observed variables X=(X1, X2,…,XK) that are 

predictive of Y and/or δ, and Y is independent of δ given X, that is, missing at random 

(Rubin, 1987). Finally, we assume that there are n independent selections of Y, δ, and X, of 

those nobs have observed outcome data Y. We focus on the estimation of μ = E(Y), the 

marginal mean of the outcome.

2.2 Kernel-based MI

The essential ingredient of this approach is the local generation/imputation of missing 

observations, where “local” refers to the region of the observed covariates X that is close to 

the cases with a missing outcome. Without loss of generality, we assume that Yi (i=1,..,nobs) 

is observed and Yj (j=nobs+1,…,n) is missing. In its general form, kernel-based MI imputes 

a missing Yj value by drawing from the cumulative distribution function 

, where {wji} denote positive weights with  and I(.) is the 

indicator function satisfying I(Yi ≤Y) = 1 if Yi ≤ Y, and 0 otherwise. That is, we replace Yj 

by a random draw from observed cases {Yi} with probabilities {wji} for j=nobs+1,…,n.

More specifically, if Xj is the covariate value associated with the missing Yj, the weights 

{wji} are constructed using the kernel estimator:

where the kernel K(.) is a symmetric unimodal probability density, and Kh(u)=K(u/h)/h. The 

use of kernel weights implies that the observed Yi value, whose Xi value is closer to Xj, gets 
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a larger weight and hence has a larger probability being chosen to replace the missing Y 

value.

The kernel-based MI aims to put less reliance on parametric assumptions of the outcome 

model. It has been shown to produce consistent estimates for the marginal mean in rather 

general scenarios (yet with only one covariate in the outcome model) [8] due to the nice 

property of kernel estimators. However, its practical implementation has been largely 

hindered by the curse of dimensionality when X has multiple variables, which is often 

encountered in practice. On the other hand, if X is limited to a single variable by removing 

other potentially important predictors, the outcome model is generally misspecified and 

would lead to invalid inferences (van Buuren, 2012).

2.3 Doubly robust methods

The doubly robust methods have been developed as a general technique to handle a potential 

misspecification of the outcome model. The earliest version can be traced back to the 

calibration estimator (Cassel et al., 1976), which extended the classic inverse probability 

weighting method to survey estimation (Horvitz and Thompson, 1952). The idea behind the 

calibration estimator is to combine information from two working regression models: one 

predicts the missing values in Y (the outcome model), and the other predicts the response 

probabilities Pr(δ=1). As a result, the estimator of μ is a sum of prediction and inverse 

probability-weighted prediction errors, i.e.

where Ŷ(X) is the prediction of Y based on a regression model for E(Y|X) fitted using only 

the observed cases, ε̂ = Y − Ŷ, and π̂ is the estimated probability of being observed (Pr(δ=1|

X)). The first term of the estimator is equivalent to imputing all values using the outcome 

model, and the second term is a sum of inverse probability-weighted prediction errors from 

the outcome model. If the outcome model is correctly specified, then the first term is 

consistent for μ, and the second term converges to 0, guaranteeing that the estimator 

converges to μ. If the propensity model is correctly specified, then it can be shown that the 

second term consistently removes any bias that is associated with the first term, and hence 

the estimator still converges to μ. As a result, the estimator is consistent if either of the two 

models is correctly specified.

Most of the current doubly robust methods (Robins et al., 1994; Robins et al., 1995; 

Rotnitzky et al., 1998; Scharfstein et al., 1999; Wang et al., 2004; Qin et al., 2008; Hu et al., 

2010) originate from the calibration estimator. In particular, Hu et al. (2010) proposed to 

first reduce the dimension of X by a parametric working index S(X) which summarizes E(Y|

X) and then estimate E(Y) using S(X) via kernel regression with a bandwidth h, in which the 

inverse probability of the selection probability is incorporated into the estimation as a weight 

to account for missingness. This inverse probability weighted kernel regression approach can 

easily handle a situation with high dimensional X and weakens the parametric assumption of 
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the outcome model for the calibration estimator. It can be considered as a semi-parametric 

calibration estimator since the working outcome model is not fully specified.

Following the same idea, doubly-robust MI procedures have been developed (example 

Zhang and Little, 2009; Long et al., 2012; Hsu et al., 2014). These methods consider both 

the outcome and propensity models yet avoid directly performing the inverse weighting step, 

which is sometimes problematic in finite samples (Kang and Schafer, 2007). For example, 

Long et al. (2012) proposed a nearest-neighborhood MI. It develops a distance measure 

between the incomplete and observed cases, using a weighted sum of predictive scores from 

the two models. An imputing set/nearest neighborhood (i.e., observed cases with the closest 

distance) is selected for each missing observation, and all of the observations in the imputing 

set have equal chances to be drawn to replace the missing observation. This strategy can be 

viewed as an extension of the predictive mean-matching MI (Schenker and Taylor, 1996; 

Siddique and Belin, 2008), where the mean metric is derived only from the outcome model.

3. Proposed method

3.1 Motivation

Although the kernel-based MI methods in theory can be extended to handle multiple 

covariates, the curse of dimensionality often prohibits the practical development of effective 

kernel weights. We propose to reduce the covariate space into two dimensions using two 

predictive scores: one from the outcome model and the other from the propensity model. For 

simplicity, we assume that the outcome model takes a linear regression form E(Y)=Xβ and 

the propensity model takes a logistic regression form Logit[Pr(δ=1)]=Xα. We choose the 

linear and logistic regressions in fitting the working models because they are widely used in 

practice. Other types of regression, however, can also be considered (Section 6). The 

corresponding predictive scores are Xβ and Xα, respectively. A two-dimensional kernel 

weight function based on the two scores is derived to determine the re-sampling weights 

used in imputation (Section 3.2).

Motivated by the idea of doubly robust methods, here we use two models instead of only the 

outcome model to guard against the potential model misspecification from applying the 

kernel to the predictive scores rather than the original covariates. In addition, the use of 

unequal kernel weights might be advantageous compared to nearest neighbor-based MI, in 

which each donor (i.e., the observed cases in the imputing set) has an equal probability of 

being selected. Therefore, the use of kernel-based techniques might be more amenable to the 

underlying distribution of the data and link function of the missingness probabilities 

compared to existing doubly robust approaches.

3.2 Algorithm

We describe the imputation algorithm in the following steps; the detailed computing 

program is available upon request.

Step 1: Estimate the predictive scores on a bootstrap sample—A nonparametric 

bootstrap sample (Efron, 1979) of the original dataset, which includes both the observed and 

missing values, is obtained to incorporate the uncertainty of parameter estimates from the 
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working models. This step results in an approximately proper MI (Section 10.2 of Little and 

Rubin (2002)). This strategy is justified by the fact that the bootstrap distribution represents 

an (approximate) nonparametric, noninformative prior-based posterior distribution of model 

parameters (Section 8.4 of Hastie et al. (2008)). More specifically, let (Y(B), X(B), δ(B)) 

denote the bootstrap sample. The observed cases of the bootstrap sample are used to fit the 

outcome model to estimate the regression coefficients β, and the full data of the bootstrap 

sample are used to fit the propensity model to estimate the regression coefficients α. Two 

predictive scores,  and , are then calculated for each case, missing 

or observed, in the bootstrap sample. We further standardize these scores by subtracting their 

corresponding sample mean (i.e.  or ) and dividing by their corresponding sample 

standard deviation (i.e.  or ), respectively (denoted as  and ). Such a 

standardization step aims to weigh the contribution from each predictor relatively equally.

Step 2: Calculate the kernel weights—For a missing Yj with fully observed Xj in the 

original dataset (j=nobs+1,…,n) and two standardized predictive scores  and , 

where  and , the kernel weights for the 

 observed cases in the bootstrap sample are defined as

for  where h1 (h2) is the bandwidth parameter for . Although Kh1,h2 is in 

general defined as a two-dimensional kernel, for the simplicity of implementation we 

consider a product of two independent, one-dimensional kernels, i.e. 

. 

This strategy ignores the potential correlation of predictive scores from the two working 

models. The chosen independent kernel performs adequately based on the results from our 

simulation study (Section 4). We use the probability density function of the standard normal 

for each K, i.e., 

Step 3: Imputation step—A random draw from the set of observed cases in the bootstrap 

sample with the probability wh1,h2,j,i is used to replace the missing Yj.

Step 4: Repeat Steps 1 to 3 independently M times to create M completed 
datasets—Once the M multiply imputed datasets are obtained, we carry out the MI 

analysis procedure established in (Rubin, 1987). Specifically, we calculate the complete-data 

estimate ûm and its sample variance Wm (m=1,…,M) for each of the M datasets. Then the 
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MI point estimator for μ is . The (average) within-imputation variance is 

. We also calculate the between-imputation variance as 

. The MI variance estimator for ûMI is . For 

hypothesis testing, the MI estimator approximately follows a t distribution with degrees of 

freedom v = (M−1)*[1 + {U*M/(M+ 1)}/B]2.

3.3 Additional remarks

In the scenario with only one predictor X for the missing outcome Y, Aerts et al. (2002) 

shows that the mean estimator derived from the kernel-based multiple imputation approach, 

in which the kernel weights (i.e. resampling weights) are derived using X, is consistent 

under missing at random (MAR) mechanism (i.e. missingness only depends on X). Here we 

consider a more general scenario with multiple predictors in X. We have proposed to first 

summarize the multiple predictors into two predictive scores and then use the two predictive 

scores to derive the kernel weights. In a sense, we generalize the one-dimensional kernel-

based multiple imputation in Aerts et al. (2002) to a two-dimensional kernel-based multiple 

imputation, which uses information from both the outcome and propensity models. We have 

previously showed that under the MAR mechanism based on the full set of covariates, if one 

of the two working models is correctly specified, the MAR mechanism can be induced based 

on the two predictive scores (Long et al., 2012). Using this result, Long et al. (2012) showed 

that under certain regularity conditions and MAR, if one of the two working models is 

correctly specified, the final mean estimator derived from the two-dimensional nearest 

neighbor-based multiple imputation approach is consistent. It has been shown that under 

certain relationship between the bandwidth and size of the nearest neighborhood, the bias 

and variance of the mean estimator derived from kernel smoothers are equivalent to those for 

nearest neighborhood smoothers (Mack, 1981). This suggests that building on the 

consistency properties of the one-dimensional kernel-based multiple imputation in Aerts et 

al. (2002) and the two-dimensional nearest neighbor-based multiple imputation in Long et 

al. (2012), under the regularity conditions similar to those in Long et al. (2012) and MAR, 

the proposed kernel-based multiple imputation has is expected to have a double robustness 

property. That is, if one of the two working models is correctly specified, the final mean 

estimator derived from the proposed two-dimensional kernel-based multiple imputation 

approach is expected to be consistent.

Selecting the bandwidth parameter in the kernel-based methods has always been a 

complicated issue. For the kernel-based MI, Aerts et al. (2002) showed that the estimation 

bias depends on the selected bandwidth and derived the optimal bandwidth by minimizing 

the mean-squared error of the estimator. Our models are arguably more complicated, and the 

purpose of our research is to develop a practically appealing imputation procedure. 

Therefore, research on choosing the optimal bandwidth parameter in our context is beyond 

the scope of the current work and requires further research. However, from our experience, 
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we suggest that one use a small h1 for  compared to h2 for  when we have more 

confidence on the outcome model than the propensity model, and vice versa.

The nearest neighbor-based MI (Long et al., 2012) can be considered as a special case of the 

proposed approach by fixing the bandwidth parameter and using a uniform kernel, i.e.

where  measures the distance (on the scale of 

predictive scores) between the incomplete and observed cases, and wY and wδ are positive 

weights attributed to the outcome and propensity models, respectively, satisfying wY+wδ =1 

(Long et al., 2012). Practically, wY and wδ can be chosen to reflect the imputer’s relative 

confidence in the correctness of outcome and propensity models specified, using evidence 

from both the empirical data and substance knowledge. On the other hand, note that using 

the uniform kernel assumes equal chances of selecting donors. Therefore, using unequal 

selection weights in the method proposed in the current paper might yield a smaller bias than 

the nearest neighbor-based MI since in the former approach, the observations with more 

“similar” predictive scores to those from the missing Y have a greater chance to be selected 

for the imputations.

4. Simulation

We perform several simulation assessments to investigate the finite-sample properties of the 

proposed method, denoted as LMI(h1,h2) (“L” stands for “Local”), where h1 (h2) is the 

bandwidth for . We assess how its performance is affected by the total sample size n, 

misspecification of the working models, and the bandwidths chosen for deriving the kernel 

weights. In addition, it is compared with several alternatives. The non-imputation methods 

include the complete-case analysis (CC), the calibration estimator (CE) and the semi-

parametric calibration estimator (SCE(h), where h is the bandwidth) introduced in Section 

2.2, and the fully-observed (FO) analysis, which analyzes data before deletion and is treated 

as the gold standard. We also consider the nearest neighborhood MI, denoted as NNMI(NN, 

wY, wδ), where NN is the size of the nearest neighborhood (i.e., the number of donors), and 

wY (wδ) is the weight on  (Section 3.3). Based on our previous studies (Long et al., 

2012; Hsu et al., 2014), for NNMI we select NN=5, wY=0.8 and wδ=0.2, which appears to 

be a generally preferable choice across tested scenarios. For all MI methods, we conduct 5 

independent imputations.

4.1 Data Generation

The design is similar to the simulation study conducted in Long et al. (2012). For each of the 

500 independent simulated datasets, there are 5 hypothetical predictive covariates X1,…,X5 

independently generated from a Uniform (−1, 1) distribution. The outcome Y is generated 

from either N(10 + 2X1 − 2X2 + 3X3 − 3X4 + 1.5X5, 3) or lognormal(0.5+0.5X1 − X2 

+ 1.5X3 − 2X4 + 0.5X5,1). The response indicator δ is generated from logit (Pr(δ=1)) = 
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α0+0.5X1 − X2 + X3 − X4 + X5 or log[−log(1−Pr(δ=1))]= α0+0.5X1 − X2 + X3 − X4 + X5. 

α0 is selected to allow the missingness rate to vary between 20% and 50%. We consider total 

sample sizes 200 and 800.

4.2 Specifications of the working models

We consider two types of model misspecification: inclusion of a wrong set of the covariates 

and misspecification of the link function for the outcome or propensity model. The working 

models are correctly specified if all five covariates are included and the link (distribution) 

functions are correctly specified; otherwise they are misspecified. For example, when Y is 

generated from the log-normal distribution, the working linear regression model for Y is 

misspecified even if it includes all five covariates. When δ is generated from a 

complementary log-log (cloglog) link function, the working logistic regression model for δ 
is misspecified even if it includes all five covariates.

We consider three scenarios for the two working regression models. In all cases, the working 

model for Y is a linear regression, and the working model for δ is a logistic regression. We 

use subscripts to indicate the number of predictors included in the working models.

Scenario 1: Both models include all five predictors (CE55, SCE55, NNMI55 and 

LMI55). The subscript “55” indicates that all 5 predictors are used in both 

models.

Scenario 2: The working model for Y includes all five covariates and the 

working model for δ only includes the first three covariates (CE53, SCE53, 

NNMI53 and LMI53). The subscript “53” indicates that all 5 predictors are used 

in the outcome model, yet only the first 3 covariates are included in the 

propensity model.

Scenario 3: the working model for Y includes the first three covariates and the 

working model for δ includes all five covariates: (CE35, SCE35, NNMI35 and 

LMI35).

We summarize various model misspecifications in the simulation using LMI as an example 

in Table 1. Misspecifications of the models can happen on the distributional forms (normal 

vs. lognormal), link functions (logit vs. cloglog), and inclusion of predictors (3 vs. 5). 

Similar patterns can be found for CE, SCE and NNMI. Note that doubly-robust methods are 

expected to perform well if at least one of the two working models is correctly specified, yet 

here we consider additional situations in which both working models are misspecified and 

assess the performance of the proposed method in those situations.

4.3 Results

Tables 2–7 include the simulation results. We highlight the three doubly robust methods with 

the smallest (including ties) root mean squared error (RMSE) measures. In all scenarios, CC 

produces biased estimates (bias increases with missing rate) and results in a low coverage 

rate as expected. In the situation where Y is generated from a normal distribution and δ is 

generated based on a logit link function (Tables 2 and 3), CE produces estimates almost 

identical to FO as long as one of the working models is correctly specified (i.e. including all 
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the five predictive covariates in the model). SCE produces estimates with smaller biases than 

LMI and NNMI when the working model for Y is correctly specified. When the working 

model for Y is misspecified, in some situations SCE produces estimates with larger biases 

than LMI. Both LMI and NNMI produce estimates with larger biases than CE produces. The 

bias is much smaller when both working models are correctly specified, i.e. LMI55 and 

NNMI55. For NNMI, when the working model for Y is misspecified, i.e. NNMI35, the bias 

is larger than when the working model for Y is correctly specified, i.e. NNMI53. In contrast, 

LMI53 and LMI35 have similar biases. This indicates that LMI is less affected by the 

misspecification of the working model for Y than NNMI. For LMI, when the bandwidths are 

small, especially for the bandwidth of the predictive score derived from the working model 

for Y, i.e. h1, LMI produces estimates with much smaller biases than NNMI even if the 

working model for Y is misspecified. For example, in Table 2, LMI35(0.10,0.10) has a 

percent bias of 0.51% compared to a percentage bias of 1.19% for NNMI35(5,0.8,0.2). The 

bias for LMI increases with h1 and h2, especially with h1. For example, in Table 2, 

LMI55(0.10,0.10) has a percentage bias of 0.15%, LMI55(0.10,0.25) has a percentage bias of 

0.24%, and LMI55(0.25,0.10) has a percentage bias of 0.24%. As the total sample size 

increases to 800 (Table 3), the bias for both LMI and NNMI decreases. For example, the 

percentage bias for NNMI35(5, 0.8, 0.2) decreases from 1.19% to 0.41%, and the percentage 

bias for LMI35(0.10,0.10) decreases from 0.51% to 0.18%. This indicates that if one of the 

working models is correctly specified, both LMI and NNMI can produce reasonable 

estimates. Based on the simulation results not provided here, we also observe the bias-

variance trade-off when the bandwidth parameters in LMI increase. That is, with smaller h1 

or h2, LMI tends to have smaller bias yet larger variance (or SD) than those with larger h1 or 

h2. Such pattern is consistent with the property of kernel regression-based estimates. We also 

note that the coverage rates for LMI can be somewhat off from the nominal level, i.e. 95%. 

With large bandwidth parameters, the under-coverage can be largely caused by the bias. 

With small bandwidth parameters, in which the bias effect is small, this might be caused by 

the underestimation of standard error (SE) compared to the empirical standard error, i.e. SD. 

The under-coverage seems to be less severe with increased sample size.

In the situation where Y is generated from a normal distribution and δ is generated from a 

cloglog link function (Tables 4 and 5), the working model for δ (a logit link) is always 

misspecified. When the working model for Y is correctly specified (e.g., LMI55 or LMI53), 

the proposed methods yield in general satisfactory results (e.g., reasonable bias and coverage 

rates), with small h1 and h2. If both working models are misspecified, the double robustness 

property is not expected to hold generally for all the considered methods. Note that CE35 

produces an estimate with large bias (larger than LMI especially when both bandwidths are 

small), and the bias increases with sample size. SCE35, LMI35 and NNMI35 also produce 

estimates with large bias, but the bias decreases with sample size. For example, when sample 

size is 200, CE35 has a percentage bias of −1.85%, SCE35(0.10) has a percentage bias of 

2.39%, LMI35(0.10,0.10) has a percentage bias of 1.36%, and NNMI35(5,0.8,0.2) has a 

percentage bias of 2.99%. When sample size increases to 800, CE35 has a percentage bias of 

−2.24%, SCE35(0.10) has a percentage bias of 0.17%, LMI35(0.10,0.10) has a percentage 

bias of 0.53%, and NNMI35(5,0.8,0.2) has a percentage bias of 1.31%. The overall 

performance of LMI with small h1 and h2 are the most satisfactory when both working 
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models are mis-specified. These results indicate that LMI might be more robust to the 

misspecification of both working models than CE or NNMI.

In the situation where Y is generated from a log-normal distribution and δ is generated from 

a logit link function (Tables 6 and 7), the working model for Y (a normal model) is always 

mis-specified. When the working model for δ is correctly specified (e.g., LMI55 or LMI35), 

LMI methods yield in general satisfactory results (e.g., reasonable bias and coverage rates), 

with small h1 and h2. When both working models are mis-specified, the bias for CE53 is 

again much larger than that for SCE53, LMI53 and NNMI53. Specifically, in Table 6, CE53 

has a percentage bias of −29.82%, SCE53(0.10) has a percentage bias of 3.53%, 

LMI53(0.10,0.10) has a percentage bias of 0.26%, and NNMI53(5,0.8,0.2) has a percentage 

of 1.05%. As the sample size increases to 800 (Table 7), the bias for CE53 does not decrease. 

The relative performance of LMI vs. CE or NNMI is similar to that shown in Tables 4 and 5, 

again indicating that LMI might be more robust against the misspecification of both working 

models than CE or NNMI.

In summary, CC tends to produce biased estimates as expected. The doubly robust methods 

including CE, SCE, NNMI, and LMI can produce reasonable estimates if one of the two 

working regression models is correctly specified. Among the doubly robust methods, LMI 

with small bandwidth parameters in general performs either the same or better than CE, SCE 

or NNMI, with respect to RMSE. We also find that LMI with small bandwidth parameters 

seems to be more robust when both working models are mis-specified. Consistent with the 

existing literature, choosing small bandwidth parameters tends to yield smaller bias for LMI. 

Therefore, through the tuning of bandwidths, LMI can produce estimates with smaller biases 

than NNMI since LMI assigns larger re-sampling weights to the observations more “similar” 

to the missing observations.

On the other hand, we note that in certain cases, the SE of LMI can be appreciably lower 

than SD, which might largely cause the under-coverage. We do not have a good explanation 

for this. Since the variance formulae for MI (Rubin, 1987) assumes that the imputation 

model is correctly specified, yet here the proposed methods are based on predictive scores 

derived from working models which can be mis-specified, we surmise that the direct use of 

MI variance formulae might lead to sizable bias in certain scenarios. Such bias (for the 

variance estimation) is hard to quantify but it might be related to the extent to which the 

working model is mis-specified and to the sample size. For the latter, if we compare the 

results from N=200 with those from N=800 (e.g. Tables 2 vs. 3), we can see the variance 

underestimation is less severe with an increased sample size. Further investigation of this 

issue is beyond the scope of this paper, but some of the related references on the bias of MI 

variance formulae can be found in Kim and Shao (2013). A practical solution to this 

potential problem is to conduct a sensitivity analysis including alternative methods, paying 

specific attention to confidence intervals that appear to be too narrow or too wide.

5. Application

We apply various missing data methods to the 2012 Arizona emergency medical service 

data. The example focuses on estimating the mean total response time from injury 
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(transported by helicopters) by radius distance from the regional level I hospitals. After 

excluding a few cases with an extremely long response time, say >1000 minutes (those 

observations are more likely due to some technical recording errors), there are 1160 patients 

left, among whom around 66% of the cases lack the total response time from injury.

We run some exploratory analyses to determine the set of predictive covariates for both the 

outcome and propensity models. Based on a logistic regression analysis, younger, white 

patients, and patients with lower ICD9 severity score are more likely to have a missing 

response time, and patients further away from the regional hospitals are less likely to have a 

missing response time. Based on a linear regression using only the observed cases, the 

distance is positively correlated with the total response time. Assuming the missingness is at 

random, the five variables (i.e., age, gender, distance, ICD9 severity score and race [white vs 

non-white]) are included as covariates in the two working regression models.

Similar to our simulation study, we consider three scenarios for the two working regression 

models:

Scenario 1: both models include all five predictive covariates (CE55, SCE55, 

NNMI55 and LMI55).

Scenario 2: the working model for total response time includes all five 

covariates, and the working model for missingness probabilities only includes 

the first three covariates, i.e. age, male and distance (CE53, SCE53, NNMI53 

and LMI53).

Scenario 3: the working model for total response time includes the first three 

covariates and the working model for δ includes all five covariates (CE35, 

SCE35, NNMI35 and LMI35).

The results are displayed in Table 8. For simplicity, we only show the LMI results when both 

h1 and h2 are 0.1, as those with other choices of bandwidth parameters remain largely 

similar. The results from CC, CE and NNMI35 show that the total response time from injury 

does not increase with radius distance until the distance is greater than 50 miles. The results 

from SCE, NNMI55 and NNMI53 indicate that the total response time does not increase with 

radius distance until the distance is greater than 40 miles. The results from all three LMI 

indicate that the total response time from injury consistently increases with a longer 

distance. However, the rate of increase is slower when the distance is shorter than 40 miles. 

The results from LMI are consistent with our intuition. In addition, the observed total 

response time from injury is highly right skewed with a skewness of 3.10. The Shapiro-Wilk 

test of normality for the observed total response time data produces a p-value <0.0001 

(results not shown). Based on this fact and the simulation results when Y is generated from a 

log-normal (right skewed) distribution (Section 4), the application results obtained from 

LMI might be more reliable.

6. Discussion

This paper describes a MI method that combines the strength from the doubly robust 

methods and kernel-smoothing methods. It first uses fully observed predictors to build the 
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outcome and propensity model to obtain two summarizing predictive scores, and then 

constructs kernel weights on the difference of the scores from observed and incomplete 

cases, and finally resamples the observed cases using these kernel weights for imputation. Its 

reliance on the correct specification of the working models is weak, because only the 

predictive scores, which effectively reduce the dimension of the covariates, are used in the 

imputation. As demonstrated by our simulation results, the problem of the misspecification 

of the working models can be effectively alleviated by this double robustness setup. In 

addition, the role of predictive scores is to construct a distance measure between the 

incomplete and observed cases. This is in contrast with most of the methods in the literature 

that directly use the information from the predictive covariates for estimation and that, 

therefore, result in performance highly dependent on the correctness of the model 

specification. In addition, the proposed method appears to be more robust to the violations of 

distributional assumptions than the existing doubly robust methods such as the calibration 

estimator and nearest-neighborhood MI method.

Our research can be extended in several directions. First, since kernel smoothing is used in 

the imputation, the performance of the imputation procedure is affected by the selection of 

bandwidths. When the bandwidths are too wide, more observations will have non-zero 

sampling weights. Therefore, some observations that are not very “similar” to the 

observation with missing outcome might be drawn to replace the latter. This could result in 

an increased bias in estimation. In this paper, we select a range of bandwidths and compare 

their performances. This can be easily implemented by practitioners as a strategy for data 

analysis. Specifically, one needs to first select a range of bandwidths to select from. The two 

predictive scores are standardized and expected to range from −3 to +3, respectively. 

Therefore, a small range (e.g. 0.10~0.30) should be sufficient. For given bandwidths one can 

first derive the mean estimate and the associated standard error estimate. One can then 

specify a range of potential true mean values based on knowledge about the background of 

the data. A squared error can then be calculated for the mean estimate corresponding to each 

true mean, from which one can calculate an average squared error value across the assumed 

different true mean values. The bandwidth with the smallest averaged squared error can then 

be chosen as the optimal bandwidth. More rigorously, simulations can be performed to 

calculate the MSE (rather than the squared error) under each scenario and use the average 

MSE across scenarios to evaluate this strategy for selecting an optimal bandwidth. More 

sophisticated methods to effectively construct correlated bivariate kernels in the same spirit 

of that of Aerts et al. (2002) based on Jackknife or related methods are another future 

research area in terms of bandwidth selection.

Second, more options for the working models might be considered. In this paper, we simply 

use linear regression to predict the outcome with missing observations and logistic 

regression to predict the missingness probability. Potentially, when the outcome variable is 

not normally distributed, a transformation may be performed to better approximate a normal 

distribution for a continuous outcome, or a generalized linear model may be fitted for 

categorical outcomes. Similarly, binary regression models with link functions other than 

logit can also be explored for the propensity models.
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Third, the proposed method might be generalized to impute missing data from multiple 

variables, which are often encountered in practice. For these problems, this strategy may be 

implemented for one missing outcome at a time and then sequentially over all of the 

incomplete variables, fitting in the framework of the sequential regression multiple 

imputation or multiple imputation by chained equations (Raghunathan et al., 2001; van 

Buuren et al., 1999).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 8

Total response time from injury (min) by distance (mile) for air transportation

Method
Distance

5–10 (37a; 75.7%b) 11–20 (187; 74.9%) 21–30 (213; 73.2%) 31–40 (130; 67.7%)

CC 82.78±20.98c 82.02±9.72 103.86±11.60 76.71±4.59

Include all 5 predictors in both working models

CE55 86.97±20.43 82.92±8.90 101.10±11.23 75.32±5.00

SCE55(0.10) 84.22±26.39 74.93±11.09 85.01±10.10 91.38±12.36

NNMI55(5,0.8,0.2) 76.22±15.33 80.03±7.25 91.08±8.00 80.43±9.46

LMI55(0.10,0.10) 92.03±18.04 88.21±9.25 98.45±8.62 88.12±6.41

The working model for Y (δ) contains 5(3) predictors

CE53 86.61±20.61 80.57±8.61 103.09±10.79 77.70±5.42

SCE53(0.10) 84.66±26.57 75.14±10.98 85.27±9.89 91.94±12.05

NNMI53(5,0.8,0.2) 71.04±9.72 81.49±7.50 88.80±8.36 82.50±10.11

LMI53(0.10,0.10) 83.44±10.26 87.74±17.66 101.61±16.09 91.16±8.49

The working model for Y (δ) contains 3(5) predictors

CE35 87.25±20.54 82.94±8.91 101.16±11.22 75.46±4.91

SCE35(0.10) 87.74±26.32 73.41±10.99 89.80±10.08 90.79±12.22

NNMI35(5,0.8,0.2) 79.46±15.33 81.83±9.39 92.36±8.91 77.87±4.46

LMI35(0.10,0.10) 85.80±14.11 85.78±6.51 103.01±8.20 92.98±8.44

Method
Distance

41–50 (156; 61.5%) 51–60 (132; 58.3%) 61–70 (212; 59.4%)

CC 91.50±6.01 108.40±12.63 121.79±8.83

Include all 5 predictors in both working models

CE55 89.96±6.59 110.19±14.54 121.24±8.52

SCE55(0.10) 101.70±10.81 116.24±12.56 119.49±9.14

NNMI55(5,0.8,0.2) 95.14±6.31 105.59±10.58 122.48±11.99

LMI55(0.10,0.10) 95.38±7.70 104.10±12.20 123.11±14.81

The working model for Y (δ) contains 5(3) predictors

CE53 89.72±6.56 109.84±13.97 121.45±8.24

SCE53(0.10) 101.79±10.73 115.92±12.40 119.80±9.03

NNMI53(5,0.8,0.2) 94.36±5.12 110.10±11.96 121.23±7.56

LMI53(0.10,0.10) 95.79±5.59 104.69±8.66 116.29±9.25

The working model for Y (δ) contains 3(5) predictors

CE35 90.04±6.58 110.19±14.56 121.05±8.52

SCE35(0.10) 97.79±10.47 102.28±11.09 116.34±8.65

NNMI35(5,0.8,0.2) 93.24±5.60 109.25±13.87 117.61±13.20
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Method
Distance

5–10 (37a; 75.7%b) 11–20 (187; 74.9%) 21–30 (213; 73.2%) 31–40 (130; 67.7%)

LMI35(0.10,0.10) 97.22±7.06 113.23±11.50 119.38±8.12

a
sample size

b
missingness rate

c
mean±standard error
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