
IMIA Yearbook of Medical Informatics 2016

S103

© 2016                                  IMIA and Schattauer GmbH

Clinical Decision Support: 
a 25 Year Retrospective and a 25 Year Vision
B. Middleton1, 2, D. F. Sittig3, A. Wright4

1	 Apervita, Inc., Chicago, IL, USA
2	 Harvard T.H. Chan School of Public Health , Boston, MA, USA
3	 University of Texas Health Science Center at Houston, TX, USA
4	 Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Summary
Objective: The objective of this review is to summarize the state 
of the art of clinical decision support (CDS) circa 1990, review 
progress in the 25 year interval from that time, and provide a 
vision of what CDS might look like 25 years hence, or circa 2040. 
Method: Informal review of the medical literature with iterative 
review and discussion among the authors to arrive at six axes 
(data, knowledge, inference, architecture and technology, 
implementation and integration, and users) to frame the review 
and discussion of selected barriers and facilitators to the effective 
use of CDS. 
Result: In each of the six axes, significant progress has been 
made. Key advances in structuring and encoding standardized 
data with an increased availability of data, development of 
knowledge bases for CDS, and improvement of capabilities to 
share knowledge artifacts, explosion of methods analyzing and 
inferring from clinical data, evolution of information technologies 
and architectures to facilitate the broad application of CDS, 
improvement of methods to implement CDS and integrate CDS 
into the clinical workflow, and increasing sophistication of the 
end-user, all have played a role in improving the effective use of 
CDS in healthcare delivery. 
Conclusion: CDS has evolved dramatically over the past 25 
years and will likely evolve just as dramatically or more so 
over the next 25 years. Increasingly, the clinical encounter 
between a clinician and a patient will be supported by a wide 
variety of cognitive aides to support diagnosis, treatment, 
care-coordination, surveillance and prevention, and health 
maintenance or wellness. 
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Introduction
In this review of the evolution of Clinical De-
cision Support (CDS) from 1990 to 2015 we 
first describe the ‘state-of-the-art’ for CDS 
circa 1990, and provide an overview of the 
key issues of the day. We next describe the 
evolution that occurred according to six di-
mensions of technology and implementation 
practice relevant to CDS: data, knowledge, 
inference, architecture and technology, 
implementation and integration, and the 
evolving end-user. We highlight the barriers 
and enablers of technology development and 
effective use of CDS in practice over the past 
25 years. Next, we ambitiously describe a 
potential vision for CDS 25 years hence, 
and suggest critical issues to monitor the 
quality of CDS and clinical analytics in the 
IT-enabled healthcare delivery system. 

This paper frames the discussion around 
CDS defined as follows: 
	 Clinical decision support is a process for 

enhancing health-related decisions and 
actions with pertinent, organized, clinical 
knowledge, and patient information to im-
prove health and healthcare delivery. In-
formation recipients can include patients, 
clinicians, and others involved in patient 
care delivery; information delivered can 
include general clinical knowledge and 
guidance, intelligently processed patient 
data, or a mixture of both; and informa-
tion delivery formats can be drawn from a 
rich palette of options that includes data 
and order entry facilitators, filtered data 
displays, reference information, alerts, 
and others [1].

 Further, CDS has been considered as one 
component of an over-arching strategy toward 

widespread and effective use of knowledge 
in practice, including three essential pillars: 
1) best knowledge available when needed, 
high adoption, and effective use, 2) continu-
ous improvement of knowledge, and 3) CDS 
methods [2].This would assure that: 
	 Clinical decision support (CDS) provides 

clinicians, staff, patients, or other individ-
uals with knowledge and person-specific 
information, intelligently filtered or pre-
sented at appropriate times, to enhance 
health and health care [2].

Fundamentally, CDS is viewed as an essen-
tial component of a Learning Health System 
where a virtuous cycle is created from data 
generation, to aggregation, analysis, knowl-
edge creation, knowledge dissemination and 
use, and ongoing measurement for contin-
uous feedback and refinement [3-5]. We 
subscribe to this belief and suggest that over 
the next 25 years the use of clinical decision 
support and a wide variety of cognitive aides 
will become routine in clinical practice [6].

Evolution of CDS over the 
Past 25 Years
State of the Art in CDS in 1990
In the early 1990’s, hospital environments 
typically had some form of a hospital infor-
mation system, a variety of departmental 
information systems [3], and potentially 
in more advanced settings, applications 
to support scanned documents, quality 
reporting, and research applications (often 
used and maintained outside the traditional 
“IT” (information technology) department) 
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[7]. In ambulatory care environments, pen-
etration of health IT was largely limited to 
practice management systems to support 
billing and administrative processes (e.g. 
scheduling, patient communication). In 
selected pioneering academic centers and 
health systems settings, even prior to 1990, 
clinical information systems for ambulatory 
care existed [8-11] as well as a hospital in-
formation system (described below). Among 
these institutions, several began to design, 
implement, and evaluate more sophisticated 
clinical decision support capabilities within 
these systems, in both the inpatient care 
setting and the ambulatory care environment. 

In those early years circa 1990, CDS 
in hospital care environments was largely 
limited to those sites developing their own 
hospital information systems such as the 
CPRS/Vista effort at the Veteran’s Health 
Administration [12], HELP at the Latter Day 
Saints (LDS) Hospital [13, 14], the Regens-
trief Medical Record System [11], and the 
Brigham Information and Communication 
System (BICS) [15]. Some hospitals also 
were employing vendor-supplied systems 
from Shared Medical Systems, HBOC, 
Meditech, TDS/Lockheed Martin, and others 
as well [16]. Certainly there were other CDS 
functionalities in hospital environments at 
the departmental system level – for exam-
ple in blood banking systems, laboratory 
information systems, radiation therapy 
dosimetry systems, ECG interpretation, 
pulmonary function interpretation, etc. [7]. 
These pioneering systems developed rich 
functionality over the intervening years for 
CDS targeted more directly at the clinician 
end-user in a wide variety of areas: adverse 
drug event monitoring [17], drug and par-
enteral nutrition dosing [18, 19], antibiotic 
prescribing [14], ventilator management 
[20], report formatting [21], laboratory 
result alerting [22, 23], blood product or-
dering [24], infusion pump monitoring [25], 
quality benchmarking [26], isolation bed 
management [27], clinical documentation 
[28-30], diagnostic and therapeutic consul-
tation services [31-34], and more. While it is 
beyond the scope of this review to detail the 
CDS functionality of these systems, several 
key lessons emerged over the early years 
which are summarized by Bates in the “Ten 
Commandments” for CDS [35]: speed is 

everything, anticipate user needs and deliver 
in real time, fit into the user’s workflow, little 
things can make a big difference (for exam-
ple ‘default’ action not being the desired 
action), physician users resist stopping their 
workflow, but changing direction is fine (if 
viewed as valuable), simple interventions 
work best, ask for additional information 
from the user only when you really need it, 
monitor feedback and respond, and lastly 
actively manage the CDS knowledge base. 
Further, recognition was growing of the need 
for more specialized and focused systems 
and integration of the CDS function into the 
clinical environment and workflow [36, 37]. 
In addition, it was becoming clear that CDS 
tools needed to be subjected to more rigorous 
evaluations of their impact on quality and 
outcomes before they were used in practice, 
including assessment of cost-effectiveness 
[38]. As health IT and CDS continue to be 
more widely implemented and used, these 
imperatives are still worthy of attention.

Barriers and Limitations 
While these systems had sophisticated 
CDS functionality in a variety of areas, key 
barriers and limitations prevented the broad 
application of such functionality across the 
industry [39-41]. We identify several themes 
that effected the development of the use of 
CDS. First, care reimbursement models that 
rewarded higher quality care rather than 
higher volume of care did not exist except in 
a few cases where the incentives were aligned, 
such as the Veteran’s Health Administration 
[42], or Kaiser Permanente [43]. Second, the 
lack of a standardized clinical terminology 
required system interfaces to have custom and 
idiosyncratic mappings between systems [44]. 
Third, information technology was rapidly 
evolving from mainframe to client-server 
architectures, and the challenges of upgrading 
legacy systems were extreme in the midst of a 
heterogeneous mix of departmental systems, 
hospital systems, and potentially research data 
systems [45]. Fourth, despite the sophistica-
tion of some of these early CDS applications, 
it was generally impossible to transfer the 
knowledge-base used in one application 
setting to another [46-48]. That is, the logic 
behind the sophistication of the BICS comput-

er order entry (CPOE) drug-dosing algorithm 
[49] was not readily transferable or portable 
to another CPOE application, for example a 
vendor-supplied system (such as Eclipsys). 
Thus, the considerable task of implementing 
knowledge in CDS systems had to be tack-
led at each site. Fifth, as the field of medical 
informatics was becoming established, there 
was insufficient workforce development as 
the number of informatics training programs 
was very limited [49, 50], and not enough 
informaticians to manage the translation of 
evidence into decision support knowledge 
artifacts. Sixth, the computer literacy of 
the end-user in clinical care environments, 
whether physician, nurse, or other allied 
health professional, or administrative staff, 
was low as the broad adoption of information 
technology was just getting underway across 
the society [51, 52]. We describe progress on 
some of these barriers and limitations since 
the early 1990’s in the discussion of the six 
dimensions of CDS we propose below: data, 
knowledge, inference, architecture and tech-
nology, integration and use, and the end-user. 
Nevertheless, progress was being made in the 
design and implementation of CDS systems 
at some leading sites motivated by academic 
interest in research and development, desire 
for higher quality care or lower costs of care. 
The latter was especially true when institu-
tions had financial responsibility for any part 
of the ‘risk’ or costs of care [53]. It is only 
when the federal incentives for the adoption 
and meaningful use of health IT were passed 
that the broad adoption of health IT occurred 
in the US, with CDS functionality lagging as 
we discuss below. 

Evolving Definition of CDS
Since the 1990’s, we have seen a dramatic 
evolution in the adoption of health IT (HIT) 
[54] in the US. With the broad adoption of 
HIT due to the American Reinvestment and 
Recovery Act with the Health Information 
Technology for Economic and Clinical 
Health (HITECH [55]) component, now 
nearly all hospitals have certified HIT in 
place [56, 57], and more than 74% of eligi-
ble providers [58] are currently using some 
form of electronic health record (EHR). This 
has had the profound effect of making most 
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American’s health records exist in digital 
form to a large degree, thus creating much 
more electronically available data, a plat-
form for health information exchange and 
data aggregation, and theoretically allowing 
more decision support to be provided to 
clinicians in the EMR, and even to patients 
in patient portal technologies [59-61]. The 
level of acceptance of CDS among clinicians 
has also been evolving. The IOM reports 
“To Err is Human”[62], and “Crossing the 
Quality Chasm” [63] both acknowledged 
the frequency of medical errors in practice, 
and the potential for HIT to ameliorate their 
incidence and severity. In addition, the ex-
plosion of the biomedical knowledge base 
is also described as a motivation for CDS 
[64-66], as well as the increasing incidence 
of diagnostic delay or error [67-70]. There 
has been only modest growth in CDS how-
ever, because the focus has been on HIT 
adoption and use rather than on truly using 
it as a platform for care transformation [71]. 
Nevertheless, CDS is evolving in important 
ways: the availability of electronic data is 
increasing [72, 73], the knowledge-bases 
available for CDS from industry are increas-
ing in scope and type to support traditional 
evidence-based medicine [74, 75], data 
from electronic health records are being 
aggregated in interesting ways to support 
the notion of ‘practice-based’ evidence to 
support new forms of inference for CDS 
[76-81], and commercial electronic medical 
record (EMR) systems are expanding their 
CDS capabilities [82, 83]. Further, large data 
aggregations, or ‘big-data’, are providing the 
scale necessary for new forms of discovery 
via machine learning algorithms [84, 85], as-
sociation studies [86], and predictive analyt-
ics [87-89] to provide both new knowledge 
for CDS and new forms of CDS [90]. The 
underlying network, database, and software 
application technologies are evolving dra-
matically to facilitate data ‘mash-ups’ and 
integration on the fly with graph databases 
and service-oriented architectures [91-93], 
and the prototypical use cases for CDS – the 
types of decisions where CDS can provide 
cognitive assistance – are evolving dra-
matically as well. We discuss each of these 
six dimensions or axes – data, knowledge, 
inference, architecture, integration, and the 
end user for CDS in turn below. 

Six Key Axes of CDS 
Data
As touched on above, the amount and types 
of data coming ‘on line’ in HIT is stagger-
ing [94], yet challenges with the quality 
and variability of medical data have been 
understood for some time [95], and elec-
tronic record systems may both introduce 
[96-98] and propagate errors in the record 
[68, 99-101]. The decade encompassing this 
broad adoption of HIT has been called the 
“Dangerous Decade”[102] because of these 
potential untoward effects of HIT. Within 
the acute care or hospital context, IT is now 
supporting information and process manage-
ment in nearly every laboratory environment 
(routine, reference, and research labs), all 
clinical care environments (from emergency 
department, to hospital bed, to critical care, 
to operating room), to long term care set-
tings, and even to the home. Sources of data 
now include bedside monitoring systems, di-
etary data, location data (when RFID tags are 
applied to patient bed, gurneys, wheelchairs, 
and etc.), and increased administrative and 
financial data in revenue cycle management 
systems. Often, these data are aggregated for 
analytics or ‘business intelligence’ purposes 
in large scale data warehouses [72, 103, 
104]. With the advent of smart phones, and 
wearable technologies, new data types are 
originating also from the patient directly and 
may provide near continuous monitoring of 
a wide variety of functions and physiologic 
parameters, such as number of steps walked, 
miles run or bicycled, diet, mood, heartrate, 
hours of sleep, etc. [105, 106]. Such remote 
monitoring and the integration of these 
data in the provider EMR can impact care 
outcomes and the costs of care [107, 108]. 
Further, individual ‘quantified self ’ data 
may be aggregated to allow examination of 
an individual’s social networks, interactions, 
and behaviors [109]. And further still, the 
‘open data’ movement is making available 
interesting data sources from the state and 
federal levels to provide the ability to exam-
ine community, environmental, and other 
public health data as well [110].

Despite the vastly increasing volume 
and variety of data, however, there still 
exist significant challenges to seamless in-
teroperability of data [111]. Findings from 

a January 2016 National Center for Health 
Statistics (NCHS) Data Brief suggest that 
approximately one third of physicians are 
sharing health data with external providers, 
with a range from a low of 17.7% (New 
Jersey) to a high of 58.8% (North Dakota). 
Health information exchange and interoper-
ability face several significant financial and 
technical barriers. First, financial incentives 
may go frequently against data sharing in the 
currently predominant fee-for-service busi-
ness model for healthcare [53, 112]. Second, 
standardization of data representation at both 
the terminology and ontology level is incom-
plete, so data mapping problems may persist 
and confound health information exchange 
[113]. Third, not all data of potential interest 
may be accessible or available on a network 
backbone of a healthcare delivery system or 
more generally on the internet in a secure and 
confidential manner, respecting a patient’s 
privacy and permissions for use [72]. Fourth, 
when data are aggregated from or exchanged 
between disparate systems, even within a 
single healthcare delivery system, or across 
healthcare delivery organizations, it remains 
a challenge to ensure that the appropriate 
matching of records is occurring such that 
a unique and appropriate patient identity is 
maintained to preserve data integrity [43, 
114, 115]. With HITECH, certified EMR 
systems needed to demonstrate their ability 
to exchange a Continuity of Care Document 
which served as a first step toward improved 
health information exchange [116]. This 
work is advancing now with the further de-
velopment of a more enhanced patient data 
object – such as the Virtual Medical Record 
(vMR) (based upon the HL7 Reference In-
formation Model and specifically designed 
to support decision support) [117-119] and 
the openEHR [120]. These standards can 
convey a more detailed set of data and po-
tentially longitudinal data as well. Further, 
recent work employing an open application 
programming interface (API) approach has 
shown promise both for data exchange and 
innovation [121-123]. Several researchers 
have described the methods for transform-
ing data into knowledge and insight, and 
ultimately into CDS [77, 124]. Sittig et al. 
describe six essential steps in transitioning 
data through aggregation, analysis, and dis-
semination, for new research findings from 
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comparative effectives research, potentially 
across multiple sites and disparate EMRs: 
identification of applicable data within health 
care transaction systems, extraction to a local 
data warehouse for staging, modeling of data 
to enable common representations across 
multiple health systems, aggregation of 
data according to this common data model, 
analysis of data to address research ques-
tions, dissemination of study results[124]. 
These same issues may apply to data and 
information used in clinical care at the indi-
vidual or population levels as well. The first 
two are challenges with finding and creating 
interfaces to the relevant data itself, the third 
and fourth are issues of data access and 
normalization to support analysis, the fifth 
is an issue of inference, and the sixth may 
be viewed as analogous to CDS – dissemi-
nation of useful findings as decision support 
interventions. We will discuss the issues of 
analysis in the knowledge and inference axes 
for CDS, and the issues of dissemination in 
the integration and user axes of CDS below.

Knowledge
In the early 1990’s, the variety of CDS avail-
able in the pioneering systems such as HELP 
[125], BICS [15], RMRS, and the CPRS 
[126] was impressive [11], but it was difficult 
to share these knowledge artifacts between 
systems. The Arden Syntax [127, 128] was 
developed to address this need, at least in 
part, and allowed the knowledge associated 
with rule-based systems to be exchanged as 
“Medical Logic Modules” (MLMs) [129]. 
The evolution of MLMs was stymied, 
however, due to the lack of a standardized 
terminology for clinical concepts (clinical 
findings, laboratory names, diseases, drugs, 
etc.). The ‘curly braces’ type problem arose 
as MLMs were designed in one setting, and 
implementation was attempted in another 
– the facets encoded in MLMs had to be 
mapped to the local terminology where it was 
being implemented. Progress was made in 
improving access to data residing in clinical 
information systems in two important ways. 
First, progress was made connecting GELLO 
(the Guideline Expression Language Object 
Oriented [130]) to the Arden Syntax to pro-
vide a standardized interface and query lan-
guage for accessing health data from systems 

[128]. Significant progress was also made, 
however, as more robust standards emerged 
for laboratory terms (Logical Observation 
Identif iers Names and Codes (LOINC) 
[131]), diseases (International Classification 
of Diseases (ICD-9-CM/10), Systematized 
Nomenclature of Medicine (SNOMED)) and 
procedures (Current Procedural Terminol-
ogy (CPT)), drug names (RxNorm [132]), 
among others. In addition, a considerable 
body of research focused on effectively 
representing clinical guidelines developed 
from evidence review and consensus opinion 
in a computer-interpretable format – one 
that would allow a knowledge specification 
to be developed and shared across disparate 
clinical information systems [47, 133] (e.g. 
GuideLine Interchange Format.(GLIF) 
[134], and computer-interpretable represen-
tations of guidelines [135]). This work also 
lead to experiments in increased knowledge 
sharing, such as PROFORMA [136], De-
gel [137], SEBASTIAN [138], the CDS 
Consortium [139], and others [140-142] 
(see also architecture and technology axis 
discussion below). Of particular note is the 
OpenClinical.org on-line archive of over 600 
human-readable information resources on 
advanced knowledge management methods, 
technologies, and applications for healthcare 
[143]. Currently the site serves 300,000 users 
per year. More recently, the OpenClinical.
net website has begun “providing tools 
and techniques to empower [users] and 
[their] organizations to share knowledge 
of best practices in specialist fields, create 
and publish applications, trial them at the 
point-of-care, and translate new research 
into routine services”[144]. 

The nature and sources of knowledge 
itself however are changing. The more tradi-
tional rule-based knowledge base is rapidly 
being complemented by knowledge resulting 
from using data mining techniques for dis-
covery [145, 146]. With increasing availabil-
ity of large data sets, association rule mining 
[86], and other machine learning methods 
have been employed to discover new forms 
of knowledge such as gene variant—clinical 
condition associations [147], novel clinical 
correlations resulting from surveillance of 
large data sets [148, 149], and more. Data 
mining with traditional statistical techniques 
will help to define clinical algorithms that 

can be implemented as CDS [150, 151]. 
Some would suggest that the knowledge 
bases of the future will be entirely data 
driven and not result from consensus opinion 
such as clinical guidelines, or possibly even 
from experimental data [6]. Further, text 
processing techniques are being employed to 
create large knowledge bases derived from 
the clinical literature itself (DXplain [152], 
IBM Watson [153], Isabel [154]). Data min-
ing approaches can be supplemented with 
ontologies to create sophisticated hybrid 
knowledge bases [155, 156]. While these 
methods are showing promise, we suggest 
they will need to abide by the same require-
ments as all CDS systems must: the ability 
to explain their reasoning [157], show their 
knowledge and data sources transparently 
[158], and be able to update as new knowl-
edge (or performance and impact data) arises 
[5]. We return to these desiderata for CDS at 
the conclusion of this paper. 

Inference 
In the early 1990’s and to the current day, 
the methods of inference used in CDS sys-
tems used in practice largely centered on 
rule-based systems [159, 160]. While such 
systems have been shown to have a beneficial 
clinical impact most often for simple alerts 
and reminders, they suffer from the difficulty 
of maintaining the rule knowledge base in 
an up-to-date format and from potential con-
flicts between rules. They generally lack the 
appropriate semantics for different types of 
knowledge to be represented from a guide-
line and do not allow for managing uncer-
tainty well – either in the interpretation and 
encoding of ambiguous statements within a 
guideline, or in making a recommendation 
for action to the end user with some sense of 
certainty of the recommendation [161-164]. 
In the research setting, with the advent of 
artificial intelligence methods dating well 
before 1990 [157], a significant body of 
work focused on employing other methods 
for CDS, and there has been an explosion 
in the development and application of the 
methods of artificial intelligence to both 
knowledge discovery and CDS in recent 
years [165]. CDS was largely developed 
in one of two paradigms: the rule-based or 
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heuristic methods approach, and the prob-
abilistic or Bayesian approach. Early work 
on differential diagnosis expert systems 
such as INTERNIST-1[166], QMR [167], 
DXplain [152], Meditel [168], and others 
used knowledge-bases crafted by experts and 
validated on artificial test cases (often drawn 
from the New England Journal of Medicine 
Clinicopathologic Conferences). These sys-
tems were challenged by terminology and 
semantics issues on how findings and other 
patient data were represented, and by inher-
ent limitations in the knowledge-base itself 
(number of disease states or conditions and 
findings modeled, connections and linkage 
weights, and heuristic inference methods), 
and performance was found to be poor [169] 
– challenges which persist to the present 
day in heuristic systems. Other efforts built 
upon the mathematical foundations of CDS 
[170-173] and focused on Bayesian reason-
ing such as the system by De Dombal for 
differential diagnosis of abdominal pain 
[174, 175], or the generalized differential di-
agnosis of the QMR-DT system [176, 177]. 
Bayesian reasoning systems are challenged 
by the difficulty in assessing the conditional 
probabilities required from experts and by 
the assumptions that often must be made 
to simplify the calculation of the posterior 
probability of diseases [178-180]. For ex-
ample, De Dombal’s system assumed the 
conditional independence of findings (such 
as “fever” and “chills”), which are clearly 
dependent on one another in clinical practice. 
Failure to acknowledge this conditional de-
pendence may overweight the importance of 
these findings, just as failure to acknowledge 
the conditional independence of findings 
may underweight their importance. 

It may be said that we are in the midst of 
a gradual evolution from the heuristic and 
rule-based approaches to CDS toward a more 
numeric-based approach employing machine 
learning techniques and big data [85]. New 
machine learning methods such as artificial 
neural networks – ‘deep learning’ – com-
bined with the availability of increasingly 
large clinical data bases are providing new 
and exciting ways in which patient data can 
be analyzed to make associations between 
gene variants and disease states [181], drug 
– gene variant dependencies (pharmacog-
enomics [182, 183] and genome-specific 

drug selection and dosing advice [184, 
185]), and the correlations that may be made 
between a patient state, genomics, behavior, 
and the environment – broadly described as 
‘precision medicine’ [186, 187]. 

Architecture and Technology
We (AW, DFS) described in 2008 a four-
phase model for the evolution of clinical 
decision support systems [188]. The phases 
describe the evolution from standalone deci-
sion support systems, decision support inte-
grated into clinical systems, the emergence 
of standards for sharing clinical decision 
support content, and web service models 
for decision support. The four-phase model 
traces the evolution of CDS architectures and 
integration approaches [188], and parallels 
to a degree the evolution of information 
technology and networking. The first CDS 
systems, such as Warner’s congenital heart 
disease diagnostic system [189], Bleich’s 
acid-base system [190], and De Dombal’s 
abdominal pain advisor [174] were all 
standalone – their users had to access the 
systems through their own front-end inter-
face and enter data about the patient under 
consideration. Typically, these systems were 
accessed via early time-sharing protocols 
from mainframe implementations. In the 
early 1990’s, many researchers working on 
CDS were beginning to understand that the 
so-called “Greek oracle model” of CDS was 
not going to work [191]. Briefly, this model 
most often involved a standalone computer 
system that generated a list of questions or 
requests for data which the clinician entered 
(e.g., Shortliffe’s Mycin was one of the 
earliest examples of such a system [192]), 
and had little integration with the EHR. The 
computer then generated a rank ordered list 
of potential answers (often diagnoses). Even 
though the evaluation of many of these sys-
tems demonstrated a high degree of accuracy 
[193], they were not adopted by clinicians 
for the routine care of patients for many 
reasons including the following: first, they 
were not integrated into the clinicians’ data 
entry or review workflows which required 
clinicians to first recognize that they had a 
knowledge deficit which is still uncommonly 
difficult [194], and required the clinician 
user to enter a long list of data or findings 

using the semantics and terminology of the 
system; second, the knowledge bases were 
incomplete and difficult to maintain which 
resulted in ungraceful degradation of per-
formance on cases outside of the system’s 
area of expertise. Third, making an accurate 
diagnosis in a difficult case was one of the 
most professionally satisfying activities cli-
nicians engaged in and they were not ready 
or willing to give that activity up. Fourth, 
we hold computers to a higher standard 
than humans. Such systems were expected 
to be (or believed to be) accurate, and had 
difficulty describing a degree of certainty 
in anything other than probabilistic terms, 
or simply summarizing findings for and 
against a diagnostic hypothesis. Humans 
are much better at expressing uncertainty 
than computers. 

As hardware and network technologies 
evolved from mainframe toward client-serv-
er architectures, and ultimately n-tier web 
services, CDS architectural design evolved 
as well. A few years after the advent of 
stand-alone CDS systems, the first efforts 
to integrate CDS into clinical information 
systems started with the HELP system 
[195] at LDS Hospital. HELP brought CDS 
directly into the end-user clinician workflow, 
and was followed shortly by the Regenstrief 
Medical Record System (RMRS) [11], 
the Brigham Integrated Computer System 
(BICS) at Brigham and Women’s Hospital 
[15, 196], and the VA’s Computerized Patient 
Record System (CPRS) [197-199]. In part, 
this evolution was facilitated technically 
by the move from time-sharing sessions 
with mainframe-based applications toward 
context sharing and management. With the 
advent of the HL7 Common Context Object 
Workgroup (CCOW) and CCOW standard 
[200] ratified in April 1999, applications 
could securely pass patient and user con-
text, thus allowing a user to access an array 
of applications after logging on to a single 
application [201]. Despite the significance of 
this advance, the user still had the experience 
of using multiple applications.

As the second phase of EHR-integrated 
CDS systems took hold[16], it became clear 
that sharing the knowledge embedded within 
CDS systems across sites would be valuable. 
To support this, the Arden Syntax was devel-
oped in 1989 [129, 202, 203] by combining 
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related elements of the RMRS and HELP 
system syntaxes and standardizing them, 
launching a third phase of standards-based 
approaches for encoding and sharing clinical 
knowledge. Since 2005, in the third phase 
of CDS, a number of new initiatives have 
been started which focused on sharing CDS 
content through web services rather than by 
moving knowledge artifacts around, and this 
trend is paralleled in the emerging consumer 
space of mobile health applications found 
on smart phones. Both take advantage of 
more robust standards for connectivity and 
communication between application servers 
on a network backbone. 

In the fourth phase of CDS, EHRs are 
connected to CDS services, passing patient 
data and receiving inferences back. SEBAS-
TIAN [138] and SAGE [204, 205] were the 
first examples of service-oriented CDS, 
followed by SANDS [93]. The AHRQ-fund-
ed Clinical Decision Support Consortium 
(CDSC) conducted a large demonstration of 
service-oriented CDS, using the Continuity 
of Care Document standard to exchange pa-
tient data at four sites across the US: Partners 
HealthCare, the Regenstrief Institute, the 
Robert Wood Johnson Medical School, and 
the WVP Health Authority [91, 206-209]. 
The same technology stack was also suc-
cessfully employed in a large demonstration 
of clinical decision support for imaging in 
the context of pediatric traumatic brain in-
jury [210]. The OpenCDS initiative is now 
working on a set of open source CDS tools to 
support sharing of CDS via services as well 
[211]. The MobiGuide project, funded by the 
European Union, is a notable patient-orient-
ed decision support tool that makes extensive 
use of decision support [212, 213].

Mirroring the third and fourth phases of 
CDS, the US Office of the National Coor-
dinator for Health Information Technology 
(ONC) started the Health-e-Decisions 
(HeD) initiative as part of the Standards 
and Interoperability Framework. HeD devel-
oped two use cases: the first, CDS Artifact 
Sharing corresponded to the third phase of 
this CDS model, and the second use case, 
CDS Guidance Service, corresponded to the 
fourth phase of CDS. At this time, adoption 
of the HeD schemas and standards has not 
been widespread, but may increase over 
time. Parallel development and extensions 

to technologies for patient-matching [114], 
patient and end-user context management 
[214], secure authorization, authentication, 
and device security technologies will also 
contribute to the success of this web-services 
enabled fourth phase of CDS, hopefully 
through standardized APIs [121, 122]. Some 
would suggest that a fully modular approach 
may allow more innovation to occur in and 
around EMRs [215], and create an ‘app 
store’ model for a substitutable applications 
approach to health IT [216, 217]. We antic-
ipate that, as CDS becomes more complex, 
service-oriented integration of CDS will 
become more prevalent, potentially through 
a substitutable component architecture, 
allowing separation of knowledge and infer-
ence from the presenting EHR (or whichever 
technology layer) but still permitting deep 
workflow integration. As semantics become 
more standardized in EHRs for reasons of 
interoperability, we also anticipate that CDS 
sharing will become more straightforward.

Implementation and Integration 
Since 1990, there has been a dramatic evo-
lution of how CDS may be integrated into 
the clinician’s workflow in a growing variety 
of application frameworks and technology 
contexts. Despite these advances, a central 
problem arises from the extraordinary vari-
ability in clinical practice patterns [218] and 
clinical workflows. Given this variation, it is 
no surprise that many clinicians view CDS 
as arising at an inopportune time in their 
workflow [219, 220], and many CDS alerts 
are simply ignored or overridden [221-224]. 
Over the past 25 years, most CDS research-
ers turned away from developing complex 
CDS systems and turned their attention to 
the development of what one of us (DFS) 
termed “mediocre systems designed to 
keep doctors from making silly mistakes”. 
Thus was born the CDS age of “alerts and 
reminders”, which were more amenable to 
integration into EHR systems and the clini-
cian’s workflow. Briefly, these interventions, 
originally conceived by McDonald et al. 
in the 1970’s, were designed to provide a 
safety net for clinicians, who had inadver-
tently forgotten or missed a key data element 
[225]. While seemingly a win-win situation 
for both clinicians and CDS developers in 

the vast majority of cases, the CDS recom-
mendations were not helpful, as evidenced 
by unacceptably high override rates [226] 
for a variety of reasons including: outdated 
patient data, missing patient data, CDS 
logic that did not precisely fit the patient, 
clinically irrelevant alerts such as drug-food 
alerts, or CDS that came at a point in the 
clinician’s reasoning about the patient that 
was too late (decision already made). In 
theory, automated CDS integrated into the 
clinicians’ workflow at the point of care is one 
of the main benefits associated with EHRs, 
and this has been successfully accomplished 
for Infobuttons [227-229], order sets [230, 
231], documentation templates [232-234], 
data displays/flowsheets, as well as alerts and 
reminders. Based on the current unacceptably 
high rate of clinician overrides of these CDS 
suggestions, however, it is clear that in prac-
tice CDS has not achieved anywhere near 
its potential and significant barriers persist. 
Thus, a central challenge is both defining and 
standardizing clinical workflows such that 
useful and reliable insertion points could be 
defined in the clinical workflow – implying, 
of course, standardized care pathways or 
protocols which is to a large degree at odds 
with the idiosyncrasies that may arise with the 
care of individual patients. This need for tight 
integration of CDS interventions with EHRs 
has been one of the key driving forces in the 
evolution of CDS over the last 25 years [196].

Major factors in the current dissatisfac-
tion with CDS include the following: first, 
the difficulty in aligning the CDS with the 
clinician user’s mental model of the patient 
and potential diagnostic or therapeutic in-
terventions [235], second, the difficulty in 
developing, maintaining, and integrating the 
clinical logic required to generate accurate, 
patient-specific, clinical suggestions[83, 
236-238], third, the difficulty in gathering 
and assessing the quality of the data upon 
which this logic acts [100, 239, 240], and 
lastly, the rapid evolution of technology 
platforms as described above – clinician 
end-users now may be accessing patient 
records via a desktop application, a hand-
held application, or via a web-interface on a 
variety of devices, which implies significant 
technology and implementation challenges. 

If we can overcome the diff iculties 
involved in integrating CDS interventions 
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within EHRs, then we can begin to achieve 
the tremendous improvements in patient 
safety, healthcare quality, and efficiency 
promised by the HITECH policy initiatives 
and demonstrated at leading sites. We sug-
gest that CDS will be less intrusive in the 
future and more of a background function 
to support the cognitive activities of the 
user. We describe this further in our vision 
for CDS 2040.

Users
Over the last 25 years, the field of clinical 
informatics has witnessed an evolution in the 
nature and type of users of clinical decision 
support systems, and the types of cognitive 
support that these systems may provide. The 
first change was in the nature of its users 
themselves, which is best explained by Rog-
ers’ diffusion of innovations theory [241]. 
For example, in the early 1990’s clinical 
decision support users were what Rogers’ 
would term “innovators”. These clinicians 
were extremely interested in experimenting 
with this new technology and willing to put 
up with its limitations [14]. They reveled in 
the fact that they were on the “cutting edge” 
and downplayed any problems with the sys-
tems they were using, and some of the early 
evaluations of such systems by the very same 
people, who were designing, implementing, 
and using them, may be biased [159, 242, 
243]. More recently, as clinical decision 
support has become more mainstream, the 
majority of its users are “late majority” or 
even “laggards”, who are less interested in 
the technology and more interested in doing 
the work that the technology was designed 
to help them with. They are much more 
critical of existing system limitations 
and less willing to put up with less than 
stellar performance [224]. As Friedman 
recognized in developing the “fundamental 
theorem of informatics”, which postulates 
that “a person working in partnership with 
an information resource is “better” than that 
same person unassisted”, CDS interven-
tions should be most useful to clinicians, 
and potentially even patients, with less 
academic training and clinical experience 
[244]. Over the years, this concept has been 
used to implement CDS interventions spe-
cifically designed for respiratory therapists 

[20], nurses [245], and even patients [246, 
247] with excellent results. 

Summary of Key Disruptions, 
Barriers, Accelerators
Reflecting on the six dimensions of CDS 
discussed above, several themes are ob-
served which adversely impact the effective 
implementation and use of CDS in clinical 
practice, and certain developments which 
may accelerate its use. We summarize these 
using the ‘people, process, and technology’ 
framework first elaborated by Lorenzi [248]. 

People
First, the end user needs to recognize an 
information or knowledge deficiency be-
fore he may appreciate the value of a CDS 
system. Similarly, the end-user should have 
a clear understanding of the right questions 
to ask CDS. The CDS system must provide 
guidance in a consistent manner, however, 
coherent with the user’s mental model of 
the patient, processes, or the context of 
care and decision-making. The user must 
be facile with information technology of 
course, and should understand its limitations. 
As information technology becomes more 
ubiquitous in almost every dimension of 
modern life, end-users are becoming much 
more sophisticated with health IT as well: 
as we rapidly become accustomed to using 
decision support in our daily lives for getting 
directions, assessing the weather, managing 
finances, and the many ways in which mod-
ern smart phones for example can assist in 
communicating, scheduling, and accessing 
information, it is highly probable that people 
will become more adept to the use of CDS. 

Process
Managing the process of knowledge trans-
lation, specification, and implementation of 
CDS represents perhaps a larger hurdle to 
overcome than simply using modern IT. The 
methods for discovery of new knowledge are 
rapidly evolving, and the fruits of ‘big data’ 
analysis and machine learning are produc-
ing new insights at an ever increasing pace. 
Nevertheless, new knowledge must be care-

fully vetted before implemented and used 
routinely in CDS, and it must be subjected 
to a transparent and formalized knowledge 
management processes to ensure its accura-
cy, currency, and appropriateness for CDS 
[237]. By the same token, however, IT may 
enable more novel forms of knowledge en-
gineering and management exploiting virtual 
collaboration technologies [249, 250]. Large 
scale knowledge-engineering efforts remain 
difficult, and it still essentially impossible 
to share knowledge artifacts between in-
formation systems (except in innovative 
research settings). This burden of knowledge 
engineering and management may be the 
largest obstacle to overcome, but progress 
is being made, and the potential impact re-
mains huge. As healthcare moves toward a 
value-based reimbursement system, the need 
to effectively share best-practices to improve 
the quality of care, and lower the costs of 
care, may be the strongest driver yet for the 
implementation and effective use of CDS. 

Technology
The ongoing and dramatic evolution of tech-
nology is at once both the greatest enabler 
of change in technology-dependent human 
endeavors, and one of the most significant 
hurdles to overcome. As an enabler, tech-
nology is evolving to put unprecedented 
capabilities into the hands of the end-user 
whether it is accessing the world’s informa-
tion via simple and convenient web interfac-
es or mobile applications – via keyboard or 
voice interactions, to accessing extremely 
sophisticated cognitive aides and other 
tools that can be applied to reasoning both 
in every-day activities, as well as complex 
clinical decision support. As a barrier, this 
same rapid evolution of technology incurs a 
‘technology debt’ where new systems must 
typically account for the installed base of 
legacy systems, and chart an evolutionary 
path for new features and functions. Occa-
sionally, there may be a dramatic paradigm 
shift when new technology is introduced into 
a previously unaddressed space, such as the 
advent of smart phone technologies and mo-
bile applications. Another dimension of rapid 
evolution in technology is the ever increasing 
amount of data coming online in electronic 
form. As standards for exchange and aggre-



S110

IMIA Yearbook of Medical Informatics 2016

Middleton et al.

gation of these data improve, new and vast 
aggregations of data may be created and 
subjected to analysis. The rapid evolution of 
new methods for machine learning from big 
data is an important part of this technology 
evolution given the novel data architectures 
that are being created to support it and their 
new technology platforms. 

In summary, we suggest that the evolu-
tion and increased use of CDS in practice is 
inevitable given the explosion of biomedical 
knowledge, and the pressure to improve 
quality and lower costs in value-based care. 
However, further work needs to be done on 
standardizing methods for knowledge and 
data representation, CDS implementation 
in clinical care environments (standardized 
workflow insertion points), and patient data 
and knowledge exchange. 

CDS: The Next 25 Years
We are in the midst of a dramatic and fun-
damental transition of the human condition 
given the exploding power of computing, 
connectivity between man and machine, 
connectivity between machines, nearly 
ubiquitous information access, and the 
accelerating speed of data production and 
aggregation, and knowledge discovery. The 
impact on society has been profound and 
there is likely to be no attenuation in this 
rate of change in the near term – if any-
thing it may accelerate. While information 
technology is dramatically impacting the 
manner in which both business and social 
interactions occur in many sectors, health-
care has been lagging but may be quickly 
catching up. The implications of these 
changes directly impact the fundamental na-
ture of reasoning and inference [251-253], 
investigation and discovery [6, 254-256], 
knowledge engineering and management 
[257, 258], and drive the predictive analyt-
ics, algorithms, and artificial intelligence 
that increasingly underlie nearly every stage 
of decision-making [2, 161, 259, 260]. 

In 2040, we will likely be in an era not 
only of ubiquitous computing, and the 
implied ubiquitous access and availability 
of online information and knowledge, but 
also have the ubiquitous availability of ex-
traordinarily powerful cognitive aides which 

may support, and in some cases supplant, 
human reasoning [165]. We will likely have 
cognitive aides with which both clinicians 
and patients can interact with verbally, and 
when necessary visually, for example in 
augmented reality environments. We will 
have massive data streams resulting from 
pervasive monitoring and interactions with 
personal health monitors, the environment, 
and related public health data, as well as an 
improved understanding and monitoring of 
the genome, metabolome, proteome, and 
microbiome. This implies the very nature of 
knowledge, and reasoning or decision-mak-
ing, are changing under our feet. The advent 
of the World Wide Web has made informa-
tion access trivial anytime and anywhere, 
and by a variety of devices [261] – perhaps 
one day we will have direct access from our 
brains via a neural conduit! Critical ques-
tions must be asked about how one could still 
reason in this new world, what is a realistic 
expectation for the clinician’s knowledge 
base [64], how do we perform complex in-
ferences in light of patient preferences and 
societal norms [262], and how do we man-
age reasoning under uncertainty? On Scott 
Blois’ ‘cognitive funnel’ [263] we must ask 
what is the optimal role of the human, the 
machine aided or enhanced human, and the 
autonomous machine in his cognitive funnel, 
or decision-making in healthcare? 

The most critical evolution over the next 
25 years for CDS will be the discovery and 
use of methods for collating clinical knowl-
edge in any form – facts, relationships, ter-
minologies, ontologies – and make it evolve 
through a process of continuous feedback 
and improvement, whether from pragmatic 
experience in clinical care, crowd sourcing 
and updating, or machine learning. The 
growth of semantic graph database technol-
ogies will lead to new inferential capabil-
ities, distinct from traditional approaches. 
While information access is becoming 
trivial, the organization and collation of 
information into actionable knowledge is 
not – the need for a new taxonomy of dis-
ease based upon our improved understand-
ing of the genomic basis of disease, and 
the influences of disorders of translation 
and expression, behavior, community, and 
environment has been described in a recent 
National Research Council Report[187]. 

Future inference methods will take advan-
tage of a ‘knowledge commons’ describing 
and interrelating a wide array of knowledge 
artifacts at multiple levels of inference, and 
allow inferences and decision support to be 
made from the genomic level to the com-
munity or population level [187]. Clinical 
reasoning will increasingly be conducted 
in a shared decision-making paradigm 
[264] but in a three-way interaction in-
cluding patient, provider, and a cognitive 
aide or “AI”, and the importance of patient 
preferences and utilities will increase. The 
importance of codified knowledge based 
upon a new taxonomy of disease will grow 
as we increasingly see the use of artificial 
intelligence, algorithms, neural nets, and 
other means of inference assist both the cli-
nician and the patient in decision-making. 

The impact and value of CDS in precision 
medicine will be significant. With the advent 
of ‘big data’, and rapid advances in gene 
sequencing and association with disease, 
rapid changes are occurring also in the 
ability to discover new gene variant – disease 
associations [147, 265, 266], and interactions 
between the genome and the exposome [6]. 
We can now conduct in silico experiments 
from the molecular and proteomic level, to 
the organismic and population level – to 
predict clinical outcomes with advanced 
analytics, and to empower the patient himself 
with tools that facilitate self-management 
of health and disease [267-270]. Highly 
detailed models, algorithms, and simulations 
will be run continuously on the patient’s be-
half to support the clinical reasoning of the 
provider, and care team, in conjunction with 
the patient or a patient proxy [6]. 

If we can codify and preserve useful 
knowledge, and learn how best to share 
and disseminate useful findings rather than 
re-discover repeatedly what we already 
know [271], we may witness an acceler-
ation of learning and the adoption of best 
practices across the continuum of care [65]. 
Critical attention must be paid, however, 
to ensure that informatics and data science 
methods underlying these investigations 
and the new tools continue to critically 
assess the quality of the evidence in deci-
sion-making at any level, the relevance of 
decision-making for the patient at hand, and 
assess the efficacy and impact in each and 
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every case to drive a Learning Health Sys-
tem [4, 66]. We suggest that all CDS sys-
tems of any form and at any level (genomic, 
proteomic, metabolomic, organismic, popu-
lation, or environmental) be able to provide 
a rationale or explanation to the end-user 
for the recommendation proposed with an 
assessment of certainty or confidence in 
the recommendation, describe the data and 
knowledge sources and the reasoning model 
they use, update the inference methods as 
necessary, and monitor their impact and 
learn from experience. These desiderata for 
CDS will help assure the safe and effective 
use, transparency, and ongoing refinement 
of these tools. Achieving the vision of 
precision medicine [150] and the learning 
health system will not only depend upon 
a continuous development and refinement 
of our understanding of disease, but also 
upon the elaboration of predictive analytics 
and cognitive aides across the translational 
spectrum and continuum of care[272-275]. 
This process should leverage available online 
electronic data from EMRs, PHRs, wearable 
technologies, clinical investigations, and 
the growing body of relevant data from all 
other sectors of society: behavioral data, 
environmental data, public health, and social 
and community data, and entitle patients to 
access and use their data as they wish [276].

Conclusion
We close this review by anticipating with 
excitement the advances in clinical reasoning 
that will come, for clinicians and for ma-
chines, and we anticipate the benefits which 
will accrue for our patients, ourselves, and 
society at large. We foresee an inevitable 
evolution in the nature of clinical practice, 
and in what the clinician is expected to know, 
and do. Analogously, we see an evolution 
in what the patient is expected to know, 
and do, given the increasing availability of 
cognitive aides directed toward the consumer 
of health care. Nevertheless, we believe that 
the power of human reasoning will never be 
fully supplanted by an algorithm of any kind, 
nor do we believe the intimate and essential 
relationship between a doctor and her patient 
can be replaced by a computer. 
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