
178

IMIA Yearbook of Medical Informatics 2016

© 2016                                 IMIA and Schattauer GmbH

Knowledge Representation and Management: 
a Linked Data Perspective
M. Barros, F. M. Couto
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Summary
Introduction: Biomedical research is increasingly becoming 
a data-intensive science in several areas, where prodigious 
amounts of data is being generated that has to be stored, 
integrated, shared and analyzed. In an effort to improve the 
accessibility of data and knowledge, the Linked Data initiative 
proposed a well-defined set of recommendations for exposing, 
sharing and integrating data, information and knowledge, using 
semantic web technologies. 
Objective: The main goal of this paper is to identify the current 
status and future trends of knowledge representation and 
management in Life and Health Sciences, mostly with regard to 
linked data technologies. 
Methods: We selected three prominent linked data studies, 
namely Bio2RDF, Open PHACTS and EBI RDF platform, and 
selected 14 studies published after 2014 (inclusive) that cited 
any of the three studies. We manually analyzed these 14 papers 
in relation to how they use linked data techniques. 
Results: The analyses show a tendency to use linked data 
techniques in Life and Health Sciences, and even if some 
studies do not follow all of the recommendations, many of them 
already represent and manage their knowledge using RDF and 
biomedical ontologies. 
Conclusion: These insights from RDF and biomedical ontologies 
are having a strong impact on how knowledge is generated 
from biomedical data, by making data elements increasingly 
connected and by providing a better description of their 
semantics. As health institutes become more data centric, we 
believe that the adoption of linked data techniques will continue 
to grow and be an effective solution to knowledge representation 
and management.
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1   Biomedical Data 
Biomedical research is increasingly becom-
ing a data-intensive science in several areas, 
where prodigious amounts of data is being 
generated that has to be stored, and most of 
the times integrated, shared and analyzed. 
Moreover, biomedical data is highly complex 
when compared to standard big data projects 
that, for example, store and analyze short 
messages and their authors, often collected 
from a single source and using common 
formats. In opposition, even a single health 
institution has to deal with multiple types 
of data, in heterogeneous formats and from 
different sources, such as electronic health 
records, clinical images and reports, or ge-
nome sequences. 

The challenge of how to store and manage 
biomedical data in the most precise way 
possible has a long-standing history, and 
besides the big technological advances it still 
remains an open issue. For example, in 1985 
The Committee on Models for Biomedical 
Research proposed a structured and integrat-
ed view of biology to cope with the available 
data [1]. Nowadays, the BioMedBridges 
[2] initiative aims at constructing the data 
and service bridges needed to connect the 
emerging Biomedical Sciences Research 
Infrastructures (BMSRI), which are on the 
roadmap of the European Strategy Forum on 
Research Infrastructures (ESFRI). 

Knowledge
Besides all the technological advances that 
we may deliver to make data easily acces-
sible, researchers need more than raw data, 
they need a clear and objective characteri-
zation of who, what, where, why and how 

that data was collected. For example, due 
to the Galileo’s strong commitment to the 
advance of Science, he integrated the direct 
results of his observations of Jupiter with 
careful and clear descriptions of how they 
were performed, which he shared in Sidere-
us Nuncius [3]. These descriptions enabled 
other researchers not only to be aware of 
Galileo’s findings but also to understand, an-
alyze and replicate his methodology. We must 
understand the meaning of data to replicate 
experiments and their outcomes, otherwise 
they are just sequences of zeros and ones 
where we are able to find useless correla-
tions but no causality. For example, knowing 
the raw sequence of our genome is useless 
without the knowledge that science gave us 
after all these years of studying its meaning. 

Even if you have easy access to all 
biomedical data, its real value can only be 
leveraged through how effectively we can an-
alyze it towards the acquisition of knowledge 
that needs to be represented and managed. 
Creating data without producing knowledge 
is like writing books that are never read, 
and biomedical data is like erudite books 
in terms that they normally are not easy to 
read with their challenging writing styles. 
Thus, biomedical literature has been the 
traditional and natural mean for represent-
ing knowledge, where all the findings are 
properly described and their limitations and 
potentials fully discussed. As a consequence, 
a large amount of the knowledge acquired 
in Life and Health Sciences is available 
through literature. However, representing 
knowledge as unstructured free text hinders 
its accessibility and usage, since the retrieval 
of information from a large collection of 
texts is a tedious and time-consuming task 
for humans and a hard and prone to error 
task for machines [4]. 
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Linked Data
In an effort to improve the accessibility of 
data and knowledge without losing too much 
flexibility, the Linked Data initiative [5] pro-
posed a well-defined set of recommendations 
for exposing, sharing and integrating data, 
information and knowledge, using semantic 
web technologies. This paradigm is more 
than just a standardized messaging and text 
communications protocol to avoid data silos, 
such HL7, Linked Data enables the associa-
tion and characterization of any kind of data 
in the form of links reinforcing our tools to 
represent and manage knowledge. The links 
are described using Resource Description 
Framework (RDF) [6] that provides a uni-
versal graph-based data model to connect 
the data between themselves but also to add 
semantics to them [7]. This model is more 
flexible than traditional data storage models, 
but still not as much as unstructured free text. 
Thus, literature will not be replaced by linked 
data but more data and knowledge can be 
easily expressed this way without hindering 
its accessibility. Besides RDF there are other 
graph-based models, such as Property Graphs 
[8], which may prove to be more effective in 
some specific areas of biomedicine. 

One of the earliest well-known attempts 
of applying Linked Data to biomedical 
data was Bio2RDF [9], an open access 
platform that provided access to millions 
of documents in normalized RDF format 
with data from hundreds of different or-
ganisms. The potential of Bio2RDF was 
demonstrated in a case where a knowl-
edgebase about Parkinson’s disease was 
successfully built and some specialized 
questions were efficiently answered. 

A few years ago, a public-private part-
nership between the pharmaceutical indus-
try and the academia, publishers, small and 
medium sized enterprises initiated the proj-
ect Pharmacological Concept Triple Store 
(Open PHACTS) [10]. Its goal was to build 
an open pharmacological knowledgebase 
that could overcome with the complexity of 
data access and licensing hurdles intrinsic 
to this domain with a solid plan for sustain-
ability, service provision and maintenance 
in the public domain. Like Bio2RDF, Open 
PHACTS platform is based on RDF for-
mat with a bottom-up perspective of data 

standards where information from multiple 
providers is exposed by adaptive integration 
of the information.

More recently, the European Bioinfor-
matics Institute (EBI), a major provider 
of bioinformatics data and services, made 
available to the community the EBI RDF 
platform [11]. This platform integrated 
multiple EBI data resources, such as Un-
iProt, Gene Expression Atlas, ChEMBL, 
BioModels, Reactome and Biosamples, 
based on the RDF format and accessible 
through a standard query language interface 
(SPARQL). EBI RDF platform is the web 
interface for online access, but besides just 
providing data in a common format, this 
platform makes an effort in including as 
much as possible common vocabularies to 
describe their semantics and provenance. 

Just by adopting the Linked Data par-
adigm does not mean that we are sharing 
knowledge. Each human has his own set of 
links in his mind, and to start communicat-
ing we need a common ground. For exam-
ple, by using spoken English two human 
can share their knowledge about the world 
and therefore create more links in their 
minds. There are specific predicates that 
should be used for linking datasets, such as 
owl:sameAs, rdfs:seeAlso, skos:exactMatch 
and skos:closeMatch, and a recent study 
showed that in Life Sciences the predicate 
owl:sameAs was the most widely used 
linking predicate (52.17%) [12].

One important aspect of the Linked Data 
paradigm is the usage of common vocab-
ularies that are expressed using the RDF 
Schema [13] (RDFS) and the Web Ontology 
Language [14] (OWL). These vocabularies 
are used to describe the data elements and 
their relations by defining classes and their 
properties. The usage of common vocabu-
laries is incentivized (but not compulsory) 
to establish a common interpretation of data 
and by consequence enable knowledge shar-
ing. These vocabularies can vary from simple 
terminologies to highly complex semantic 
models of a given domain encoded in the 
form of ontologies, such as Gene Ontology 
(GO) [15]. The Linked Data paradigm uses 
RDF as its data model together with its 
vocabulary definition languages RDFS and 
OWL. However, in fact the usage of RDF 
and ontologies goes beyond the scope of 

Linked Data, and many biomedical projects 
exploit them without necessarily following 
the Linked Data paradigm

Ontologies
Above biomedical data was compared to 
erudite books with challenging writing 
styles, but now imagine if each one of them 
were written in an exclusive language that 
could not be easily mapped to English, and 
therefore without any thorough translation 
available. Reading each book required us 
to learn a new language to fully understand 
its message. The knowledge was there but 
accessible to just a few. Thus, standard clas-
sification vocabularies represent a solution 
that prevents data and knowledge from being 
stored as silos by enabling data annotations 
with common terms, which makes data 
and its meaning more accessible. These 
vocabularies are instantiated by Knowledge 
Organization Systems (KOS) [16] in the 
form of classification systems, thesauri, lex-
ical databases, gazetteers, and taxonomies, 
and ontologies. The latter can be loosely 
defined as “a vocabulary of terms and some 
specification of their meaning” [17, 18]. If 
an ontology is accepted as a reference by 
the community then the representation of its 
domain becomes a standard, and knowledge 
sharing and management is facilitated. 

The etymological encyclopedia (Book 
IV: Medicine) [19] compiled by Isidore of 
Seville (c. 560–636) was one of the first at-
tempts to systematize medicine knowledge. 
In the seventeen century, London bills of 
Mortality [20] established a classification 
terminology for registering morbidity and 
mortality cases that enabled the study of 
mortality rates and their causalities. How-
ever, only in the last decades the biomedical 
community openly engaged on developing 
and using ontologies to represent and man-
age knowledge. Perhaps the most known 
KOS in medicine nowadays is the vocabulary 
provided by the International Classification 
of Diseases ICD [21], a classification system 
that is being maintained by the World Health 
Organization (WHO), which originally 
aimed at providing a statistical analysis 
tool for disease incidence and mortality. 
The current release ICD-10 [22] provides 
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a vocabulary containing a list of generic 
clinical terms mainly arranged and classified 
according to anatomy or etiology. 

Another well-known ontology is the Sys-
tematized Nomenclature of Medicine - Clini-
cal Terms (SNOMED CT), originally created 
by the College of American Pathologists and 
currently maintained by the International 
Health Terminology Standards Development 
Organization. The SNOMED CT provides 
a highly comprehensive and detailed set 
of clinical terms used in many systems to 
enrich the information in electronic health 
records. The July 2016 release provided 
321.901 active concepts [23]. SNOMED also 
includes logic-based definitions to represent 
terminological knowledge, i.e., facts about 
the meaning of the terms. For example, the 
term myocardial infarction includes the fact 
that it must involve the myocardium, and it 
must involve an infarction. SNOMED CT 
is available through the Unified Medical 
Language System (UMLS) [24] maintained 
by the U.S National Library of Medicine. 
The UMLS provides a Metathesaurus that 
integrates more than one hundred miscel-
laneous vocabularies (e.g. Medical Subject 
Headings thesaurus (MeSH)), which in the 
2015AB release covered more than three 
million concepts [25]. 

One of the criticisms of SNOMED CT 
is the fact that is proprietary. Therefore the 
Open Biomedical Ontology foundry (OBO) 
[26] proposed an alternative approach where 
design patterns and best practices in ontology 
specification are stimulated on an open usage 
and collaborative development basis. OBO 
established a set of principles that the ontol-
ogies have to satisfy before becoming part 
of the project. These principles ensure high 
quality, formal rigor and also interoperabil-
ity between OBO member ontologies. One 
of these principles requests the ontology to 
be open and available without any constraint 
other than acknowledging its origin. They 
also provide an alternative format to OWL 
to represent ontologies, named OBO format. 

GO is one of the most popular OBO 
ontologies, which has been extensively 
used to annotate gene-products with terms 
describing their molecular functions, bio-
logical processes and cellular components. 
In September 2014, GO provided more 
than 41,775 terms and a total of 53,042,843 

gene-products annotated with them [27]. GO 
relies on a large consortium of collaborators 
that cooperate in maintaining and updating 
the ontology which made it widely used 
and accepted, and thus considered a major 
example of success for biomedical ontolo-
gies. Another OBO ontology is the Disease 
Ontology (DO) [28] that provides human 
disease terms, phenotype characteristics and 
related medical vocabulary disease concepts. 
In October 2014, DO contained 8,803 terms 
of which 2,384 are considered obsolete [29]. 
The Human Phenotype Ontology (HPO) [30] 
is also an OBO ontology that provides terms 
for describing phenotypic abnormalities seen 
in human disease. In 2015, HPO contained 
more than 11,000 terms, and over 116,000 
annotations to over 7,000 rare diseases [31].

2   Methodology
To present an overview of the significant 
developments in knowledge representation 
based on linked data approaches over the past 
one or two years, we started by identifying 
a representative set of articles by analyzing 
the citations to the well-known projects de-
scribed above. Thus, in December 2015 we 
started by collecting the list of articles on 
Google Scholar that cited articles presenting 
Bio2RDF, Open PHACTS and/or EBI RDF 
platform. At the time they were quoted by 
498, 128, and 59 articles, respectively. 

The list of articles was then automatically 
filtered using the following restrictions: i) 
published after 2014 (inclusive), ii) having 
the word data in their title, and iii) published 
in biomedical journals. The first restriction 
limited the survey to approaches published 
over the past one or two years. The second 
one limited the survey to approaches that 
have a strong focus on data. The third restric-
tions limited the survey to biomedical studies 
that are already well-established. 

Finally, we manually analyzed the scope 
of each article and selected only the ones 
that represented case-studies, repositories 
or frameworks working with data of Life 
and Health sciences. Thus, we removed all 
the articles mainly describing software and 
tools, statistical analysis of data, opinions, 
reviews and surveys. 

The result of this process was a list of 
14 articles that we believe provide a good 
representative overview, not a comprehen-
sive list, of the significant developments 
in knowledge representation over the past 
one or two years.

3   Results
Bio2RDF Related Work
As displayed on Table 1, from the 14 se-
lected articles, i, ix, x, xi, xii, xiii and xiv 
quote Bio2RDF work, but they do not use 
this platform. Study i, for example, pro-
posed a Linked Clinical Data Cube, which 
main goal was to use data from Australian, 
Imaging, Biomarker and Lifestyle study of 
Ageing (AIBL) and makes it available as 
linked data for the research community. 
The authors quote Bio2RDF as related 
work, since both studies transform data 
from databases in RDF and share them in 
an easy and accessible way, allowing the 
extraction of relevant information from 
these databases. Another example is study 
ix. They created a platform (eXframe plat-
form), that as well as Bio2RDF, makes the 
information available as RDF. In study xiii, 
a Web tool (TogoTable) is built. It utilizes 
the features of RDF to connect several 
Linked Open Data (LOD) databases, en-
abling links to Bio2RDF.

Articles iv, vi, vii and viii, not only 
quote Bio2RDF, but also used it in their 
methodology. In iv, they presented an 
approach to integrate pathway data from 
four different Linked Data repositories 
using Bio2RDF Kegg’s data as the core 
and Bio2RDF Reactome distribution as 
an extension. The goal of article vi was 
to mine linked open data and they used 
Bio2RDF ontologies to link some enti-
ties. Article vii used Bio2RDF biological 
database applying new standards for LOD 
necessary to communicate effectively 
with other reference databases already 
operating under the scheme or Semantic 
Web. Finally, article viii, proposes a na-
nopublication publishing format that uses 
Bio2RDF since it provides RDF and URIs 
for different biomedical resources. 
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EBI RDF Platform Related Work
The EBI RDF platform is quoted in 7 of the 
14 papers: v, vi, ix, x, xi, xii and xiii. How-
ever, only article v work is related with this 
platform. From the articles that only quote 
EBI RDF platform, article x compares the 
efforts from EBI-RDF to provides an inno-
vative approach to queries and explore rich 
biological data collections, with their own 
efforts to create an ontology for generating 
standardized RDF for glycan structures and 
related data. Another example is article xii. 
The goal was to create SEEK platform: a 
suite of tools to support the management, 
sharing and exploration of data and models 
in systems biology. SEEK stores metadata in 
RDF which promotes greater interoperability 
with other platforms like EBI-RDF.

Open PHACTS Related Work
The Open PHACTS is quoted in only 4 of 
the 14 selected articles (ii, iii, xi and xiv), but 
none of them use it. The eTOX data-sharing 
project (ii) is gathering data from public and 
private domain, being the main goal the devel-
opment of a common ontology and it quotes 
Open PHACTS as another initiative to gather 
chemical related toxicity information. The 
same description is given in article xiv. This 
work is related with The Semantic Enrichment 
of the Scientific Literature (SESL) project. 
Articles iii and xi shows Open PHACTS as an 
example of other efforts where Semantic Web 
technology has been used for the biomedical 
data integration.

Table 2 shows the data input and output 
used in the selected articles. Most articles 
(ii, iii, viii, ix, x, xii and xiv) used Ontology 
Web Language (OWL) and Open Biomedical 
Ontologies (OBO) as input or just as com-
plementary data to improve the output. The 
eTOX project (ii), for example, used data from 
preclinical studies, extracted from papers and 
PDF’s through data mining, and ontoBrowser 
ontology to confirm and standardize the data 
so they could be used to create a new ontology 
of toxicity. This is useful to create a predictive 
model for drug development process. In ix, 
several ontologies such NCBITaxon, EFO, 
FMA, BTO, CL, NCI Thesaurus and CHEBI 
were used to annotate data. Ontologies from 
Bio2RDF platform are particularly employed, 

as can be read in articles iv, vi, vii, and viii. 
Gene Ontology was used in articles iii, xi 
and xiv. Article v do not specify the type 
of input data, just mentioning that the data 
were manually extracted and curated from 
chemistry literature. 

RDF data was the input in articles i, 
iv, xi, vii and xiii. In i, clinical study data 
was extracted in Clinical Data Interchange 
Standard Consortium – Operational Data 

Model (CDISC ODM) format and Data 
Documentation Initiative RDF (DDI-RDF) 
vocabulary was used to enrich clinical data 
based on the CDISC standards. Both RDF 
and ontologies are used in two particular 
cases, viii and xi. In the first one, data from 
Bio2RDF platform is used as well as NIF 
Standard ontology (NIF-STD), NCI Thesau-
rus (NCI), Gene Regulation Ontology (GRO), 
SemanticScience Integrated Ontology (SIO) 

Table 1   Results of the 14 selected articles regarding to Bio2RDF, EBI RDF platform and Open PHACTS. Label: x - quote; xx - quote and use.

Nº

i

ii

iii

iv

v

vi

vii

viii

ix

x

xi

xii

xiii

xiv

Article

Leroux, 2015 [32]

Cases, 2014 [33]

Hettne, 2014 [34]

Navas¬Delgado, 2015 [35]

Davies, 2015 [36]

Personeni, 2014 [37]

Bertel¬Paternina, 2014 [38]

Mina, 2015 [39]

Merrill, 2014 [40]

Ranzinger, 2015 [41]

Hoehndhorf, 2015 [42]

Wolstencroft, 2015 [43]

Kawano, 2014 [44]

Rebholz¬Schuhmann, 2014 [45]

Bio2RDF

×

××

××

××

××

×

×

×

×

×

×

EBI RDF platform

××

×

×

×

×

×

×

Open PHACTS

×

×

×

×

Table 2   Results from the 14 selected articles regarding the type of data they use and create. 

Nº

i

ii

iii

iv

v

vi

vii

viii

ix

x

xi

xii

xiii

xiv

Article

Leroux, 2015

Cases, 2014

Hettne, 2014

Navas¬Delgado, 2015

Davies, 2015

Personeni, 2014

Bertel¬Paternina, 2014

Mina, 2015

Merrill, 2014

Ranzinger, 2015

Hoehndhorf, 2015

Wolstencroft, 2015

Kawano, 2014

Rebholz¬Schuhmann, 2014

Input

RDF

OWL/OBO

OWL/OBO

RDF

Other

RDF

RDF

RDF/OWL

OWL/OBO

OWL

RDF/OBO/OWL

OWL

RDF/OBO

OWL/OBO

Output

RDF

New ontology

RDF

RDF

RDF

RDF

RDF

Nanopublications

RDF

RDF

OWL

RDF

RDF

RDF
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and Sequence Ontology (SO). The former, a 
bio-ontology repository, used several ontol-
ogies and RDF data to create the platform. 
Final output for most articles is RDF data. 
Exceptions are article ii, that created a new 
ontology of toxicological terms, article 
viii, which has as output nanopublications, 
and xi, as already said, intended to create 
an ontology repository, thus its output is a 
research ontology platform. 

In the selected articles we were not able 
to find information about dereferencability 
of the vocabularies/ontologies. However, 
according to recent statistics, most vocabu-
laries terms (71.73%) are not dereferencable, 
19.47% are totally dereferencable and 8.8% 
are only partially derefenrencable. Particu-
larly in Life Science, 66.67% are not deref-
erencable, 27.78 are totally dereferencable 
and 5.56% are partially dereferencable [12].

4   Discussion
There is no doubt that nowadays we have ac-
cess to more data, more easily and with higher 
quality than a decade ago. However, is it our 
knowledge keeping up the pace? As presented 
above, RDF technologies are having a strong 
impact on how the Life and Health Sciences 
community is storing, integrating and sharing 
data and knowledge. Even if not fully follow-
ing Linked Data paradigm, the community is 
now making a large effort in exploiting some 
of its technologies for connecting the data 
elements and consequently providing a better 
description of their semantics. In that sense, 
ontologies are performing a crucial role in 
making the semantic annotations consistent 
and interoperable. Unlike the knowledge con-
cealed in the articles, the knowledge shared 
through annotations using standard ontologies 
can be easily processed and analyzed by com-
putational methods. For example, it enables us 
to search for similar and related entities based 
on their biomedical meaning, such as similar 
molecular functions and similar diseases [46].

Many information retrieval systems, such 
as Google, use similarity measures to cal-
culate the similarity between a query and a 
document that takes in account its relevance 
to the user. For instance, if we try to look for 
physiology models annotated with Scaphoid 

we may be interested in receiving the models 
annotated with Wrist as well, but probably not 
all the models annotated with other Upper 
limb segments. This relevance can be captured 
by semantic similarity measures that return a 
numerical value reflecting the closeness in 
meaning between semantic annotations [47]. 
These semantic similarity measures have 
been successfully developed and applied to 
biomedical ontologies, particularly to the 
Gene Ontology, where they are mainly used 
to compare genes or proteins based on the 
similarity of their functions. Another popular 
technique is enrichment analysis that exploits 
the semantic annotations to identify clinical 
and biological characteristics that may better 
describe the outcome of a group of patients 
with a common disease. For example, recently 
this technique was effectively applied to 
improve the disease prognosis of the hyper-
trophic cardiomyopathy [48]. 

In a near future health institutes would be 
data centric, where each situation is analyzed 
according to previous situations by compar-
ing similar patient profiles with similar phe-
notypes. For example, screening processes 
that are crucial to detect life-threatening 
situations in a short period of time would 
benefit from having a large knowledgebase 
together with advanced information retriev-
al systems that could provide these alerts 
in real time. Due to privacy issues these 
knowledgebase are normally restricted to 
local data that hinders their effectiveness, but 
for sharing data we do not need open data. 
For example, we can use a remote similarity 
service from an external knowledgebase and 
if we get a hit, we may automatically send a 
request to access that matching information. 
If permissions are granted, we may access 
the information in an anonymized and 
controlled way, i.e., in case of any leak we 
know who, how, why and what was granted 
and accessed. Thus, by dealing with sensitive 
data does not mean that we cannot share 
metadata and services following a linked 
data perspective, by the contrary it is one (if 
not the) of the best approaches to represent 
and manage knowledge in such a setting.

Linked Data offers an effective solution 
to break down data silos, however, the sys-
tematic usage of these technologies requires 
a strong commitment from the research com-
munity. Creating linked data resources with 

sound and comprehensive characterizations 
of their meaning and using semantic annota-
tions to common ontologies is a complex and 
subjective process, which can be supported 
by automatic methods, such as text mining 
[49], but in most cases it requires a lot of spe-
cialized human intervention. So recognition 
and reward mechanisms besides bibliometric 
indicators will be essential to avoid the cre-
ation of raw data silos that cannot be reused 
by others, or even by the owners themselves 
[50]. This incentive is currently so low that 
sometimes even authors cannot recover the 
data associated with their own publications. 
Public funding agencies and journals may 
enforce data-sharing policies, but adherence 
is most of the times inconsistent and scarce 
[51]. The problem, therefore, is obtaining 
a proactive involvement of the community 
in integrating and sharing data. To support 
these, we have to go beyond technological 
advances, and create motivation mechanisms 
that encourage data owners to share their 
data in a meaningful way [52].

Linked Data is not free or open data and 
is not sound data, it can have access restric-
tions, be incomplete, have errors, but the 
technological advances and the successful 
use cases in the Life and Health Sciences 
shown above are a promising sign that linked 
data may in near future be omnipresent in our 
daily lives as the Internet is today.
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