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SLINGER: large-scale learning for 
predicting gene expression
Kévin Vervier & Jacob J. Michaelson

Recent studies have established that single nucleotide polymorphisms are sufficient to build accurate 
predictive models of gene expression. Gamazon, et al., found that gene expression values predicted 
from cis neighborhood SNPs show statistical association with disease status. In this work, we remove 
the cis neighborhood constraint during the learning process, and propose a novel predictive approach 
called SLINGER. We demonstrate that models drawing from a genome-wide set of SNPs are able to 
predict expression for more genes than the ones built on cis neighborhood only. Results indicate that 
these new models significantly improve accuracy for a large number of genes. Thanks to a penalized 
linear model, we also show that the number of features used in our models remains comparable to 
the cis-only models. Finally, SLINGER application on seven Wellcome Trust Case-Control Consortium 
genome-wide association studies demonstrate that compared to a cis-only approach, our models lead 
to associations with greater fidelity to actual gene expression values.

In the last ten years, genome-wide association studies (GWAS) have helped to uncover links between genetic 
variants and complex diseases. However, these associations are generally difficult to demonstrate statistically, 
given the lack of power of single-variant tests. Current approaches using polygenic risk scores1,2 have been devel-
oped to robustly aggregate variants, such as single nucleotide polymorphisms (SNPs). Still, these combinations 
of variants often lack biological interpretability. Recently, Gamazon, et al. proposed a new aggregation approach, 
PrediXcan3, which uses gene expression as an intermediate phenotype between genotype and a given trait. This 
method relies on building a predictive model trained to infer a given gene expression based on a SNP dosage 
matrix, containing more than 700,000 variants that were used as input features. To reduce the computational 
burden, a feature selection approach, Elastic Net4, was used on a restricted search space of the cis-SNPs belonging 
to a 1 Mb neighborhood around a given gene. This way, model fitting would be less computationally intensive, 
but would also leave ~95% of the available data unused. Moreover, although cis-expression quantitative trait loci 
(eQTL) are more prevalent, it is well-known that trans-eQTL can have large associated effects with disease traits5. 
From a statistical learning perspective, feature pre-filtering is a common way to reduce the dimensionality of a 
problem. However, it has been observed that this can be detrimental when employing penalized models6, such as 
Elastic Net. Previous results7 also suggest that the feature selection that occurs during the training of a penalized 
model is more robust than a manually derived selection.

In this study, we evaluate gene expression inference using Short and Long-range INfluencers of Gene 
Expression Regulation (SLINGER). These models were trained on the set of all 719,061 SNPs genotyped in the 
Depression Genes and Networks (DGN) dataset8. We demonstrate that on this data set, SLINGER performs bet-
ter than state of the art PrediXcan, for a large set of genes. Interestingly, we train 2,267 additional gene expression 
models for genes that were not estimable at all with PrediXcan, enabling the discovery of trait associations for a 
much larger set of genes. Even while drastically increasing the number of available features, we observe that on 
average, our predictive models employ less than 50 predictive SNPs. Furthermore, our results suggest that, for a 
vast majority of genes, robust predictive signal is contained outside the cis-neighborhood. Finally, applications to 
Wellcome Trust Case-Control Consortium (WTCCC) GWAS data sets show that statistical associations between 
disease trait and predicted gene expression values exhibit significantly increased fidelity to measured gene expres-
sion (as measured by r2) with the SLINGER approach, and these improvements lead to novel gene-phenotype 
associations.

Results
Models training on DGN data.  We used data from 922 whole-blood samples from the Depression Genes 
and Networks8 (DGN) study to train predictive models (see Methods). Dosages for all SNPs characterized in 
this study were used as the input set of features, with no preliminary filtering based on, for instance, minor 
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allele frequency (MAF). Furthermore, where PrediXcan utilized imputed genotypes, we trained our models 
only on observed SNPs. Considering the whole set of available SNPs in the DGN data allows us to train 2,267 
additional gene expression models for genes that are not estimable using only SNPs in the cis-neighborhood 
(see list in Supplementary Table 1). Also, we report in Supplementary Table 2, 1,866 genes for which SLINGER 
models perform at least 10% better than PrediXcan models in terms of r2. We represent, in Fig. 1, an exam-
ple comparison between the two approaches, both in terms of selected features and cross-validated accuracy. 
Figure 2 shows the overall gene-level gain in accuracy with unrestricted SLINGER models, compared to cis-only 
models provided by PrediXcan, for 13,825 genes. During the training of SLINGER models, we consider a set 
of descriptive features approximately 20 times larger than the ones using only the cis-SNPs. cis-SNP predic-
tive models, like PrediXcan, used genotype information found in a ±​1 Mb neighborhood of the predicted gene 
boundaries. On average, this translates to around 35,000 available features for each predicted gene. The average 
number of features with non-zero weight used in a cis-only model is 14.28 ±​ 0.285, compared to 41.87 ±​ 1.04 for 
SLINGER models. Interestingly, although the number of features available is far greater, the number of selected 
features in SLINGER scales in a sub-linear fashion with respect to the number of features in the cis-only model 
(Nall =​ 0.27 ×​ Ncis +​ 39.6). This suggests that the feature selection induced by Elastic Net is sufficient to filter out a 
vast majority of the non-associated predictors. In terms of computational burden, SLINGER models only show a 
marginal increase of 10% of prediction time (~13 seconds for 8,000 genes prediction).

Figure 3 represents the complete distribution of the proportion of cis-SNPs used in models and illustrates that 
41.2% of unrestricted models do not use any cis-SNP information, meaning that they rely on signals contained in 
locations far from the gene position (e.g., trans-effects).

Application to WTCCC GWAS data sets.  We applied PrediXcan and SLINGER predictive models to 
seven diseases characterized in WTCCC studies9, namely bipolar disorder, coronary artery disease, inflammatory 
bowel disease, hypertension, rheumatoid arthritis, type 1 and type 2 diabetes. For each disease, we first estimated 
expression for 11,958 genes using both approaches. We then used logistic regression for testing the statistical 
association with disease status, and used a Bonferroni-corrected threshold to keep significant hits only. In Fig. 4, 
we show the accuracy of the expression prediction for associated genes, in terms of average r2. For each WTCCC 

Figure 1.  Comparison of properties between a model trained on constrained set of cis-SNPs and a 
SLINGER model trained using all available SNPs. Performance metrics are reported for CDCA7, found to be 
significantly associated with Type 1 diabetes. (A) Genome-wide positions of SNPs used in the cis-only model. 
(B) Genome-wide positions of SNPs used in the SLINGER model. In both left figures, orange dots represent 
SNPs found in the cis neighborhood of the gene and the blue dots are trans-SNPs. The purple dashed line 
corresponds to the gene location. (C) Comparison between cross-validated predictions for the cis-only model 
(x-axis) and actual gene expression found in the Depression Genes and Networks (DGN) data set (y-axis).  
(D) Comparison between cross-validated predictions for the SLINGER model (x-axis) and actual gene 
expression found in DGN data set (y-axis). In both right figures, each grey dot corresponds to one individual 
gene expression level, and the dashed red line represents the linear fit between predicted and actual gene 
expression.
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Figure 2.  Gene-level gain in accuracy with unrestricted SLINGER models. We report model performance for 
13,825 genes present in the Depression Genes and Networks (DGN) dataset. r2 measures for PrediXcan models 
are binned in 101 subsets along x-axis. The difference between r2 values for SLINGER and PrediXcan models 
are represented on the y-axis. The red line corresponds to a no-gain case and everything above represents a gain 
when the unrestricted model is used.

Figure 3.  Proportion of cis-SNPs used to train SLINGER models. For each of the 11,958 genes predicted 
by unrestricted models, the proportion of selected features found in the cis-neighborhood is reported. A large 
proportion (41.2%) of SLINGER models do not use any cis-SNP information, meaning that they rely on signals 
contained in locations far from the gene position (e.g., trans-effects).

Figure 4.  Gene-Phenotype associations for seven WTCCC GWAS data sets. For each trait, we reported the 
average cross-validated r2 on associated genes, for both SLINGER (red) and PrediXcan (blue), obtained on the 
Depression Genes and Networks (DGN) data set. Significance between the two approaches has been tested 
using Student t-test (‘·’p-value <​ 0.1, ‘*’p-value <​ 0.05, ‘**’p-value <​ 0.01). BP, bipolar disorder; CAD, coronary 
artery disease; IBD, inflammatory bowel disease; HT, hypertension; RA, rheumatoid arthritis; T1D, type 1 
diabetes; T2D, type2 diabetes.
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trait, our approach yields gene-disease associations with higher DGN cross-validated r2, and the overall perfor-
mance is significantly better for SLINGER (p-value =​ 0.003).

Discussion
In this work, we present SLINGER, a valuable extension to PrediXcan3 for building predictive models linking 
genotypes to disease traits, via the intermediate phenotype of gene expression. We rely on an unrestricted set of 
SNPs, shared by all the trained models and demonstrate that this approach 1) increases the number of estima-
ble genes by 2,267 and 2) improves prediction performance for another set of about 2,000 genes. On WTCCC 
GWAS data sets, we observed that our unrestricted approach led to gene associations that were characterized 
by significantly elevated r2 (Fig. 4). This suggests that these associations are more reflective of actual variation 
in gene expression, and are less likely to be spurious. This is important because the r2 of a putative association is 
a key indicator when planning follow-up experiments, as it reflects the degree to which the model predictions 
track with actual gene expression, and consequently how likely it is that experimental manipulation of the gene’s 
expression will result in effects relevant to the disease of interest. We also provide a sample of novel gene-disease 
associations in Table 1. Particularly noteworthy is that SLINGER was able to yield associations for coronary artery 
disease, a condition where no association was reported in PrediXcan3. Specifically, we find significant association 
for desmoplakin (DSP), which has been robustly implicated in other cardiovascular diseases, such as heart fail-
ure10, epicardial ventricular tachycardia11 and cardiomyopathy12. A complete list of gene-disease associations is 
included in Supplementary Table 3. Given that some genes still have better prediction accuracy with PrediXcan, 
we recommend a combined approach, where PrediXcan is used for the genes where it achieves optimal perfor-
mance, and SLINGER models for genes we reported in Supplementary Tables 1 and 2. The present predictive 
models have been trained on genotype data from microarray technology, resulting in a large but still incomplete 
set of SNPs. Future work would involve using whole genome sequencing as a way to access predictive features not 
constrained to a subset of the genome. We also plan to extend our predictive model from whole blood to other 
tissues (e.g., brain), using tissue-specific databases provided by, for instance, the GTEx Project. Although the 
current PrediXcan models (trained on whole blood) have already been validated on other tissues beyond whole 
blood, the potential gain of using a model trained on tissue-specific data compared to a general model remains 
unclear. Specifically, applying tissue-specific models corresponding to disease-related tissue, for example brain 
tissue for bipolar disorder, would be expected to improve genotype-phenotype association results appreciably.

Methods
DGN RNA sequencing dataset.  We obtained whole-blood RNA-seq and genome-wide genotype data 
(719,061 SNPs) for 922 individuals from the the Depression Genes and Networks (DGN) cohort8, all of European 
ancestry. For our analyses, we used the HCP (hidden covariates with prior) normalized gene-level expression 
data for 15,231 genes used for the trans-eQTL analysis in Battle, et al.8 (downloaded from the National Institute of 
Mental Health (NIMH) repository). We converted the raw genotype format to dosage format, by using PLINK2.

PrediXcan models.  We downloaded “DGN Whole Blood Elastic Net” models, based on the imputed DGN 
data8, from the PrediXcan project website (http://github.com/hakyimlab/PrediXcan) and used the available eval-
uation scripts. For the 3,651 genes that were not estimable by PrediXcan models, we considered their score equal 
to 0. Note also that we used the same rule for genes not estimable by our models.

SLINGER models using Elastic Net on genome-wide genotype.  To train each SLINGER gene-level 
model, we rely on regularized least-squares regression:
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where ∈Y n denotes the expression level for a given gene through n individuals, ∈ ×X n p is the corresponding 
genotype matrix which contains p genotyped SNPs, and w represents the weights of the predictive model. In our 
study, SLINGER models rely on p =​ 719,061 genotyped SNPs as input features, whereas in the PrediXcan 
approach, p varies for each gene, based on its cis-neighboorhood content. The function Ω, also called regularizer, 
usually applies constraints to the model w, such as restricting the size of the weights or limiting the number of 
features with non-zero weights. The parameter λ >​ 0 controls the trade-off between how good the fit is and how 
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Disease Gene Description Cross-validated r2 Citations

CAD DSP Desmoplakin 0.68 24

RA MICA MHC class I polypeptide 0.71 6

T1D MICA MHC class I polypeptide 0.71 13

T1D COL11A2 Collagen, type XI, α2 0.29 1

T1D SLC22A1 Solute carier family 22 1 0.21 1

Table 1.   Gene-Phenotype associations for seven WTCCC GWAS data sets, for genes with a higher r2 with 
SLINGER than with PrediXcan. We only report significant findings with at least one PubMed co-citation 
involving the gene and trait, and a cross-validated r2 higher than 0.1.

http://github.com/hakyimlab/PrediXcan
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given the potential trans-effects observed in gene expression data. All gene-level models are publicly available 
(http://github.com/kevinVervier/SLINGER) and are made compatible with PrediXcan tool.

Performance indicator.  We follow a method evaluation similar to Gamazon, et al.3. For every gene expres-
sion regression model, we compute the coefficient of determination, r2, provided by the formula

= −r 1 SS
SS

,
(2)

2 res

tot

where SSres is the residual sum of squares, and SStot is the total sum of squares. An r2 of 1 refers to a perfect fit to 
the data, where an r2 equal to 0 means that the model does not fit the data at all.
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