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Abstract

Translational PK/PD modeling has emerged as a critical technique for quantitative analysis of the 

relationship between dose, exposure and response of antibiotics. By combining model components 

for pharmacokinetics, bacterial growth kinetics and concentration-dependent drug effects, these 

models are able to quantitatively capture and simulate the complex interplay between antibiotic, 

bacterium and host organism. Fine-tuning of these basic model structures allows to further account 

for complicating factors such as resistance development, combination therapy, or host responses. 

With this tool set at hand, mechanism-based PK/PD modeling and simulation allows to develop 

optimal dosing regimens for novel and established antibiotics for maximum efficacy and minimal 

resistance development.

Introduction

The treatment options available to combat infectious diseases are becoming increasingly 

limited due to a rising incidence of resistance among bacteria against the currently used 

antibiotics. Additionally, the discovery and development of new antibiotics has slowed down 

because of limited incentives for the pharmaceutical industry in this therapeutic area and a 

high benefit-risk ratio of existing antibiotics [1]. This necessitates prudent use of the 

currently clinically available as well as newly developed antibiotics. One of the key 

requirements for preserving clinical efficacy of antibiotics and avoiding tolerance 

development is to identify the optimum dosing schedule for maximum bacterial kill and 

minimal emergence of resistance [2]. Although standard PK/PD indices have been used for 

this purpose with some clinical success, this approach is associated with several drawbacks. 

One of them is the high dependence upon the minimum inhibitory concentration (MIC), 

which is limited to a single efficacy endpoint that does not take into account the entire time 

course of effect and may vary between treated individuals and bacterial strains [3].
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Translational PK/PD modeling and simulation has emerged as an alternative strategy to 

characterize the relationship between dose, exposure and response for identifying the most 

suitable dosing regimen. For example, infections with Mycobacterium tuberculosis are 

usually characterized by the presence of both multiplying and non-multiplying bacteria, and 

most antibiotics are usually more effective in killing multiplying rather than non-multiplying 

microorganisms. Mechanistic PK/PD models have successfully been applied to delineate the 

independent drug effects associated with killing of the multiplying and the non-multiplying 

bacterial populations [4]. In another example, different dosing regimens with similar 

exposure to colistin resulted in greater emergence of resistance with longer dosing intervals. 

Based on this observation, PK/PD models have subsequently been used for simulating 

untested dosing scenarios and developing an optimum dosing regimen for colistin [5].

It is the purpose of this review to provide an overview on the mechanism-based PK/PD 

models applied in translational PK/PD modelling for antibiotics.

PK/PD indices

For decades, the PK/PD relationships of antibiotics have been categorized with three 

different PK/PD indices, which rely on a summary measurement of in vivo drug exposure 

relative to the MIC, determined in vitro using serial dilution steps [6]. Usually, only free 

rather than total drug concentrations are considered as only free drug which is not bound to 

plasma proteins exerts the pharmacological activity. Standardized notations for these PK/PD 

indices are AUC/MIC, Cmax/MIC and T>MIC. AUC/MIC is the ratio of area under the free 

plasma concentration-time curve relative to MIC, Cmax/MIC is the ratio of free peak plasma 

concentration relative to MIC, and T>MIC is the cumulative percentage of a time period that 

the free concentration is above MIC. Antibiotics that are classified as having their efficacy 

driven by T>MIC show time-dependent killing which suggests that the antibacterial effect is 

at its maximum with concentrations just above the MIC and no further improvement in 

killing is obtained by further increasing the concentrations. Cmax/MIC best describes 

antibiotics which follow concentration-dependent killing and require maximum peak 

antibiotic concentration for maximum efficacy, whereas AUC/MIC is representative of the 

antibiotics which elicit both time- and concentration-dependent killing [3]. Although the 

MIC based approach has been widely used by clinicians for designing dosing regimens and 

can be useful to predict the effect of dose fractionation on antibacterial activity, this 

approach is associated with several limitations.

PK/PD indices rely heavily on MIC. Measurement of MIC is associated with substantial 

uncertainty and variability because of the two-fold dilution technique used for its assessment 

and the interpretation as implied binary response, which considers efficacy only above MIC 

and no killing below MIC. Furthermore, MIC varies across patient populations and bacterial 

strains, and may change with time in the same patient [7]. Thus, MIC-based approaches 

ignore the dynamics of bacterial killing with time. It is typically assumed that a PK/PD 

index determined in a preclinical species or population can be extrapolated to another patient 

population. However, PK/PD indices have been found to vary among different patient 

populations, species, and disease conditions, and one of the reasons is associated with 

differences in the pharmacokinetics of the antibiotic in these groups [8,9]. For example, in 
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case of β-lactam antibiotics, the PK/PD index has been observed to change from T>MIC to 

AUC/MIC as the half-life increases in renally impaired patients. Similarly, decreases in half-

life will shift the PK/PD index from AUC/MIC to T>MIC [10]. Thus, the value for PK/PD 

indices as guiding tool for dosage regimen design seems questionable.

One approach to overcome these drawbacks is the use of mechanism-based PK/PD 

modeling. Rather than relying on point estimates that integrate PK and PD factors of the 

host, the drug and the microorganism into one index, a mechanism-based PK/PD model has 

sufficient granularity to allow adjustment to changes in one of several of the PK and PD 

parameters as needed by changing clinical situations. In addition, PK/PD models reflect the 

graduate killing effect on bacteria with changing drug exposure rather than dichotomous all-

or-nothing effects as implied by MIC values. Finally, PK/PD models consider the time-

courses of bacterial growth and killing in relation to time courses of drug concentrations 

rather than time-integrated measures as used for the indices. Overall, these advantages allow 

for a more flexible, realistic and dynamic interplay of drug, host and microorganism-related 

factors that are ultimately predictive of bacterial killing and therapeutic efficacy.

Mechanism based PK/PD modeling

Mechanism based PK/PD models take into consideration the time course of bacterial count 

based on in vitro, in vivo and clinical information. These models are composed of three 

basic components: (i) a component that describes the bacterial growth kinetics, (ii) a 

component that describes the pharmacokinetics of the drug, and (iii) a component that 

integrates the effect of the drug concentration on bacterial turnover.

Bacterial Growth Kinetics

The simplest model component used for describing the bacterial growth kinetics consists of 

a single bacterial compartment with a first-order rate constant for bacterial replication (Krep) 

and a first order rate constant for death of the bacteria (Kdt). Eq. 1 and Fig. 1A describe the 

mono-exponential increase in microbial number seen in the absence of drug treatment [11], 

where N is the number of bacteria.

(1)

Quite often only the net process between bacterial growth and kill is quantified, with a first-

order rate constant Kgrowth = Krep − Kdt, also called Knet, since it is difficult to separately 

estimate both the replication and death rate constants with limited data [12]. The underlying 

assumption of this model is that the microbial population is homogenous having the same 

turnover rate constants, which is an oversimplification of the real scenario as microbial 

populations are usually known to be heterogeneous with multiple subpopulations with 

distinct metabolic states and drug resistance profiles [7].
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In the absence of antibiotics, the bacterial number N eventually approaches a maximum 

Nmax when limitation in nutrients and bacterial density limit further growth. In this steady-

state condition there is no net change in the microbial population. There are three ways to 

describe these capacity limited growth curves:

a) Using a logistic growth function [13,14]:

(2)

b) Using a saturable, non-linear function [15]:

(3)

where VGmax is the bacterial maximum growth in bacterial count per time, and 

N50 is N at which the bacterial growth is half-maximal.

c) Using a model where transformation from the growing (S) to the resting 

stage (R) occurs when the total microbial count approaches the stationary 

phase [16] (Fig. 1B).

(4)

(5)

where S and R are the number of growing and resting bacteria, respectively. A 

high total bacterial load is assumed to potentiate the transformation from S to 

R. The transfer back to the growing stage (Krs) is usually assumed to be 

negligible during in vitro time-kill experiments and therefore in those cases 

fixed to 0.

In some instances, additional delay functions have been introduced to characterize the 

growth delay observed during the first hours after the initiation of growth experiments when 

the microbes have not yet reached the logarithmic growth phase. For example, inverse 

mono-exponential functions with asymptotic increase such as 1 − e−δ×t have been used as 
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multiplier for Krep or Kgrowth, where δ is a first-order rate constant characterizing the 

dissipation of the delay [17,18].

Pharmacokinetics

The pharmacokinetic model component is used for characterizing the concentration profile 

of a drug over a time period. Traditional compartmental modeling approaches are generally 

used to describe the pharmacokinetics with one- or multi-compartment systems. For 

example, in an in vitro chemostat-based PK/PD model system [18], the drug concentration 

can be described with a one-compartment model with mono-exponential decrease with time 

according to

(6)

where C is the concentration of the Ke drug and is the first-order elimination rate constant of 

the drug.

The pharmacokinetic profile of a new drug is usually established in healthy subjects during 

the initial clinical phase of drug development. The pharmacokinetics may however be altered 

under pathophysiologic conditions in a diseased population. For example, drugs which are 

primarily renally cleared may reach higher systemic exposure in patients with renal 

impairment compared to healthy individuals. In these cases, creatinine clearance is typically 

found to be a significant covariate and can be used to guide patient customized dosing [19]. 

Disease conditions can also cause changes in the body fluids and protein binding which may 

ultimately affect tissue distribution and the free fraction of the drug [20], and may thus need 

to be considered in the pharmacokinetic model component of mechanism based PK/PD 

models.

Many microbial infections are localized in extravascular tissues rather than blood or plasma 

[21]. The concentration at the site of infection may in these cases be different from plasma 

concentrations due to drug distribution processes and may thereby complicate the accurate 

assessment of optimal dosing regimens [22]. For example, concentration-time profiles of 

antibiotics in epithelial lining fluid in the lungs was found to be different from plasma with 

concentration ratios ranging from <0.1 to 3 [23]. In addition to efficacy, organ or tissue 

concentrations may also be of interest with regard to toxicity [24]. Techniques like 

microdialysis have been used for measurement of drug concentrations in tissue/organs [25]. 

Tissue distribution of antibiotics may be predicted using physiologically-based 

pharmacokinetic (PBPK) modelling [26,27]. Recently, a PBPK model incorporating a multi-

compartment permeability-limited lung model was used to simulate the pharmacokinetics of 

anti-tuberculosis agents in plasma, lungs and its sub-compartments where the mycobacteria 

reside in the host [28]. This model also provides a framework for predicting the lung 

concentrations of novel anti-tuberculosis agents.
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Pharmacodynamics

The drug effect E can be modeled to either inhibit bacterial replication or potentiate bacterial 

killing. The relationship between drug concentration and its antimicrobial effect is usually 

described using an ordinary (γ = 1) or a sigmoidal (γ≠1) inhibitory Emax model. The 

general expression for the bacterial growth kinetics is then modified to Eq. 7:

(7)

Drug effect decreasing the replication rate can then be modeled as

(8)

Drug effect increasing the death rate can be modeled as

(9)

Here Emax and Imax represent the maximum increase or decrease in effect, EC50 and IC50 

represent the concentrations of drug that produce half of Emax and Imax , and γ1 and γ2 are 

the sigmoidicity coefficients. In Eq. 8 and 9, the effect corresponds to a unitless fractional 

change in the rate constant with Emax and Imax representing the maximum achievable 

fractional change.

Alternatively to these proportional effect models, the increase in the death rate can also be 

modeled as an additive effect (Fig. 2A):

(10)

In Eq. 10, the effect corresponds to an additional kill-rate constant contributed by the drug 

with Imax representing the maximum achievable drug-imposed kill-rate constant having the 

unit 1/time.

Combination Therapy

Combination therapy of antibiotics has been found to be useful as it may improve efficacy, 

increase patient compliance by optimizing dosing schedules, reduce toxicity, and suppress 

the emergence of resistance [29]. There is high potential for pharmacodynamic drug-drug 

interactions when antibiotics of a combination therapy act on the same or different 

molecular targets (serial or parallel) in the same pathogen, resulting in additive, synergistic 
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or antagonistic interaction [30]. The concentration-effect relationship for two-drug 

combinations results in a three dimensional response surface which is usually characterized 

quantitatively using the response surface analysis as described by Eq. 11 [31,32]:

(11)

where C1 and C2 are the concentrations of drug 1 and drug 2 in the combination therapy; 

IC50,1 is the concentration for which the effect is half maximal for drug 1 when present 

alone; IC50,2 is the concentration for which the effect is half maximal for drug 2 when 

present alone; γ1 and γ2 are the sigmoidicity coefficients for drug 1 and drug 2, 

respectively; Imax is the maximum bacterial killing rate constant; ω is the interaction 

parameter; and I is the killing rate constant resulting from the combination therapy. The 

summation of the first and second term on the right side of the equation defines the additive 

effect whereas the third term is the drug interaction term. The combination effect is additive 

when ω = 0, is synergistic when ω >> 0, and is antagonistic when ω << 0.

The kinetics of bacterial killing for the combination therapy can then be described using Eq. 

12 with modification of the drug effect term by taking a similar approach as described above 

for the response surface analysis [33].

(12)

ω is the interaction parameter; and γ is the sigmoidicity coefficient for the combination 

therapy, under the assumption that in the response surface analysis, γ1 = γ2.

Antibiotic resistance

Antibiotic resistance can be mathematically explained either by an increase in IC50 or 

decrease in Imax. Prior knowledge about the mechanism of resistance can be used as a 

rationale for choosing the appropriate model. When reduced drug sensitivity can completely 

be overcome with a higher dose, an increase in IC50 is suggested as the probable mechanism 

for resistance. If even high doses are unable to achieve the maximum effect, however, then a 

decrease in Imax might be the more appropriate mechanism [12].
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A variety of PK/PD models have been proposed for describing antibiotic resistance. These 

models can be broadly categorized into subpopulation approaches and adaptation 

approaches.

Subpopulation Approaches

The more commonly used subpopulation approaches assume that the total bacterial 

population is composed of several discrete subpopulations with different drug susceptibility 

as shown in Fig. 2B. These subpopulations are considered to be present even in the initial 

inoculum. Subsequent treatment with antibiotic leads to predominant killing of susceptible 

subpopulations along with selective replication of the less susceptible subpopulations 

resulting overall in regrowth. More than one differential equation is used simultaneously 

with each equation representing one bacterial subpopulation (often with different drug 

susceptibilities) [34]. A variation of the subpopulation model is one in which new drug 

resistant mutants are formed from the growing subpopulation with a first-order mutation rate 

during the experiment resulting in regrowth [35].

A modification of the sub-population approach could potentially be used to facilitate 

development of new generation anti-infectives which do not necessarily kill the bacteria. For 

example, Bezlotoxumab, a fully human monoclonal antibody, was found to decrease the rate 

of recurrence of Clostridium difficile infection in patients treated with standard-of-care 

antibiotics [36]. Bezlotoxumab acts by neutralizing the exotoxin B thereby averting its 

interaction with colonic cells and the associated inflammation. One of the possible 

approaches to characterize the PK/PD in this scenario could be a modified subpopulation 

model where the Bezlotoxumab induced toxin neutralization is modeled in parallel with the 

killing effect imposed by the standard-of-care treatment on the susceptible Clostridium 
difficile population.

Adaptation Approaches

An alternative to the subpopulation model in which the total bacteria are assumed to be a 

mixture of different populations is the adaptive resistance mechanism in which the initial 

drug susceptible population is gradually considered to evolve into a drug resistant population 

as shown in Fig. 2C. Only one differential equation is used to describe the rate of change of 

the total bacterial population. An adaptation factor (α) is introduced which may be 

dependent on time and concentration:

(13)

where β describes the maximum adaptation factor and τ represents the rate of adaptation. 

Dependent on how the adaptation function is implemented in the PK/PD model, a gradual 

increase in time and concentration may result in an increase in IC50, decrease in Imax, or 

decrease in bacterial replication rate [37].
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Identification of the true resistance mechanism based only on total bacterial counts and 

statistical modelling criteria have failed in majority of cases. Quantification of resistant 

populations will help in distinguishing between competing models and support the selection 

of the most appropriate model for bacterial resistance [38].

Inoculum Effect

The phenomenon that when a higher bacterial density of initial inoculum in an experiment 

leads to a reduced antibacterial effect is referred to as inoculum effect [39]. Some of the 

potential mechanisms for this phenomenon are (i) enzymatic inactivation of the drug, (ii) 

non-specific binding to the bacteria, and (iii) increased likelihood of the preexistence of 

subpopulations of resistant bacteria if the density of the inoculum is higher than the natural 

mutation rate of the bacteria. For example, the pharmacodynamic effect of ceftazidime, a β-

lactam antibiotic, changed from time-dependent killing to concentration-dependent killing 

when inoculum density was increased [40]. This conversion in the PK/PD-index has been 

linked to the distribution and accumulation of β-lactamase in the biofilm of high density 

inocula which can hydrolyze β-lactam antibiotics.

Bacterial burden shows a wide variation in patients and therefore a PK/PD model which 

incorporates an inoculum effect might be more predictive in clinical scenarios. One of the 

models proposed to describe inoculum effects is based on the concept of quorum sensing. It 

assumes that all bacteria release signal molecules to communicate with each other which 

consequently results in reduced drug sensitivity [41].

Host Responses

In vivo models of bacterial infection are oftentimes established in immuno-compromised 

animals as they allow for proper estimation of antibiotic efficacy without any interference 

from the immune system. In many cases, the PK/PD indices needed to be achieved for 

efficacy in these models are higher compared to those obtained in immuno-competent 

animals [42]. In vivo infection models in animals with functional immune system, although 

less common, have also been used for assessing the efficacy of antibiotics. As the immune 

system of immunocompetent animals has the ability to kill bacteria, it is important to study 

the time course of this effect independently from antibiotic therapy in order to be able to 

delineate the intrinsic activity of the drug from that of the immune system.

The immune system effect can be assessed by three different approaches:

a) Modulation of bacterial challenge: In this approach inocula with different 

initial density were used in the same type of animal infection model to quantify 

the antimicrobial effect associated with the immune system [43]. The immune 

system was successful in reducing the bacterial load when the initial inoculum 

was low; at higher initial inocula, however, the immune system’s capacity was 

overwhelmed resulting in net bacterial growth. This impact of immune system 

has been described quantitatively using mathematical models where the rate of 

change in bacterial count is equal to the difference between the growth rate of 
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bacteria and the kill rate contributed by the antibacterial effect of the immune 

system [43]:

(14)

Here, Kir is the maximal kill rate induced by the immune system and N50 is the 

number of bacteria per g of tissue at which the immune-system mediated kill 

rate is half-maximal.

b) Modulation of immune reactivity: An alternative strategy to quantify the 

contribution of the immune system towards bacterial reduction is to use animal 

infection models with different levels of immunosuppression [44]. A 

pneumonia mouse model with functional immune system was treated with 

different escalating doses of the immunosuppressant cyclophosphamide, 

thereby reducing the neutrophil counts by 20, 70 and 90%, respectively. The 

rate of change in the bacterial count was equal to the difference between the 

first order growth rate of bacteria and the saturable kill rate attributed to the 

number of available neutrophils:

(15)

ANC is the absolute neutrophil count and ANC50 is the ANC required to 

achieve 50% of maximal kill rate.

c) Natural progression of disease: The effect of the immune system can also 

be included as a time-dependent first-order kill rate, in addition to the natural 

death rate as described by Eq.16, for example when immunocompetent animals 

are treated with vehicle control and establish adaptive immunity over time. 

This assessment may result in a slight overestimation of the impact of the 

immune system, however, if comparative data in immunocompetent and 

immune-compromised animals are not available to delineate the real immune 

system effect from natural bacterial death:

(16)
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Here Kir is the maximum death rate constant induced by the immune system, t 
is the time, t50 is the time when the death rate constant is half of its maximum 

value, and γ is the sigmoidicity factor that determines the shape of the curve. 

The effect of the immune system is thus modeled as a gradual, time-dependent 

increase of the death rate constant until it reaches its maximum Kir.

Bench to Bedside Translation of PK/PD Models for Anti-Infectives

The current paradigm for translation of antibacterial PK/PD from preclinical species to 

humans requires integration of the PK/PD index determined in animal models with human 

pharmacokinetics [45]. Stochastic simulation of human drug exposure using population 

pharmacokinetic models generates concentration-time profiles which are then used to 

compute the PK/PD index for each simulated subject. Based on the proportion of subjects 

with the desired value of the PK/PD index, probability of attaining the therapeutic target is 

predicted. This approach helps in making decisions regarding the choice of dosing regimens 

to be implemented in the clinic.

The use of mechanistic PK/PD models for translation from preclinical to clinical scenarios 

has been limited. PK/PD models based on in vitro static and dynamic kill curves have been 

successful in the prediction of in vivo effects in animal models [8]. However, there is still a 

knowledge gap regarding translation of PK/PD parameters from preclinical to clinical 

settings. For example, recently a multistate tuberculosis pharmacometric model describing 

different bacterial states of Mycobacterium tuberculosis was developed based on in vitro 
data [4]. For clinical implementation of this model [46], most of the parameters pertaining to 

the natural bacterial growth were fixed to the in vitro estimates; however the exposure-

response parameters related to drug effect had to be estimated from clinical data and were 

different from the in vitro drug effect parameters. More research efforts are needed in this 

area to better facilitate the quantitative translation of mechanistic PK/PD models to clinical 

situations.

Development of a Translational PK/PD model for Antibiotics

Mechanism-based models for antibiotics are usually established in a stepwise fashion, in 

which the different model components are individually developed and integrated (Fig. 3). 

The typical steps include the following:

1. Development of a pharmacokinetic model in the studied population 

(animal models or humans), that captures the time course of free, 

pharmacologically active concentrations of the antibiotic, preferably in the 

relevant target tissue.

2. Development of a bacterial growth model that captures the bacterial 

growth kinetics and potential host response effects.

3. Integration of the bacterial growth model and the pharmacokinetic model 

component into a PK/PD model with a pharmacodynamic model 

component that links the dynamics of drug concentrations to bacterial 
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turnover. This may include drug combination models, inocula effects, and 

resistance development.

Once the model has been established, it can be used for simulations to interpolate and 

extrapolate the observed experimental data to other, untested scenarios, such as different 

dosing regimens, or different patient populations [3,47]. It can also be used for quantitative 

comparisons of multiple drug candidates to identify lead candidates and support go-no go 

decisions [7].

Conclusions

Mechanism-based PK/PD models are increasingly been used in developing dosing strategies 

for antibiotics in drug development and clinical application. Although these models are 

simplified depictions of rather complex interactions of drug, microbe and host physiologic 

processes, they are able to capture the time course and magnitude of antibacterial effect in 

relation to bacterial growth, the pharmacokinetic and pharmacodynamic properties of the 

drug, and the chosen dosing regimen. Complicating factors such as resistance development, 

combination therapy, or host responses can be incorporated in the modeling approach. In 

situations where only limited data are available, system specific parameters describing for 

example growth characteristics may also be implemented based on prior knowledge [4]. 

With these tools at hand, translational PK/PD modelling and simulation may play a pivotal 

role in identifying the right balance between bacterial killing, adverse effects, and 

appearance of resistance, and may help identifying and optimizing dosing regimens for 

novel and established antibacterial agents.
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Figure 1. 
Models for bacterial growth kinetics: A) One cell population model, B) Two cell population 

model with different cell growth status. N Number of bacteria; Krep, first-order replication 

rate constant; Kdt, first-order death rate constant; S, Number of bacteria in growing state; R, 

Number of bacteria in resting state.
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Figure 2. 
PK/PD models consisting of PK component, bacterial growth model, and PD link: A) One 

bacterial population with additive effect on death rate. B) Subpopulation approach for 

antibiotic resistance with two or more bacterial populations each having different drug 

sensitivity. C ) Adaptation approach for drug resistance with adaptation factor modulating 

drug sensitivity.

C, drug concentration; N/N1/N2/Nx, number of bacteria in different bacterial populations; 

Ke, first order drug elimination rate constant; Krep, first-order replication rate constant; Kdt, 

first-order death rate constant; Imax, maximum achievable effect (subscripts indicate 

different values for different bacterial populations); IC50, drug concentration producing 50% 

of Imax (subscripts indicate different values for different bacterial populations); γ, is the 

sigmoidicity factor; α, adaptation factor.
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Figure 3. 
Steps involved in the development and application of a translational PK/PD model for 

antibiotics.
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