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Abstract

Case-control association studies often collect from their subjects information on secondary 

phenotypes. Reusing the data and studying the association between genes and secondary 

phenotypes provide an attractive and cost effective approach that can lead to discovery of new 

genetic associations. A number of approaches have been proposed, including simple and 

computationally efficient ad hoc methods that ignore ascertainment or stratify on case-control 

status. Justification for these approaches relies on the assumption of no covariates and the correct 

specification of the primary disease model as a logistic model. Both might not be true in practice, 

for example, in the presence of population stratification or the primary disease model following a 

probit model. In this paper, we investigate the validity of ad hoc methods in the presence of 

covariates and possible disease model misspecification. We show that in taking an ad hoc 

approach, it may be desirable to include covariates that affect the primary disease in the secondary 

phenotype model, even though these covariates are not necessarily associated with the secondary 

phenotype. We also show that when the disease is rare, ad hoc methods can lead to severely biased 

estimation and inference if the true disease model follows a probit model instead of a logistic 

model. Our results are justified theoretically and via simulations. Applied to real data analysis of 

genetic associations with cigarette smoking, ad hoc methods collectively identified as highly 

significant (p < 10−5) single nucleotide polymorphisms from over ten genes, genes that were 

identified in previous studies of smoking cessation.
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Introduction

Genome-wide association studies (GWAS) examine associations between genetic variants 

and disease status, often by employing a case-control design. Many of these studies also 

collect a variety of secondary traits—quantitative and qualitative traits besides the case-

control status. In view of high genotyping costs, the resulting data provide a cost-effective 

way to identify genetic associations with secondary traits. For example, in a lung cancer 
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GWAS conducted at the Massachusetts General Hospital (MGH), detailed smoking histories 

were collected from each study participant. It is of interest to reuse the data to identify single 

nucleotide polymorphisms (SNPs) associated with smoking behavior [Schifano et al., 2012].

A number of methods have been proposed for the analysis of a binary or continuous 

secondary trait. They include: (a) the naïve method which analyzes the combined sample of 

cases and controls, ignoring case-control ascertainment [Nagelkerke et al., 1995]; (b) the 

case-only or control-only analysis [Nagelkerke et al., 1995]; (c) the “adjusted” analysis 
where the case-control status is included as a covariate in the fitted model [Jiang et al., 

2006]; (d) meta-analytic methods [Li et al., 2010]; (e) the inverse probability weighted 
(IPW) method [Richardson et al., 2007; Wang and Shete, 2011]; and (f) the semiparametric 
likelihood method that explicitly accounts for the case-control sampling scheme [Jiang et al., 

2006; Lin and Zeng, 2009; Wang and Shete, 2011; He et al., 2012; Tchetgen Tchetgen, 

2014].

We focus here on studying the validity of using the simple and computationally efficient 

methods (a)-(c), commonly referred to as the “ad hoc” or “standard” methods. Though these 

methods are widely popular, a deeper understanding of when they are valid is required for 

proper analysis of secondary traits. It has been argued previously that ad hoc methods can 

lead to biased estimates of marker-secondary trait associations, except under special 

conditions [Nagelkerke et al., 1995; Lin and Zeng, 2009; Monsees et al., 2009]:

i. If the disease is not associated with the secondary trait given the genotype, 

then ad hoc methods are valid.

ii. For a binary secondary trait, if the disease is not associated with the 

genotype given the secondary trait, then ad hoc methods are valid. For a 

continuous secondary trait, the same is true if, in addition, the null 

hypothesis of no marker-secondary trait association holds.

iii. If the disease is rare, then methods (b)-(c) are approximately valid.

Consequently, other methods such as (e) and (f) have been proposed as general solutions to 

secondary trait analysis.

In spite of their limitations and the emergence of other approaches, ad hoc methods have 

remained popular. Recent years have seen a steady stream of publications on genetic variants 

influencing human quantitative traits such as body mass index [Speliotes et al., 2010; Wen et 

al., 2012; Monda et al., 2013]. It is common practice to obtain data from multiple case-

control association studies of complex diseases (e.g., diabetes, cancer, and hypertension), 

analyze the data from each study separately using an ad hoc approach, and combine the 

study-specific results via meta-analysis.

There are several reasons why ad hoc methods have remained popular. First, considering the 

majority of tested markers in a GWAS are unlikely to be associated with disease risk, and 

diseases of interest are usually rare, conditions (ii) and (iii) are often met in practice, making 

ad hoc methods a seemingly valid option. Second, ad hoc methods are straightforward to 

apply. They require little model building and can be easily performed using linear or logistic 
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regression. In contrast, methods (e)-(f) are more complex. (e) requires that the disease 

prevalence in a population is known and weighting the sampled subjects in such a way that 

the weighted subjects approximate the underlying population, which itself might not be well 

defined. (f) accounts for the case-control sampling by modeling certain nuisance terms in the 

retrospective likelihood, such as the distribution of the disease given the genotype and 

secondary trait in the underlying population, which might not be known in practice and 

requires the knowledge of the population prevalence. In addition, methods (e)-(f), despite 

their added complexity, may not necessarily be more efficient or robust than ad hoc methods 

when the assumptions under which the ad hoc methods are valid are met. It has been shown 

that the weighted approach generally has less power than ad hoc methods that use the entire 

case-control sample when the ad hoc methods are valid [Monsees et al., 2009]. If any of the 

assumed nuisance models in a semiparametric likelihood are misspecified, then inference 

may be invalid [Jiang et al., 2006].

Here, we revisit the problem of when ad hoc methods can and cannot be used. This problem 

is of practical interest because previous discussions leading to (ii) and (iii) make two 

limiting assumptions: that there are no covariates in the regression models for the disease 

and secondary trait, and that the disease follows a correctly specified logistic regression 

model. These assumptions may not be true in practice. Indeed, there may be confounders 

that need to be adjusted for in order to protect against spurious associations in GWAS. A 

familiar example of such confounders in GWAS is the presence of population structure, 

which can be correlated with both the disease and the tested genetic markers [Rosenberg et 

al., 2002; Price et al., 2006]. On the other hand, researchers often assume a logistic model 

for the disease model in case-control studies. In some cases, the logistic model that is used 

for analysis might be misspecified, e.g., the probit model for the disease status instead of the 

logistic model might be true.

Therefore, the purpose of this article is to study the performance of ad hoc methods on 

estimation and inference for the genetic effect on a secondary trait in the presence of 

covariates and possible disease model misspecification. Our first key contribution is that we 

show theoretically and with simulations that the presence of covariates confounding the 

effect of a genetic marker on the disease can lead to spurious genetic associations even when 

condition (ii) is met. We identify conditions under which the ad hoc methods are valid in the 

presence of confounders. We show that the spurious associations can be easily and 

effectively avoided by including the covariates into the fitted regression model for secondary 

phenotypes. Our second key contribution is that when the disease is rare, we show that the 

case-only and adjusted analyses can lead to severely biased estimation and incorrect 

inference if the true disease model is a probit model instead of a logistic model.

The remainder of this article is organized as follows. In the next section, we describe in 

more detail the study setting, notation, and ad hoc methods. In the Results section, we 

provide conditions for valid ad hoc analysis in the presence of covariates. Theoretical 

justification for the conditions are relegated to the Appendix and Web Appendix. We present 

simulation results to examine the conditions in finite samples and to compare existing 

methods. We also illustrate various methods by applying them to a GWAS of smoking 

behavior in a sample of lung cancer cases and controls. Finally, we discuss the implications 
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of our results for the design and analysis of GWAS of secondary traits using samples 

ascertained on the basis of another trait.

Methods

Study Setting and Notation

Consider a case-control study with n1 cases and n0 controls. Let D denote the disease status 

(1=case, 0=control), Y a binary or continuous secondary trait, G the genotypes, and Z and X 
the covariates associated with D and Y, respectively. We assume that in the population, 

disease and secondary trait are distributed with conditional means μD(Y) = E(D|Z, G, Y) and 

μY = E(Y|X, G), which follow the generalized linear models:

(1)

(2)

where gD(·) is the link function for the primary phenotype (disease) D model; gY(·) is the 

link function for the secondary phenotype Y model; (β0, βZ, βG, βY) are the regression 

coefficients in the D model; and (α0, αX, αG) are the regression coefficients in the Y model.

For binary Y, we assume gy(·) = logit. For continuous Y, we assume gY(·) is the identity link 

function and Y follows a normal distribution with the conditional population mean μY = 

E(Y|X, G) and variance σ2. Our main interest is in estimating and making inference on αG, 

the population parameter capturing the genetic marker-secondary trait association.

As discussed in the Introduction, existing literature regarding the validity of ad hoc methods 

often assume a logistic disease model. This is not so much because the logistic model is 

believed to best model the data, but more so because if the disease in fact follows a logistic 

model in the population, then valid point estimators of the population odds ratio parameters

—including estimators of genetic associations with the disease—can be obtained by fitting 

the prospective logistic model to the retrospective case-control data [Prentice and Pyke, 

1979]. Here, we allow gD(·) to be any smooth link function. For a rare disease, we consider 

more closely the choice between the logistic model and the probit model in order to show 

that misspecification of the disease model by using a misspecified link function can be 

consequential for the secondary phenotype analysis, which is of primary interest. It is natural 

to compare the logistic disease model to the probit disease model, because the probit model 

is arguably the most popular alternative to the logistic model for analyzing binary response 

data. Also, there is increasing interest to use the probit model (also known as the liability 

threshold model) in studies of genetic association, heritability, and risk prediction [Wray et 

al., 2010; So and Sham, 2010; Lee et al., 2011; Zaitlen et al., 2012].
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Ad Hoc Methods

The typical ad hoc approach in the presence of covariates is to regress Y on X, G, and 

perhaps D, using only the n1 cases, the n0 controls, or all n = n1 +n0 subjects. However, we 

have found that such a simple ad hoc approach may be invalid in the presence of 

confounders under the previously established conditions where the ad hoc methods are valid 

in the absence of covariates. We will show in the next section that including a linear effect of 

disease-related confounders Z in the regression model for Y can correct for bias under 

suitable conditions similar to the existing conditions. Therefore, in the presence of 

covariates, there are two types of ad hoc methods that one can consider applying. The first 

type, which we shall refer to as the ad hoc methods with Y -related covariates, takes the 

typical approach by regressing Y on X, G, and perhaps D. The second type regresses Y on 

X, G, perhaps D, and Z. Since this type includes both X and Z as covariates in the model for 

Y, we shall refer to them as the ad hoc methods with pooled covariates. Note that if Z ⊆ X, 

then the two types of ad hoc methods are equivalent. Furthermore, if an ad hoc method with 

Y -related covariates (e.g., control-only analysis with Y -related covariates) is valid, then its 

pooled counterpart (e.g., control-only analysis with pooled covariates) is also valid.

Results

Conditions for Valid Ad Hoc Analysis in the Presence of Covariates

We have conducted a thorough investigation into the properties of the ad hoc methods. We 

state here the main conclusions while relegating the theoretical details to the Appendix and 

Web Appendix. Ad hoc methods can lead to invalid estimation and inference of αG, except 

under special conditions:

(i) If the disease is not associated with the secondary trait (βY = 0), then ad hoc 

methods are valid.

(ii*) For binary Y, if the disease is not associated with the genotype (βG = 0), 

then ad hoc methods with pooled covariates (X, Z) are approximately valid. Ad 

hoc methods with only Y -related covariates X are also approximately valid if, 

in addition, the D-related covariates Z is not associated with G, i.e., are not 

confounders for gene-disease association. Similarly, for continuous Y, if 

neither the disease nor secondary trait are associated with the genotype (αG = 

βG = 0), then ad hoc methods with pooled covariates (X, Z) are approximately 

valid. Ad hoc methods with Y -related covariates are also approximately valid 

if, in addition, Z is not associated with G.

(iii*) If the disease is rare, then the control-only analysis is approximately 

valid. The case-only and adjusted analyses are also approximately valid if, in 

addition, gD(·) = logit; however, if gD(·) = Φ−1, then these two analyses can 

lead to biased estimation and incorrect inference.

Simulation Study

To quantify the type I error rate, bias, and power of ad hoc methods for secondary trait 

analysis, we simulated case-control association studies drawn from an underlying cohort of 
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size N. Our simulation procedure extends that of Monsees et al. [2009] by allowing for 

covariates and a non-logistic disease model.

First, covariates Z1i and X1i for subjects i = 1, …, N were drawn from a standard normal 

distribution, and Z2i = X2i was sampled as a Bernoulli random variable with probability of 

success 0.5. Diallelic genotype Gi was sampled conditional on Z1i as a binomial random 

variable of size 2 with probability of success expit(γ0 + γ1Z1i). Continuous secondary trait 

Yi was drawn from a normal distribution with mean α0 + X1iαX1 + X2iαX2 + GiαG and 

variance 1. (In Web Appendix B, we consider a binary secondary trait.) Disease Di was 

sampled conditional on Zi = (Z1i, Z2i)′, Gi, and Yi as a Bernoulli random variable with 

. Finally, case-control samples were 

selected by randomly sampling n1 cases and n0 controls from the simulated cohort. Note 

that, depending on the values of γ1 and βZ1, Z1 was or was not a confounder of the effect of 

G on D.

We simulated a wide variety of scenarios, varying seven parameters: disease prevalence κ ∈ 
{0.01,0.10}; link function gD(·) ∈ {logit, Φ−1}; the increase in log odds of inheriting a minor 

allele from a specific parent per unit change in Z1 = γ1 ∈ {0, ln(1.7)/2, ln 1.7}; the percent 

of variance in Y explained by ; the association between Z1 and D 
= βZ1 ∈ {0, ln(1.7)/2, ln 1.7}; the association between Y and D = βY ∈ {0, ln(2)/2, ln 2}; 

and the association between G and D = βG ∈ {0, ln(1.7)/2, ln 1.7}.

We fixed (α0, αXj, βZ2) = (0, 0.2, log(1.7)/2). For gD(·) = logit, we set λ = 1 so that a non-

intercept coefficient in the disease model could be interpreted as the increase in log odds of 

disease per unit change in the corresponding explanatory variable. For gD(·) = Φ−1, we set λ 
= √3/π so that the association between D and (Z, Y, G) were comparable between the 

logistic and probit disease model [Amemiya, 1981]. γ0 was chosen so that the genotype had 

a minor allele frequency of approximately 0.13. The mean change in Y per copy of the 

minor allele (αG) and the baseline odds parameter β0 were chosen to be consistent with 

and κ. We generated large cohorts and sampled from each n1 = 1,000 cases and n0 = 1,000 

controls. In order to estimate type I error rate (power) accurately, a total of 108 (104) 

replicate data sets were simulated for each scenario.

For an example of a scenario with different confounders for the disease models and the 

secondary phenotype models, consider Crohn's disease (D) and lactase persistence (Y). 

Genetic lactase persistence has been linked to risk of Crohn's disease, lactase persistence has 

been shown to vary from northeast to southeast Europe (X1), and Jews of European descent 

(Z1) are at significantly higher risk of Crohn's disease [Nolan et al., 2010; Price et al., 2006; 

Kenny et al., 2012]. Another example is lung cancer (D) and smoking behavior (Y). It is 

well known that first and second hand smoking (Z1) causes lung cancer (U.S. Department of 

Health and Human Services, 2006). While there is no data to suggest that the two are 

themselves associated, the practice of smoking differs from culture to culture, so it is 

possible that first and second hand smoking are associated with certain genetic markers.

We conducted the following nine analyses for each simulated dataset:
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1. Naïve analysis with Y -related covariates: regress Y on (X, G) in the case-

control sample.

2. Control-only analysis with Y -related covariates: regress Y on (X, G) 

among controls.

3. Case-only analysis with Y -related covariates: regress Y on (X, G) among 

cases.

4. Adjusted analysis with Y -related covariates: regress Y on (X, G, D) in the 

case-control sample.

5. Naïve analysis with pooled covariates: regress Y on (X, Z, G) in the case-

control sample.

6. Control-only analysis with pooled covariates: regress Y on (X, Z, G) 

among controls.

7. Case-only analysis with pooled covariates: regress Y on (X, Z, G) among 

cases.

8. Adjusted analysis with pooled covariates: regress Y on (X, Z, G, D) in the 

case-control sample.

9. IPW regression: regress Y on (X, G) using weights w1 = κ for cases and 

w0 = 1 − κ for controls.

We included Analysis 9 for the purpose of generalizing previous results by Monsees et al. 

[2009] comparing the performance of ad hoc methods to IPW regression. For each method 

and scenario, the probability of rejecting the null hypothesis H0: αG = 0 was estimated by 

applying a nominal significance threshold of α ∈ {10−4, 10−5, 10−6}. Bias was obtained by 

taking the average of α̂
G − αG.

Figures 1–3 summarize the type I error rates and bias for the control-only adjusted, and IPW 

regression analyses across the null scenarios (αG = 0) that were considered. Results for the 

naïve and case-only analyses can be found in Appendix C. Results for α ∈ {10−4,10−5} are 

omitted but similar. As expected, IPW regression (Analysis 9) was unbiased for all of the 

scenarios considered. However, interestingly, its type I error rates were consistently slightly 

inflated due to the instability of the sandwich estimator. Increasing the sample size (n1, n0) 

improved type I error control (not shown). Ad hoc methods with pooled covariates 

(Analyses 5–8) had appropriate type I error rates and no perceptible bias whenever βY = 0 or 

βG = 0. Likewise, ad hoc methods with Y -related covariates (Analyses 1–4) were valid 

whenever βY = 0, or βG = 0 and Z is not a confounder for the effect of G on D (γ1 = 0 or 

βZ1 = 0).

For common disease (κ = 0.10; Figures 1 and 2), we detected an inflation in type I error 

rates and bias for all eight ad hoc methods when βY ≠ 0 and βG ≠ 0. We also detected an 

inflation in type I error rates and bias for Analyses 1–4 when βY ≠ 0, βG = 0, and Z1 

confounded the association between G and D (|γ1| > 0, |βZ1| > 0).
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For rare disease (κ = 0.01; Figure 3) with a logistic link function, all ad hoc methods that 

condition on case-control status (Analyses 2–4, 6–8) had little to no inflation in type I error 

rates and bias regardless of whether βY = 0 or βG =0. However, for rare disease with a probit 

link function, only the control-only analysis (Analyses 2 and 6) and IPW regression were 

approximately valid in general. All other ad hoc methods had highly inflated type I error 

rates and severe bias when βY ≠ 0 and βG ≠ 0.

We compared the power of Analyses 1–9 whenever the analyses were approximately valid 

by varying αG ∈ {0, ln(1.7)/2, ln(1.7)} (Web Appendix C). The naïve analyses (Analyses 1 

and 5) tended to be the most powerful, followed by the adjusted analyses (Analyses 4 and 8), 

IPW regression (Analysis 9), and finally the ad hoc analyses restricted to cases or controls 

(Analyses 2, 3, 6, and 7). In addition, ad hoc methods with Y -related covariates were 

slightly more powerful than their corresponding ad hoc methods with pooled covariates.

Example: GWAS of Smoking Behavior

To demonstrate the application of ad hoc methods, we performed a genome-wide association 

analysis of smoking behavior using a set of 696 lung cancer cases and 730 controls.

Study population—Our study population was derived from a large ongoing case-control 

study of the molecular epidemiology of lung cancer at MGH, and has been described in 

detail elsewhere [Schifano et al., 2012]. Briefly, the controls were recruited from the friends 

or spouses of cancer patients or the friends or spouses of other surgery patients in the same 

hospital. To reduce confounding due to population structure, the study was limited to 

individuals of self-reported European descent.

Genotyping—Peripheral blood samples were obtained from all study participants at the 

time of enrollment. DNA was extracted from samples using the Puregene DNA Isolation Kit 

(Gentra Systems), and genoyping was performed with the Illumina Human610-Quad 

BeadChip. For quality control, SNPs that had call rate less than 95%, that failed the Hardy-

Weinberg equilibrium test at 10−6, or that had minor allele frequency less than 5%, were 

excluded. Blood samples with genotyping call rates less than 95% were also excluded. There 

were 513,271 SNPs remaining after frequency and quality control. To further control for 

population structure, EIGENSTRAT was used to perform a principal components (PCs) 

analysis [Price et al., 2006]. We included the first four PCs, on the basis of significant Tracy-

Widom tests (p < 0.05) and genomic control inflation factor, as covariates for all analyses. 

Of the remaining six out of ten top PCs, we decided to also include the ninth PC as a 

covariate in our secondary linear regression models because we found this PC to be 

significantly associated with lifetime smoking exposure (p < 0.05).

Covariate and phenotypic data collection—Interviewer-administered questionnaires 

collected information on sociodemographic variables from each subject, including age 

(years; continuous), gender, education history (college degree or more; yes/no), and smoking 

intensity (cigarettes/day and number of years smoked). Subjects were classified as either 

never smokers (less than 100 cigarettes in their lifetime), former smokers (quit smoking at 

least 1 year prior to interview date), or current smokers (at time of interview). Only ever-
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smokers (former and current) were used in our data analysis, as we were interested in 

studying the genetic effects on smoking intensity measured by pack-years.

We used square root pack-years (number of packs of cigarettes smoked daily times the 

number of years smoked) as our secondary outcome measure of smoking behavior. The 

square root transformation was applied to better satisfy assumptions of normality.

We performed the naïve, control-only, case-only, adjusted, and IPW analyses for each SNP 

by regressing square root of pack-years on genotype (number of minor alleles), age, gender, 

college education, and PCs 1–4 and 9. For the adjusted analysis, lung cancer status was 

included in the regression model. For IPW regression, we estimated the prevalence of lung 

cancer amongst ever-smokers in Massachusetts to be 0.00148, and used this prevalence to 

calculate the inverse probability weight for each study individual (see Web Appendix D for 

more details).

On conditions (i)-(iii*)—Since conditions (i)-(iii*) play an important role in determining 

which results from a genome-wide ad hoc analysis of a secondary trait are credible, we 

sought to verify these conditions in our dataset.

For condition (i), we found that smoking intensity is significantly associated with lung 

cancer risk (OR = 1.45, p < 10−15). For condition (ii*), we fitted for each SNP a logistic 

regression model to test for genetic associations with lung cancer, adjusting for square root 

pack-years, age, gender, college education, and the first four PCs. For condition (iii*), given 

an estimated prevalence of 0.00148, lung cancer can be considered a rare disease within the 

at-risk population of ever-smokers in Massachusetts. We looked at diagnostic plots to 

investigate whether a logistic model for (1) is a reasonable fit for lung cancer risk (Figure 4). 

Under such a model, one would expect case- and control-only estimates to be unbiased and 

uninfluenced by marker-disease associations. However, we see from Figure 4 that for our 

dataset the case- and control-only analyses were generally estimating different quantities, 

and that the difference between their estimates (α̂
G,case — α̂

G,ctrl) tended to increase as the 

log odds ratio of SNPs and lung cancer (β̂G) increased. It was only when a SNP was weakly 

associated with lung cancer (β̂G ≈ 0) that the expected difference between case- and control-

only estimates equalled 0.

These observations led us to conclude that for our purpose of analyzing genome-wide 

associations with smoking behavior, condition (i) does not hold, the disease is rare, and the 

disease model (1) with gD (·) = logit is somehow misspecified. Consequently, we may prefer 

results from IPW regression, the control-only analysis (because the disease is rare), and the 

adjusted analysis of SNPs with weak evidence of an association with lung cancer risk 

(because the adjusted analysis is one of the more powerful valid ad hoc approaches under 

condition (ii*). Yet, when condition (ii*) is not satisfied, it is not as severely biased as the 

naïve analysis.)

Results—Manhattan plots for the naïve, control-only, case-only, adjusted, and IPW 

analyses can be found in Web Appendix D. In total, 1130 SNPs were identified as nominally 

significant at p < 10−3 by the control-only, adjusted, or IPW analysis (see Figure 5). 

Yung and Lin Page 9

Genet Epidemiol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparing the control-only analysis to IPW regression, SNPs identified as nominally 

significant by the control-only analysis were roughly a subset of the SNPs identified by IPW 

regression. Indeed, 429 of the 468 (91.7%) SNPs identified by the control-only analysis 

were also identified by IPW regression. Meanwhile, IPW regression identified 185 other 

SNPs. Of the 429 SNPs identified by both analyses, the majority (328, 76.5%) were more 

significant when analyzed by IPW regression than by the control-only analysis.

The adjusted analysis generally identified different SNPs as nominally significant than the 

control-only and adjusted analyses. Specifically, the adjusted analysis identified 477 novel 

SNPs, novel in the sense that they were nominally significant (p < 10−3) when analyzed by 

the adjusted analysis, but nominally insignificant (p ≥ 10−3) when analyzed by the control-

only and IPW analyses. Likewise, the control-only and IPW analyses identified 31 and 165 

novel SNPs. However, taken together, the control-only and IPW analyses collectively 

identified 542 SNPs that were nominally insignificant when analyzed by the adjusted 

analysis (Figure 5).

A large number of the novel SNPs identified by adjusted analysis had weak evidence of an 

association with lung cancer risk; when tested for H0: βG = 0, 139 (29.1%), 220 (46.1%), 

and 118 (24.7%) SNPs had p value in the range [0.0, 0.1), [0.1, 0.5), and [0.5, 1.0], and odds 

ratio in the range [0.63, 1.62], [0.74, 1.35], and [0.92, 1.09], respectively. Therefore, 

applying condition (ii*), the adjusted analysis of many of these SNPs are likely to be valid.

Table I displays the top ten SNPs for the control-only analysis. (The top ten SNPs for the 

naïve, case-only, adjusted, and IPW analyses are included in Web Appendix D. Also 

included are the top ten novel SNPs for the adjusted, control-only, and IPW analyses.) 

Looking at the top SNPs and the top ten novel SNPs for the control-only, adjusted, and IPW 

analyses, we found SNPs from several genes identified in previous GWASs of smoking 

cessation: ARHGAP24, C1orf95, CDH18, CDYL2, DOK6, FAM189A1, HSD17B2, KSR1, 
NBEA, PDE10A, SLC9A2 (a paralog of SLC9A9), and TACR1 [Rose et al., 2010; Uhl et 

al., 2010; Tang et al., 2014].

In Figure 6, we see that the control-only analysis and IPW regression performed similarly 

for nominally significant SNPs from the previously known genes. Meanwhile, for some 

SNPs their association with smoking behavior were much more significant when analyzed 

by the adjusted analysis than by the control-only or IPW analysis (e.g., SNPs from 

HSD17B2, NBEA, SLC9A2), and vice versa (e.g., SNPs from CDH18). This is consistent 

with simulation results that the adjusted analysis is more powerful than the control-only 

analysis and the IPW analysis in the situations when they are valid. Only TACR1 had similar 

results across the three methods. We note that SNPs which were nominally significant only 

when analyzed by the adjusted analysis had weak evidence of an association with lung 

cancer risk.

Discussion

In this paper, we have given new conditions for using ad hoc methods. Our findings extend 

previous work by demonstrating that if there are covariates confounding the effect of a 
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genetic marker on the disease but that are not adjusted for in the secondary trait analysis, 

then ad hoc analysis can lead to spurious associations even when the genetic marker is not 

associated with the disease. Futhermore, for a rare disease, the case-only and adjusted 

analyses can lead to severely biased estimation and incorrect inference if the true disease 

model is not strictly logistic.

The conditions set forth in this paper apply to the setting where there are no gene-

environment interactions in the disease. We now briefly discuss the validity of the ad hoc 

methods for G-E interaction models. It is easy to show that if there is an interaction between 

gene and covariates, but no interaction between gene and secondary trait, then conditions (i) 

and (iii*) hold, but not condition (ii*). On the other hand, if there is an interaction between 

gene and secondary trait on disease risk, then (i) and (ii*) do not hold, and the only valid 

analysis for a rare disease is the control-only analysis. The fact that the case-only and 

adjusted analyses lead to incorrect estimation and inference has been discussed previously 

by Li et al. [2012]. As a solution, the authors proposed an adaptively weighted method that 

combines the case-only and control-only estimates, while reducing to the control-only 

analysis if there is strong evidence of a marker-secondary trait interaction. Another approach 

proposed by Wang and Shete [2011] has been shown to accurately estimate association 

between marker and binary secondary traits in the presence of interactions [Wang and Shete, 

2012].

We considered the possibility of interaction between SNPs and smoking behavior for lung 

cancer risk in our data analysis. We found that SNPs identified as nominally significant by 

the adjusted analysis tended not to modify the effect of smoking behavior on lung cancer 

risk, but SNPs identified by the control-only or IPW analysis had moderate to strong 

evidence of G-E interaction (Web Appendix D). This difference explains why we observed 

relatively little overlap in Figure 5, and why some previously known genes were identified 

by only the adjusted analysis, or by the control-only and IPW analyses but not the adjusted 

analysis (Figure 6).

The results in this paper have several important implications for secondary trait analysis. 

First, when applying ad hoc methods, one should consider including potential confounders 

of the association between the genetic marker and the disease, even if these covariates are 

not predictors of the secondary trait. For example, one might adjust for population structure 

associated with the secondary trait and population structure associated with the disease. 

However, one should be aware that when including additional covariates, power may be 

reduced if the secondary trait is binary and the covariates are not actually confounders 

[Pirinen et al., 2012].

Second, for a rare disease, it is crucial to verify disease model assumptions or to perform 

sensitivity analysis. A potential pitfall is misspecifying the link function of the disease 

model (e.g., logit vs probit). Another is ignoring gene-environment interactions in the linear 

predictor. One may test whether a probit or logistic model better describes the disease by 

fitting the null models (i.e. disease models with covariates but no SNPs) using IPW probit 

and IPW logistic regression, then comparing the Bayesian information criterions [Schwarz, 

1978]. One may also look at diagnostic plots like Figure 4 to determine whether a logistic 
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disease model is a reasonable assumption; however, constructing such diagnostic plots 

requires one to perform beforehand primary and secondary trait analyses across the genome. 

The importance of having a robust analysis applies not only to ad hoc methods, but also to 

complex approaches. For instance, the approaches proposed by Lin and Zeng [2009], Wang 

and Shete [2011], and Li et al. [2012]all assume that the disease follows a logistic model. 

Lin and Zeng's semiparametric approach further assumes that there are no G-E interactions. 

It is important when applying either of these methods to verify their assumptions.

Finally, researchers may benefit from applying multiple methods rather than a one-size-fits-

all solution. In our data analysis of smoking behavior, the adjusted analysis identified a large 

number of promising SNPs that were otherwise missed by the control-only analysis and IPW 

regression, and vice versa. Meanwhile, the control-only analysis and IPW regression 

performed similarly when analyzing SNPs from previously known genes. However, the 

control-only analysis was easier and computationally much faster to perform, while IPW 

regression was slightly more powerful because it used both the lung cancer cases and 

controls. Therefore, whether it is to save computational time or to improve the identification 

of promising genetic markers, researchers would do well to apply several ad hoc and 

complex methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Theoretical Justification for Conditions (i)-(iii*)

Let P(·) denote the population-based probability, κ = P(D = 1) denote the disease prevalence, 

S indicate with the values 1 versus 0 whether or not an individual from the population is 

sampled in the case-control study, and π(D) = P(S = 1|D) be the probability of being 

sampled in the case-control study for an individual with disease status D. Also, let P̃(·) = P(·|

S = 1), μ̃Y = E(Y|X, G, Z, S = 1), μ̃Y|D = E(Y|X, G, Z, D, S = 1), σ̃2 = Var(Y|X, G, Z, S = 

1), and  denote the case-control probability, conditional means 

of Y, and conditional variances of Y, all observed under the case-control design.

Common Disease, Binary Secondary Trait

When the secondary phenotype Y is binary, we can show that the conditional means of Y in 

case-control samples satisfy

(3)
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(4)

where

and d = 0, 1. Equivalent expressions for (3) and (4) were derived by Lin and Zeng [2009] 

and Tchetgen Tchetgen [2014]. From (3) and (4), it is easy to see that differences between 

the mean models for the secondary phenotype in case-control studies and in the population 

(2) are given by r(Z, G) and rd(Z, G). Therefore, validity of ad hoc methods depends on the 

value of these extra terms and whether the methods properly adjust for them. It should be 

noted that the true means of the secondary phenotypes Y in case-control studies not only 

depend on the Y -related covariates X but also the D-related covariates Z.

If βY = 0, i.e., the secondary phenotype Y is not associated with the disease D, then μD(1) = 

μD(0) and r(Z, G) = rd(Z, G) = 0. It follows that (3) and (4) reduce to (2), and ad hoc 

methods with only Y -related covariates X can be used as a valid tool to estimate and 

perform inference on all the population parameters α0, αX, and αG.

Alternatively, if βG = 0, i.e., when a SNP is not associated with disease, then r(Z, G) = r(Z) 

and rd(Z, G) = rd(Z) are functions of Z but not of G. In this situation, validity of ad hoc 

methods depends on whether Z and G are associated, whether r(·) and rd(·) are linear in Z, 

and whether r1(·) and r0(·) differ by a constant. When Z and G are independent, i.e., when Z 
is not a confounder for the genetic association with disease, it is not necessary to adjust for 

r(·) and rd(·) in the secondary phenotype regression in order to obtain valid estimation and 

inference of αG. Hence the ad hoc methods with only Y -related covariates X can be used. 

When Z and G are correlated, i.e., Z is a confounder for the genetic association with disease, 

failure to adjust for r(·) and rd(·) can lead to spurious associations between G and Y, because 

an estimate of the association between G and Y may also capture the association between Z 
and Y induced by r(·) and rd(·). This leads us to consider ad hoc methods with pooled 

covariates (X, Z).

Suppose, in addition to βG =0, that r(·) and rd(·) are linear in Z, and r0(·) and r1(·) differ by a 

constant. Then we can write  and 

, from which it is easy to see that ad hoc methods 

with pooled covariates are valid. In Web Appendix A and B, we generalize this result by first 

showing theoretically that for any smooth link function gD(·), r(·) and rd(·) are approximately 

linear in Z as long as |βY| and |βZ| are not exceedingly large. We then show for several 

choices of link function (logit, probit, complementary log-log) that r0(·) and r1(·) differ by 
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approximately, if not exactly, a constant. These theoretical results, confirmed by our 

simulation studies, show that for typical values of βY and βZ, ad hoc methods with pooled 

covariates lead to approximately unbiased estimates of αG and nominal type I error rates. 

We conclude that for practical purposes, if βG = 0, then ad hoc methods with pooled 

covariates can be used and provide approximately correct inference.

Common Disease, Continuous Secondary Trait

In the case that Y is continuous, we have for the case-control conditional distributions,

(5)

(6)

If βY = 0, then factors cancel in the numerators and denominators so that P̃(Y|X, G, Z) = 

P ̃(Y|X, G, Z, D) = P(Y|X, G) and ad hoc methods with only Y -related covariates X can be 

used to estimate and perform inference on all the population parameters α0, αX, and αG. On 

the other hand, if βY ≠ 0, then calculations of the case-control conditional means and 

variances of Y, such as μ̃Y|D = ∫yP̃(y|X, G, Z, D)dy, are generally intractable. There is 

however one exception. When gD(·) = Φ−1, it can be shown that

(7)

(8)

where

Derivations for (7) and (8) as well as closed form expressions for μ̃Y and σ̃2 can be found in 

Web Appendix A. Given that the logit and probit functions are very close in the mid-range 
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[Amemiya, 1981], we can also find approximate expressions for gD(·) = logit. Together, 

these expressions can be useful for investigating what happens when βY ≠ 0 and ad hoc 

methods are applied.

If αG = βG = 0, then r(·) and rd(·) are functions of Z and X but not of G. In this situation, 

validity of ad hoc methods depends on whether Z is associated with G, whether r(·) and rd(·) 

are linear functions of (Z′, X′)′, whether r0(·) and r1(·) differ by a constant, and whether s(·) 

and sd(·) are constants. For example, if r0(·) and r1(·) are linear functions of (Z′, X′)′ that 

differ by a constant, and sd(·) are constants, then we can write 

 and . It follows that for large samples, ad hoc 

method (b) with pooled covariates (X, Z) provides valid estimation and inference of αG. The 

adjusted analysis (c) with pooled covariates can be used too if .

In Web Appendix A, we show theoretically that r(·) and rd(·) are approximately linear in (Z′, 

X′)′ and s(·) and sd(·) are approximately constants as long as |βY| and  are not 

exceedingly large. In the Results section of the main article, we show with simulations that 

for typical values of βY and , ad hoc methods (a) and (b) with pooled covariates 

lead to approximately unbiased estimates of αG and nominal type I error rates. Therefore, 

we conclude that for practical purposes, if αG = βG = 0, then ad hoc methods (a) and (b) 

with pooled covariates are approximately valid.

As mentioned, the adjusted analysis with pooled covariates is valid if, in addition, r1(·) − 

r0(·) is a constant and . While it is easy to show that the first condition is 

approximately true for common disease (Web Appendix A),  is generally not equal to . 

Nevertheless, the difference between the sample variance of the case-only and control-only 

analyses with pooled covariates seemed to be small enough for inference to be 

approximately correct in our simulations.

Rare Disease

For rare disease, P(D = 0|Z, G, Y) and P(D = 0|Z, G) in (6) are approximately equal to 1, so 

P̃(Y|X, G, Z, D = 0) ≈ P(Y|X, G). It follows that a control-only analysis is approximately 

valid for binary and continuous secondary traits. Intuitively when the disease is rare, the 

controls closely resemble the general population. Therefore, any conclusion about the 

population based on the controls will be approximately correct.

As for ad hoc methods that use cases, these methods may or may not be valid depending on 

the underlying disease model. If gD(·) = logit, then we have for binary Y that r1(Z, G) ≈ βY, 

and for continuous Y that r1(Z, G, X) ≈ βY σ2 and s1(Z, G, X) ≈ 0. In fact, for continuous 

Y, P̃(Y|X, G, Z, D = 1) is approximately proportional to exp {− [Y − μY − βYσ2]/2σ2} [Lin 

and Zeng, 2009]. Thus, for both binary and continuous secondary traits, ad hoc methods (b)-

(c) with only Y -related covariates X yield approximately valid estimation and inference for 

αX and αG.
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If instead, gD(·) = Φ−1, then we have for binary Y that r1(Z, G) ≈ constant − βY (Φ−1(μD(0)), 

and for continuous Y that  and s1(Z, G, X) ≈ −c2. 

Derivations are available in Web Appendix A. Note that in both cases, r1 involves G. These 

results are substantially different from those obtained under gD(·) = logit, where we saw r1 

are constants. They imply that an estimate of αG from the case-only analysis with pooled 

covariates is generally biased:

By extension, the adjusted analysis is also invalid. Finally, one might consider extending the 

adjusted analysis with pooled variates to include D-Z, D-G, and D-X interactions. In doing 

so, the main effect of G will encode the marginal association of interest αg. However, if Z 
and X include large numbers of possibly confounding covariates for population 

stratification, it is unlikely that adding a large number of interactions will lead to an increase 

in power compared to the control-only analysis.
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Fig 1. 
Empirical type I error rates for testing genetic associations with a continuous secondary trait, 

at genome-wide α = 10−6 level and across scenarios with different combinations of βY, βG, 

γ1 and βZ1. Five methods (Analysis 2,4,6,8,9) are compared here. Each method takes either 

a control-only, adjusted, or IPW approach, and adjusts for covariates related to Y or 

covariates related to (Y, D). The disease is assumed to be common (10% prevalence) and to 

follow a logistic model. In row A, covariate Z1 is assumed to be associated with G but not 

with D (γ1 = ln 1.7, βZ1 = 0). In row B, Z1 is associated with D but not with G (γ1 = 0, βZ1 

= ln 1.7). In row C, Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 

1.7).
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Fig 2. 
Empirical bias for the estimated genetic effect αĜ on a continuous secondary trait, across 

null scenarios (αG = 0) with different combinations of βY, βG, γ1 and βZ1. Five methods 

(Analysis 2,4,6,8,9) are compared here. Each method takes either a control-only, adjusted, or 

IPW approach, and adjusts for covariates related to Y or covariates related to (Y, D). The 

disease is assumed to be common (10% prevalence) and to follow a logistic model (gD(·) = 

logit). In row A, covariate Z1 is assumed to be associated with G, but not with D (γ1 = ln 

1.7, βZ1 = 0). In row B, Z1 is associated with D, but not with G (γ1 = 0, βZ1 = ln 1.7). In row 

C, Z1 is a confounder of the association between G and D (γ1 = βZ1 = ln 1.7).
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Fig 3. 
Empirical type I error rates and bias for testing and estimating genetic associations with a 

continuous secondary trait, at genome-wide α = 10−6 level and across null scenarios (αG = 

0) with different combinations of βY and link function gD(·) for the disease model. Five 

methods (Analysis 2,4,6,8,9) are compared here. Each method takes either a control-only, 

adjusted, or IPW approach, and adjusts for covariates related to Y or covariates related to (Y, 

D). The disease is assumed to be rare (1% prevalence) and to follow either a logistic or 

probit model (gD(·) = logit or Φ−1). G is assumed to be associated with D (βG = ln 1.7). Z1 is 

assumed to be a confounder of the association between G and D (γ1 = βZ1 = ln 1.7). The 

scenarios with a logistic disease model (left column) are the same as the scenarios in the 

bottom right plots of Figures 1 and 2, except here the disease is not common but rather rare.
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Fig 4. 
Top 50k SNPs from IPW regression. Observed difference between case-only and control-

only estimates has a significant tendency to increase as the log odds-ratio of a genetic 

marker and lung cancer increases (slope of best fit line = 1.02, p < 10−15). Under the 

assumption of a rare disease with a logistic model, one would expect the best fit line to be y 
= 0.

Yung and Lin Page 21

Genet Epidemiol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 5. 
Number of nominally significant SNPs (p < 10−3) from the control-only, adjusted, and IPW 

analysis of . p values from a 1-DF Wald test assuming an additive genetic 

model.
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Fig 6. 

p values from the genome-wide association analysis of  and lung cancer risk 

for nominally significant SNPs (p < 10−3) from twelve selected genes: (1) ARHGAP24, (2) 

C1orf95, (3) CDH18, (4) CDYL2, (5) DOK6, (6) FAM189A1, (7) HSD17B2, (8) KSR1, (9) 

NBEA, (10) PDE10A, (11) SLC9A2, and (12) TACR1. All genes have been identified in 

previous studies of smoking cessation. Here, we compare the results from the control-only, 

adjusted, and IPW analyses of . Results can be distinguished by gene 

(number), SNP (letter), and the secondary analysis applied (shape and color).
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