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Summary
Objectives: The aim of this manuscript is to provide a brief 
overview of the scientific challenges that should be addressed in 
order to unlock the full potential of using data from a general 
point of view, as well as to present some ideas that could help 
answer specific needs for data understanding in the field of 
health sciences and epidemiology.
Methods: A survey of uses and challenges of big data analyses 
for medicine and public health was conducted. The first part 
of the paper focuses on big data techniques, algorithms, and 
statistical approaches to identify patterns in data. The second 
part describes some cutting-edge applications of analyses and 
predictive modeling in public health.
Results: In recent years, we witnessed a revolution regarding the 
nature, collection, and availability of data in general. This was 
especially striking in the health sector and particularly in the field 
of epidemiology. Data derives from a large variety of sources, 
e.g. clinical settings, billing claims, care scheduling, drug usage, 
web based search queries, and Tweets.
Conclusion: The exploitation of the information (data mining, 
artificial intelligence) relevant to these data has become one 
of the most promising as well challenging tasks from societal 
and scientific viewpoints in order to leverage the information 
available and making public health more efficient. 
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Introduction
“Every 50 years, there is a revolution in 
healthcare based on the trends of the era. In 
the 1870s, healthcare was revolutionized by 
the germ theory of disease and promotion 
of public health efforts. In the 1920s, the 
discovery of penicillin propelled forward 
the use of medication as treatment for dis-
ease. In the 1970s, use of the randomized 
controlled trial (RCT) ushered in an era of 
evidence-based medicine. As we approach 
the 2020’s, the trend toward big data, tools, 
and systemization of care will revolution-
ize the way hospitals and physicians work 
and, most importantly, the way patients 
are treated…” [1]. This statement confirms 
that public health is transitioning to more 
data-driven policies for efficiency, cost-sav-
ings, equity, and improved outcomes. To 
achieve these goals, big data is acclaimed 
to be the most efficient evolution vehicle 
in this decade. There are indeed a variety 
of factors that have converged in the past 
few years, which increase the amount of 
digitized healthcare information:
•	 The convenience of electronic health 

records has increased the number of 
hospitals and providers who use them, 
subsequently increasing the amount of 
electronic data generated. 

•	 Social security and medical insurances 
need large amounts of information to 
be analyzed in order to more accurately 
understand what occurs to patients.

•	 New technology in general, including de-
vices, implants, and mobile applications 
on smartphones and tablets, has focused 
on improving healthcare services and 
contributed to the increased amount of 
data available to providers.

There is a high pressure on clinical practic-
es to become evidence-based and predictive. 
Providers, patients, and the entire healthcare 
industry [2] realize a variety of beneficial 
implications from the use and analysis of 
big data. Without an initiative to aggregate, 
manage, and analyze big data, the public 
health arena would be suffering from 
information overload. Big data research 
has emerged in the recent years due to the 
proliferation of data management systems 
along with tremendous progress made over 
the past decade in computing power. Fur-
thermore, on top of computing progress, 
scientific progress has been made in parallel 
that has contributed to the creation of a new 
discipline at the intersection of computer 
science and applied mathematics (namely 
statistics, machine learning, optimization), 
the data science domain. The main domain 
objective is to develop mathematical models 
and computational solutions able to reason 
and interpret massive amount of data where 
typically the information sought is quite 
sparse. The complexity of the task is mostly 
due to three important challenges: (i) the 
dimensionality of data/observations that is 
often huge, with data/observations of vari-
ous nature and heterogeneity, (ii) the sparse 
nature of critical events where one should be 
able to determine/develop solutions to events 
that appear in a non-uniform and rather 
non-frequent manner, and (iii) the volume 
of the measurements in terms of samples/
observations where a colossal amount of data 
is collected in a continuous fashion. 

Our paper is organized as follows: first, 
we provide a short review of the state of 
the art of data mining methods; second, we 
propose some possible theoretical directions 
specific to the field of health science; and 
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third, we present recent applications and ex-
amples of how data science is transforming 
the field of epidemiology and public health.

Challenges and Perspectives 
in Data Science
Data mining on big data is achieved through 
either unsupervised or supervised methods. 
In the former case, the objective is to identify 
common behaviors/characteristics within 
the observed population in the absence 
of “ground truth” knowledge. Supervised 
methods rely on a different principle seek-
ing to reproduce observed behaviors. The 
idea is, given a set of observations and their 
“corresponding” behavior/final outcome, 
to determine an algorithm that can actually 
reproduce the outcome. Large sets of het-
erogeneous data are difficult to interpret. 
This is mostly due to two reasons: (i) first, 
unsupervised mining methods become quite 
unstable (e.g. defining the appropriate metric 
to compare examples becomes infeasible), 
and may fail to provide any meaningful 
interpretation, while (ii) supervised/learning 
methods may also fail because the expected 
ratio between training examples and dimen-
sion of the data is not satisfied. 

Efficient Representations of Big Data
In typical data science examples, the first 
step consists of reducing the dimension of 
data while preserving the ability to reason on 
them. This can be done using well known and 
quite standard statistical hypotheses/models 
or non-linear/data-driven reduction methods. 
Linear approaches like for example Principal 
Component Analysis (PCA), Independent 
Component Analysis (ICA), Non-Negative 
Matrix Factorization [3] are some of the most 
commonly used tools to reduce dimensional-
ity of data. The central idea is to determine 
a linear base (with base vectors of the same 
dimension as the one of the original obser-
vations) with a small number of elements 
and then represent the observations through 
the coefficients of the projections to this 
base. Canonical Correlation Analysis [4] 
seeks to determine the transformation that 

would create the best possible correlations 
between the individual variables of the ob-
servation factor. The dimensionality of the 
problem then drops to the number of the base 
elements. These methods work well when 
observations satisfy base assumptions like 
for example following a normal distribution, 
exhibiting linearity, and in the most general 
case, referring to observations of similar 
nature. In the recent years, we witnessed 
a new research direction that refers to a 
data-driven learned non-orthogonal base 
due to the compressed sensing approach. 
It determines a base where the projection 
of observations generates a sparse matrix 
[5]. This was further explored to encode 
the concept of group/structured sparsity 
[6] where the projection of observations in 
groups of variables is sparse rather than the 
individual ones. 

Handling heterogeneous and non-linear 
data is a more challenging task. The most 
trivial approach consists in introducing a 
projection on the observation space that 
will take the non-linear data and project 
them to a linear space using for example 
kernels. This can be seen as a transformation 
through an inner product between the kernel 
and the observations that will create a linear 
projection. Once this has been achieved, con-
ventional dimensionality reduction methods 
can be used to reduce the complexity of the 
observations [7]. This principle works well 
assuming that the right kernel can be iden-
tified which is highly complex in most cases 
– in particular when the dimensionality of the 
original data is high. Geometric methods/
embeddings are a direct alternative to deal 
with non-uniform data. They consist of ap-
proaching data as a manifold endowed with 
a distance and then reasoning on this new 
manifold through geometric/graph-based 
reduction methods. Multi-Dimensional Scal-
ing [8] aims at projecting data to a new space 
where distance between two observations is 
preserved. Isomap [9] endows multidimen-
sional scaling with local approximation of 
manifold in order to determine distance as 
a minimum geodesic path relating the two 
observations. Locally Linear Embedding 
uses similar principles as discussed before 
with the exception that samples/observations 
are now determined as a linear combination 
of their neighbors. Laplacian Eigen maps 

[10] better encode intrinsic geometry of data 
through the construction of neighborhood 
proximity graphs where Eigen functions of 
Laplace–Beltrami operator are applied on 
the manifold to produce embedding space 
and new dimensions of data. 

The outcome of such reduction methods 
is the projection of a high-dimensional, 
non-interpretable observation set to a low 
dimensional manifold. Such a process in-
troduces two important benefits in mining 
observations. First, it will allow human in-
terpretation. Low dimensional manifolds can 
indeed be more easily visualized and allow 
humans to find correlations between expert 
knowledge and mathematical intelligence. 
Second, it will allow the development of 
efficient and robust predictive algorithms 
and behaviors that can be further general-
ized to unobserved data. This is due to the 
fact that the number of degrees of freedom 
of data has been decreased and therefore, 
prediction methods are less sensitive to 
over-fitting. Once data have been projected 
to a lower dimensional space, then the next 
step consists of reasoning on it, a process 
that is done either in an unsupervised or a 
supervised manner.

Machine Learning Paradigm
Unsupervised mining consists in develop-
ing methods that are able to separate low 
dimensional samples to as many as possible 
distinctive classes. Supervised classification 
associates samples with latent variables 
(expected outcomes of the prediction mech-
anism) and then seeks methods that are able 
to separate new samples with a performance 
comparable for what was observed for 
training. 

Unsupervised Classification Methods
Unsupervised classification methods mostly 
rely on the statistical interpretation of data. 
Observations are considered to form a dis-
tribution at some arbitrary space and what 
are sought are the modes and parameters of 
these distributions. Primitive approaches to 
address this task refer to clustering methods. 
K-means and its numerous variants are the 
simplest solution to this problem. Given 
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the number of hypotheses and the initial 
solutions, this method recursively updates 
partitions, such that samples are optimally 
distributed according to cluster-indepen-
dent Gaussian hypotheses. More complex 
clustering methods seek to eliminate the 
need to determine the number of a priori 
clusters and to this end, approaches like 
mean shift mode [11] seeking and clus-
tering, affinity propagation [12], or more 
recently graph-based methods based on 
linear programming were introduced [13]. 
Bayesian classification is a step forward 
where samples are considered to form a 
multivariate density function. Mixture 
models (with different support kernels like 
Gaussians/Laplacians, etc.) are then em-
ployed to determine behaviors with respect 
to different hypotheses. Parameters of these 
models are determined using the expecta-
tion-maximization principle [14]. The main 
strength of these methods is its simplicity 
while their main limitation is the implicit 
“uniform” assumption on the distribution 
of samples with respect to different classes, 
this assumption being often violated when 
seeking to determine abnormal behavior / 
rare events in the context of data sciences. 

Supervised Classification Methods
Supervised methods are more efficient in 
developing prediction mechanisms able to 
interpret massive data. The central idea is 
to build a database where measurements 
are associated with “expected” outcomes 
and then seek to construct a mathematical 
model that is able to reproduce the ex-
pected outcomes given the measurements 
for this set. Once this mechanism is build, 
then it can be applied as it is to new mea-
surements towards predicting their class/
origin. Early approaches in this direction 
refer to logistic regression and support 
vector machines. Boosting [15], the term 
that is often employed for logistic regres-
sion, seeks to determine a set of “linear” 
weak classifiers that once combined are 
expected to produce a stronger classifier. 
Support vector machines [16] are similar 
to boosting but the aim is different: support 
vector machines provide a hyper-plane built 
on a high dimensional space, which allows 
for separating different classes. This hy-

per-plane is determined according to a set of 
support vectors that are learned from data. 
Random forests [17] as alternative to the 
aforementioned methods follow the same 
principle. Given a set of training examples 
and associated decisions, they construct 
binary decision trees. For example, given 
a new sample and using binary decision 
principle, they propagate the new sample 
to the appropriate leaf. In order to remove 
the over-fitting bias, multiple trees can be 
constructed and then combined for optimal 
decisions. Such methods inherit simplicity, 
computational efficiency, and provide a 
good tradeoff between performance and 
difficulty to use/employ/learn. On the other 
hand, decisions are often taken individually 
and no correlation between variables/mea-
surements is considered. 

Structure prediction [18] is a step forward 
in introducing context in decision process, 
either through correlation between variables 
or through correlation between examples. 
Instead of building individual classifiers, 
what is sought here is a classifier able to 
reason at a larger scale in combining samples 
and observations. More structured represen-
tations like Markov Chain [19] and Hidden 
Graphical Models are also used for the same 
purpose. By training the graphical model of 
relatively simple structures, the same task 
of classifying new observations given what 
is measured is performed. Probabilistic 
graphical models [20] are a class of methods 
aiming at reasoning over graphs. The classi-
fication problem is often expressed as an op-
timal labeling one over the graph nodes. This 
graph inherits the connectivity that is often 
used to impose consistency and measure 
correlation between different variables and 
principles like max flow-min cut are used to 
determine the optimal assignment for a new 
sample. Artificial neural networks [21] are a 
particular case of graphical model inheriting 
some biological interpretation where, given 
a decision structure, what is learned is the 
way how decisions are propagated over these 
networks to optimally express behaviors of 
training data. These methods gained interest 
in recent years due to the development of 
efficient learning algorithms, their computa-
tional solutions along with the availability of 
computing power for parameters optimiza-
tion at training (namely deep learning [22]). 

Next we will discuss some concrete ex-
amples on the interest of using such methods 
in the context of health and epidemiology.

Big Data: Applications to Public 
Health and Epidemiology
Data Science for Disease Surveillance
Previously, when medical records were 
mainly paper-based, it could take weeks 
to find out that an infection was emerg-
ing somewhere in the world. Nowadays, 
most US hospitals use electronic medical 
records, and the growing prevalence of 
electronic medical records has had an 
unexpected benefit: by combing through 
data now received almost continuously 
from hospitals and other medical facilities, 
some health departments are spotting and 
combating outbreaks at an unprecedented 
speed. In February 2012, public health 
officials in Michigan noted an increase in 
electronic reports from clinical laboratories 
indicating E. coli cases in several counties. 
In less than a week, officials had enough ev-
idence to alert the public about the infection 
probably linked to clover sprouts in food at 
the Jimmy John’s sandwich chain. The chain 
quickly removed the sprouts and by April, 
the outbreak had died [23]. France was a 
precursor with the INSERM “Sentinelles” 
network [24], a fully electronic network 
based on a network of general practitioners 
throughout France. The “Sentinelles” net-
work was set up in 1984 by Alain-Jacques 
Valleron, using at this time the Minitel 
[25], an early online service. New health 
technologies, including the innovative use 
of the routinely assessed data, in strict com-
pliance with national regulations regarding 
confidentiality and data protection, should 
enable health authorities to respond readily 
to health crises and offer great potential for 
significant growth in this sector.

Ginsberg et al. [26] and Polgreen et al. 
[27] published two independent studies 
showing that the large number of queries on 
Internet search engines (Google and Yahoo) 
could be used to detect influenza epidemics 
in the USA one to two weeks earlier and five 
weeks ahead of the real time mortality ob-
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served by the Atlanta-based US Centers for 
Disease Control and Prevention (US CDC). 
A set of 45 search queries monitored on 
Google (as “indications of flu”) providing in 
real time a means of flu monitoring all over 
the USA were made publically available. 
The authors state that this early warning 
system was not in direct competition with 
the systems based on sentinel doctors or 
virology laboratories: once the alarm has 
been raised it was still necessary to check on 
the ground whether it was influenza and, if 
so, what was the strain, etc. Let’s consider in 
more details the controversy recently raised 
after the flu season in New York City in 
Winter 2013. “When influenza hit early and 
hard in the United States this year, it quietly 
claimed an unacknowledged victim: one of 
the cutting-edge techniques being used to 
monitor the outbreak”, wrote Declan Butler 
in Nature [28]. A comparison with tradition-
al surveillance data showed that Google Flu 
Trends, which estimated prevalence from 
flu-related Internet searches, had drastically 
overestimated peak flu levels. The glitch 
is no more than a temporary setback for a 
promising strategy, experts said, and Google 
thought initially to refine its algorithms but 
finally closed their website, in August 2015. 
But flu-tracking techniques based on web 
data mining and on social media prolifer-
ated, and the episode should be considered 
as a reminder that these methods may 
complement, but not substitute traditional 
epidemiological surveillance networks. “It 
is hard to think today that one can provide 
disease surveillance without existing sys-
tems,” said Alain-Jacques Valleron. “The 
new systems depend too much on old exist-
ing ones to be able to live without them,” he 
added. Google Flu Trends has continued to 
perform remarkably well, and researchers 
in many countries have confirmed that its 
influenza-like-illness (ILI) estimates were 
accurate. But the 2013 US flu season seems 
to have confounded Flu Trends algorithms. 
Estimates for the Christmas national peak of 
flu were almost twice the CDC’s, and some 
state data showed even larger discrepancies. 
It was not the first time that a flu season 
had tripped Google up. In 2009, Flu Trends 
had to tweak its algorithms after its models 
badly underestimated ILI in the United 
States at the start of the H1N1 (swine flu) 

pandemic — a glitch attributed to changes 
in how people were searching the net using 
Google as a result of the exceptional nature 
of the pandemic [28]. So these algorithms 
should continue to be tweaked to account 
for changing search trends and those infor-
mation seekers, who are merely responding 
to an increased awareness of risk as well as 
those, who are ill and seek medical infor-
mation related to their symptoms.

We can be sure that the world’s health 
surveillance will use this type of approach 
in addition to the systems currently set up, 
especially in the increasing number of plac-
es where Internet is accessible and used. 
Many experts welcomed a major advance 
in terms of early warning that should help 
provide wider coverage, more precise mon-
itoring, and in the long term better under-
standing of the dynamics of epidemics and 
the conditions that lead to their outbreak. 
Weather forecasting was revolutionized 
first by setting up a worldwide network of 
ground sensors and second by the intro-
duction of satellite communications. What 
was clearly lacking in health monitoring 
until now was the missing links in the 
chain of sensors (doctors or laboratories), 
too widely spaced, too imprecise, relying 
on good will and volunteers, and subject 
to under-reporting. The use of Internet 
search engines, that could guide operations 
to look into possible sources of epidemics 
in specific places around the world, opens 
up the way to a re-organization of health 
surveillance and the reappraisal of the role 
played by those involved.

Some new problems are emerging: will 
this data (derived from the search engines) 
that is now free and available almost in real 
time in many areas of the world remain 
freely available? Will there be platforms 
that will analyze the data using standard-
ized, recognized, and reliable methods? The 
set of appropriate search queries for the 
optimum detection clearly varies according 
to culture, language, customs, and health 
systems: the impact of these variations 
on the quality of the estimates should be 
studied and the best set for each country 
should be defined and monitored to see 
how the performance changes (sensitivity 
and specificity of diseases detection). Will 
the poorest areas in the world be covered by 

this technological advance (perhaps through 
mobile devices) or will they, once again, 
be left by the wayside, bearing in mind 
that many of these areas are hot spots in 
terms of outbreak of infectious diseases of 
pandemic potential such as Ebola or Zika 
virus disease.

Similarly to infectious diseases, there 
is an urgent need for surveillance systems 
for chronic diseases such as cardiovascular 
diseases or cancer. The analysis of trends in 
chronic diseases is often based on mortality 
data which do not pick up early changes 
in disease morbidity. Data from registries 
or surveys may show earlier changes in 
trends. However, for many chronic diseases, 
registries exist only in certain areas and 
may not be representative of the whole 
population. They are also often subject to 
a lack of adequate resources (e.g., financial 
resources). Existing routinely assessed data 
may provide the additional information 
required to implement an early warning 
system, for example as to the potential in-
crease of a medication side effect. Hospital 
discharge data, data from health insurance 
companies or emergency medical services, 
data on drug sales etc. all provide valu-
able additional information that should 
have an impact on the planning of public 
health interventions to tackle threatening 
epidemics. Successes in public health and 
medicine such as the treatment of H. pylori 
infection to prevent gastric cancer demon-
strate that trends in infectious diseases and 
chronic diseases should be analyzed in a 
combined way. Especially, big data pro-
vides the unique opportunity to discover 
early links between diseases to advance 
research further. Explorative findings in the 
analyses of big data will instigate basic and 
epidemiological research for confirmation. 
The translation into public health following 
the evaluation in comparative intervention 
studies as well as the subsequent setting- 
and population-based evaluation will be a 
major tool for improving health outcomes. 
The success of public health interventions 
will then be monitored again using big data 
to form a truly interdisciplinary and integra-
tive cycle of research and implementation. 
This approach will be innovative, timely, 
and allows for improving the health of the 
population on a large scale.
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Big Data for Drug Safety and 
Computer-Assisted Pharmacovigilance 
It takes often many years after a medication 
has been put on the market before the med-
ication is found to have caused an undesir-
able event. This was the case for distilbene 
(vaginal cancer), phenacetin (chronic renal 
failure), amidopyrin (medullary aplasia), 
isomeride and, more recently, mediator (val-
vulopathy), to give but a few examples from 
a far longer list of drugs that are sometimes 
less well known. Pharmacovigilance is the 
careful analysis of reports by doctors to pub-
lic health authorities and/or pharmaceutical 
companies. Pharmacovigilance measures 
were set up in the USA and in Europe 
after the regrettable case of thalidomide 
which caused serious foetal malformation 
(phocomelia) in the early 1960s. Never-
theless, the delays between the time a new 
medicament is put on the market, the time 
of the discovery and then the confirmation 
of an adverse drug event (ADE) caused by 
the medicament, and the design of appro-
priate regulations to prevent such events 
are still far too long. These delays, which 
result in morbidity and mortality that could 
be avoided, are considered by patients and 
consumers as a sign of failure of the public 
health system and contribute to their loss of 
confidence in health authorities. 

In a study using data drawn from queries 
on Google, Microsoft, and Yahoo search 
engines, authors have for the first time [29] 
been able to detect evidence of unreported 
prescription drug side effects before they 
were found by the Food and Drug Admin-
istration’s Adverse Event Reporting System 
[30]. This study is based on data-mining 
techniques. Authors used automated soft-
ware tools to examine queries handled by 
six million Internet users taken from Web 
search logs in 2010. They looked for search-
es relating to an antidepressant, paroxetine, 
and a cholesterol lowering drug, pravastatin. 
They were able to find evidence that the 
combination of the two drugs caused high 
blood sugar.

The scope of existing pharmacovigilance 
systems is limited by the fact that evidence 
could be generated only when physicians 
notice something and report it. Researchers 
turned to computer scientists at Microsoft, 

who created software for scanning anony-
mous data collected from a software toolbar 
installed in Web browsers by users who per-
mitted their search histories to be collected. 
Scientists were able to explore 82 million 
individual searches for drugs, symptoms, 
and conditions. They first studied individ-
ual searches for the terms paroxetine and 
pravastatin, as well as searches for both terms 
during 2010. They then computed the like-
lihood that users in each group would also 
search for hyperglycemia as well as roughly 
80 of its symptoms — words or phrases like 
“high blood sugar” or “blurry vision” [31]. 
They stated that people who searched for 
both drugs during the 12-month period of 
the study were significantly more likely to 
search for terms related to hyperglycemia 
than those who searched for just one of the 
drugs. They also found that people, who did 
the searches for symptoms relating to both 
drugs were likely to do the searches in a 
short time period: 30% did the search on the 
same day, 40% during the same week, and 
50% during the same month for both drugs.

The strength of the signal authors de-
tected in the searches was high, and it will 
be a valuable tool for official drug agencies 
to add to their current systems for tracking 
adverse effects. “There is a potential public 
health benefit in listening to such signals,” 
they wrote in the paper, “and integrating 
them with other sources of information.” In 
the future, researchers could add new sourc-
es of information, like behavioral data and 
information from social media sources. One 
challenge will be to integrate new sources 
of data while protecting individual privacy.

Cami A. et al., 2011 [32] described the 
results of a method that could radically 
change standard drug safety. It is a predic-
tive approach that can determine new ADEs 
before they have occurred. The authors con-
structed a network representing drug-ADE 
associations for 809 drugs and 852 ADEs on 
the basis of a snapshot of a widely used drug 
safety database from 2005. The data came 
from various sources: pharmacovigilance 
reports, pharmaceutical taxonomies, ADE 
taxonomies, and the intrinsic pharmaco-
logical properties of the drugs studied. The 
authors trained a logistic regression model to 
predict unknown drug-ADE associations that 
were not listed in the 2005 snapshot. They 

then compared these predictions with the 
new drug-ADE associations that appeared 
in a 2010 snapshot of the same drug safety 
database (2006-2010). The accuracy of the 
predictions was amazing. Using this method, 
the authors were able to predict with a high 
specificity 7 of the 8 ADEs that emerged 
after 2005, including the association between 
the anti-diabetic rosiglitazone (Avandia) and 
the occurrence of heart attacks.

As the editors commented on the article, 
there are benefits for patients. With this 
powerful model in place, certain unknown 
ADEs could be predicted, which helps to 
prevent morbidity and mortality related to 
suspect drugs by providing more appropriate 
information to consumers.

Both examples detailed above seem to 
herald a new era with the need for new skills 
for drug safety teams, both in the industry 
and the public domain: the application of this 
type of methods is not trivial and requires 
extensive skills in the domains of comput-
ing and statistics that were not required by 
the standard monitoring of ADEs (which 
requires more knowledge of pharmacology 
and medicine). There is no doubt that this 
kind of software will now be produced as 
integrated systems and that it will be difficult 
not to use them to focus the attention of phar-
macovigilance teams more closely on the 
risks identified as having a high probability 
of occurrence. However, computers will not 
replace human-made pharmacovigilance but 
they could be of considerable assistance.

Big Data for Tracking Nosocomial 
Infection and Reducing Hospital 
Readmissions
In hospitals, data science is changing the 
way physicians take care of patients at the 
individual level, fostering more personalized 
support right at the patient’s bedside. For 
instance, NorthShore University Health 
System in Evanston, Illinois, USA, has ob-
served the impact of predictive modeling at 
the point-of-care [33]. As a result of its large 
data sets, the health system has developed 
models to identify which patients are likely 
carriers of a dangerous microorganism, 
Methicillin-Resistant Staphylococcus Au-
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reus (MRSA). By implementing the results 
of that modeling into electronic medical 
records, providers within the health system 
receive alerts when a patient is admitted that 
meets the characteristics of being a high-
risk carrier of MSRA, as determined by the 
predictive models. These models are able to 
identify about 90% of MRSA in the patient 
population. NorthShore has also used this 
modeling to predict which patients are likely 
to develop Clostridium difficile.

Big data also provides predictive models 
for the likelihood of readmission within 
30-days [34]. A user can look at a panel 
of patients to see which patients are at 
risk — high, medium or low — of being 
readmitted in 30 days. These predictive 
models which identify patients, who were 
recently discharged from the hospital with 
a high risk for readmission, are able to 
send messages to primary care practices. 
Without large data sets showing trends and 
patterns in huge groups of patients, this type 
of accurate predictive modeling would not 
be possible. Big data is emerging in the 
healthcare space, and it is likely that it will 
continue to magnify over time. Healthcare 
organizations are going to keep collecting 
massive volumes of data, so aggregating 
and analyzing that data will be a continual 
challenge. However, that effort will be 
worthwhile as we begin to see the fulfill-
ment of big data promises.

Data & Model-driven 
Approaches in Health/
Epidemiology Sciences
The afore mentioned examples demonstrate 
the interest in considering data-driven ap-
proaches towards the better understanding 
of health-related events or the more precise 
prediction of future ones. However, health 
and epidemiology sciences can be consid-
ered parts of the domains where machine 
learning/data science methods would be 
applied. The advantage of such view point 
is that algorithmic development is separated 
from the domain, and adoption of algorithms 
becomes a question of performance. Such an 
appealing perspective however contradicts 

the underlying philosophy of health sciences 
that rely on expert knowledge and models, 
and most of all requires human understand-
able and interpretable solutions. The recent 
progress made in machine learning and 
optimization should be used as the driving 
force to bridge the gap between pure da-
ta-reasoning and model-driven approaches. 
It is time to associate models exploiting ba-
sics of human intelligence and interpretation 
with the power of data collection, annotation, 
and diversity. 

Graphical models are an appropriate tool 
to introduce context and relate algorithmic 
suggestions with human interpretable solu-
tions. Deep learning [35] is a method that 
exploits full potential of data and unlocks 
their hidden intelligence. Unlike the two 
learning paradigms discussed earlier, namely 
unsupervised learning and fully supervised 
learning methods, state of the art methods 
should reflect the true availability of data in 
real life. Specifically, real-world data is often 
partially supervised, that is, while the train-
ing examples are annotated, their annotations 
contain missing information. We propose to 
represent this missing information as latent 
variables of graphical models, which are 
neither observed during training nor tested. 

Given a set of weakly supervised training 
examples and over-complete representation 
in respect to the variables interaction, we 
need to determine the best possible model 
in terms of compactness and prediction be-
havior. In order to deal with the large amount 
of data, we will put the emphasis on the 
progressive/online learning concept where 
the model is progressively built and updated 
using new examples/labels. In order to deal 
with the inherent noise in weakly supervised 
data, we still need to investigate principles 
from self-paced learning and active learning 
among others. 
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