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ABSTRACT

Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diagnosis
is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma has made
considerable progress. The optic cup segmentation from fundus images is an extremely important
part for the computer-aided screening and diagnosis of glaucoma. This paper presented an
automatic optic cup segmentation method that used both color difference information and vessel
bends information from fundus images to determine the optic cup boundary. During the
implementation of this algorithm, not only were the locations of the 2 types of information points
used, but also the confidences of the information points were evaluated. In this way, the
information points with higher confidence levels contributed more to the determination of the final
cup boundary. The proposed method was evaluated using a public database for fundus images. The
experimental results demonstrated that the cup boundaries obtained by the proposed method
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were more consistent than existing methods with the results obtained by ophthalmologists.

Introduction

Glaucoma is a progressive optic neuropathy whose
main feature is a structural change in the optic nerve
head (ONH), where the optic nerve enters the back of
the eyeball. This structural change primarily manifests
in the gradual narrowing of the optic disc, indicating
the degeneration of optic nerve cells. Since the loss of
optic nerve function cannot be restored, early detec-
tion and timely treatment of glaucoma are vital to
save the patient’s vision." The World Health Organi-
zation lists glaucoma as the second most common
cause of blindness worldwide. According to the glau-
coma epidemiologist Quigley, by 2020 the number of
glaucoma patients will reach 79.6 million worldwide
and 21.8 million in China.?

Fundus photography is an important test used in
diagnosing glaucoma because it creates an opportunity
to assess the retinal ONH structure. In a typical
2-dimensional fundus photograph, the ONH is
located within a bright elliptical area. The optic disc is
the visible portion of the optic nerve, from which the
nerve fibers exit the eye. The central depression of the
optic disc is known as the optic cup, and the area

around the optic cup is known as the neuroretinal
rim. Figure 1 shows the main structures of the ONH.
The cup-to-disc ratio (CDR) and
Superior, Nasal, and Temporal” (ISNT) rule are 2 key
indicators by which to assess the ONH. The vertical
CDR is defined as the ratio of the vertical diameter of
the optic cup to the vertical diameter of the optic disc.
As glaucoma progresses, optic nerve fibers gradually
disappear, thus the optic cup becomes larger with

“Inferior,

respect to the optic disc, which increases the CDR. In
current clinical practice, the CDR is usually obtained
via manual measurement by an ophthalmologist.
However, depending on the ophthalmologist’s experi-
ence, the CDR measurement can be affected by subjec-
tivity. Meanwhile, in a normal eye the neuroretinal
rim usually follows the ISNT rule: it is thickest at the
inferior rim, then the superior rim, then the nasal rim,
and it is thinnest at the temporal rim.” Because glau-
coma causes partial loss of the neuroretinal rim, the
rims of glaucoma patients generally do not follow
the ISNT rule. Although not all glaucoma patients
have the same symptoms, these 2 tests are still very
effective in diagnosing glaucoma in a clinic setting.
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Figure 1. Main ONH structures.

Using the CDR and the ISNT rule to perform com-
puter-aided diagnosis of glaucoma has reached a high
accuracy rate.”

However, observing ONH changes manually is a
time-consuming process, and its accuracy varies
according to the ophthalmologist’s experience. There-
fore, research is being conducted to determine
glaucoma-related structural changes automatically
from retinal images. Optic disc and optic cup segmen-
tation are important steps in this process. Optic disc
segmentation has achieved highly accurate results that
are very close to the results obtained by eye special-
ists.® Relatively, there are few algorithms for optic cup
segmentation, and its accuracy is far behind that of
optic disc segmentation.

The optic cup has a 3-dimensional structure.
Optical coherence tomography (OCT) can be used to
reconstruct the optic cup and establish its boundary.”
In addition, stereoscopic fundus photography can be
used to partially reconstruct the 3-dimensional
structure of the optic cup and generate the boundary.®
Nevertheless, fundus photography is more commonly
used in eye hospitals and for glaucoma screening.
Therefore, it is more practical to reconstruct the optic
cup boundary from a fundus image. The algorithms
available to draw the optic cup from a fundus image
use primarily the following 2 pieces of information:
(1) color information in the optic disc, as the optic
cup is the gray part of an optic disc; and (2) informa-
tion about the blood vessel bends in the optic disc. In
general, color differs between the inside and outside
parts of the optic cup; therefore, points with a high
color difference along the optic disc’s radial direction

can be used as points on the optic cup boundary.
Furthermore, blood vessels tend to bend in the vicinity
of the optic cup boundary. These vessel bends can also
be used to determine the optic cup boundary.

In the early stage, thresholding was used to deter-
mine the optic cup boundary, relying on the color
intensity difference between the cup and the neurore-
tinal rim.”>'® However, this method was valid only in
some special cases. Liu et al. proposed a method in
which a potential set of pixels belonging to the cup
region is first derived based on the reference color
obtained from a manually selected point. Next, an
ellipse is fitted to this set of pixels to estimate the cup
boundary."! Joshi et al. used thresholding to determine
the set of potential pixels corresponding to the cup
boundary and fitted an ellipse based on these pixels.'?
However, the outline obtained via ellipse fitting
reflects only coarse cup boundaries. Wong et al. used
a level set-based method'® that relies on the edges
between the cup and the neuroretinal rim. Both this
method and thresholding-based methods essentially
rely on pallor information. However, many fundus
images show no obvious pallor or edges within the
disc from which to extract the cup boundary. Further-
more, in most fundus images, parts of the optic cup
are obviously pallor while other parts are covered with
blood vessels and are not obviously pallor. Figure 1
depicts one example of such a disc.

C-means clustering and superpixel classification
can also be used for optic cup segmentation. Babu
et al. recreated the optic cup through fuzzy C-means
clustering on a wavelet-transformed green plane
image after the removal of blood vessels.'* However,
the paper did not report the segmentation accuracy of
the optic cup. Mittapalli and Kande proposed a clus-
tering-based thresholding algorithm to recreate the
optic cup using the spatial distribution of gray levels.'”
Cheng et al. presented a superpixel classification-based
method for optic cup segmentation used in glaucoma
screening.'® This method involved computing the cen-
ter-surround statistics from superpixels and using
them with histograms for cup segmentation. Xu et al.
extended the superpixel framework by modeling the
binary superpixel clustering task as a low-rank repre-
sentation problem employing the domain prior and
the low-rank property of the superpixels.'” Thorat
et al. combined clustering and thresholding to seg-
ment optic cups.'® However, the clustering methods
and the superpixels methods both fit the optic cup



into an ellipse, ignoring vessel information; therefore,
it is easy for them to miss the local features of the optic
cup.

Some scholars used small vessel bends or “kinks” in
the vicinity of the initially estimated cup boundary to
aid cup segmentation.'” The challenge here was to
remove vessel bends in non-boundary areas, especially
when the initial estimation was inaccurate. A similar
concept has been used to locate relevant vessel bends
in the vicinity of a pallor region determined by bright
pixels.”® Hatanaka et al. detected two types of vessel
bends (visible and invisible bends) and used spline
interpolation method to determine the cup
boundary.”’ These methods also required pallor
information in order to make a good initial estimation
of the cup boundary. Moreover, they required at least
a few bends in the nasal, inferior, and superior angles
of the disc for cup boundary fitting; in practice, these
are not necessarily present in many fundus images.

In determining the final optic cup boundary, both of
the methods described above focus solely on either color
information or blood vessel information, without taking
advantage of both sets of information. This paper
presents a method for automatic optic cup segmentation
that utilizes both color difference and vessel information
from fundus images to determine the optic cup bound-
ary. First, this method uses information about the color
difference to find an initial cup boundary and give it a
local estimate of confidence. Then, based on the initial
boundary and the confidence estimate, a vessel bends
search area is established, and eventually the related ves-
sel bends are determined. The process of using these 2
sets of information to determine the optic cup boundary
not only takes advantage of the position of the points,
but also incorporates the confidence of each information
point. As a result, this method can effectively integrate 2
types of information and generate optic cup segmenta-
tion results that are more consistent than existing meth-
ods with results from ophthalmologists’ measurements.

Methods

In practice, an ophthalmologist combines color infor-
mation and vessel bends to determine the cup bound-
ary. We mimicked this strategy in order to determine
the cup boundary, proposing a method to automati-
cally extract the cup boundary by combining the
information about color difference and vessel bends.
The ophthalmologist relies on the following basic
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principles: the optic cup boundary is approximately
elliptic; the colors inside and outside the optic cup
boundary differ noticeably; and blood vessels bend rel-
atively sharply when they pass through the boundary.
When conflicts occur between the color difference
information and the vessel bends information, the
ophthalmologist relies mainly on the more confident
information, and considers the other information for
support only. For the color difference information, the
greater the color difference on the 2 sides of the optic
cup boundary, the higher the confidence; in terms of
vessel bends, the thicker the bending vessels, the
greater the curvature and the higher the confidence.
The process by which the ophthalmologist determines
the cup boundary involves matching the 2 pieces of
information to the model in his or her mind. In
imitation of this, the proposed method consists of 3
main processes:

1 Based on the color contrast, the color difference
information points and their confidence are
determined.

2 Based on the blood vessel information, the ves-
sel bends information points are generated, with
confidence provided based on both the vessel
diameter and curvature.

3 The above sets of information are integrated to
determine the final cup boundary.

Figure 2 shows the proposed method as a flow
chart.

During the initial process of determining informa-
tion points based on color difference, blood vessels
might cause interference. This necessitates erasing the
blood vessels from the fundus photos. The first step is
to extract the vessels from the fundus images. Several
methods have been proposed for vessel segmentation
in the literature (for a review see ref. 22). This paper
followed a morphology-based method* to segment
the vessels. Then the process of erasing the blood ves-
sels proceeds as follows: for points on the vessels, the
color intensities of the given points are replaced by the
arithmetic average color intensities of the surrounding
non-vascular points, while the color intensities of the
non-vascular points remain unchanged. Here, the
sounding area of a point is defined as the square with
the point as the center and with 19 pixels as the length
of each side.

After the removal of the blood vessels, a Chan-Vese
active contour model®® is applied based on the red
value of the fundus image in order to determine the
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Figure 2. Flow Chart of the proposed method.

disc boundary. A ray is drawn from the center of grav-
ity of the disc boundary, and it is rotated every 10
degrees to generate 36 rays. Considering that the optic
disc boundary is composed of a set of pixels, in order
to determine the center of gravity of the optic disc
boundary, its horizontal or vertical coordinate is com-
puted as the average value of the horizontal or vertical
coordinates of the pixels. On the segment of each ray
located within the disc boundary, one point is taken
for every 5 pixels, and the intensity difference between
2 sides of the point along the ray direction from the
inner side to the outer side is calculated. In this way,
the average intensity values for 5 neighboring pixels at
both the inner and outer sides of the target point are
calculated along the ray direction, and their difference
is recorded.

The point with the maximum intensity difference on
each of the 36 rays is defined as the color difference
information point. The ratio of the maximum intensity
difference on each ray to the average value of all the
intensity differences on the same ray is used as the con-
fidence of that information point. The larger the ratio,
the more confidence is assigned to the information
point. Later, the confidence is used to define the weight
of that point in the final cup boundary determination.

Next, a curve fitting method is used to fit the points
with maximum intensity differences at 36 directions

to a closed curve, which is defined as the initial cup
boundary. This boundary is later used to determine
the search range for vessel bends. This paper used the
regularized fitting method.** The advantage of this
method is that the complexity of the curve can be
defined by adjusting the regularization coefficient. To
take advantage of this curve fitting method, the closed
curve fitting problem in the original coordinate system
is transformed into a curve fitting problem in the polar
coordinate system. In other words, the points with
maximum intensity differences in a circular area con-
taining the optic disc are transformed from a Carte-
sian coordinate to a polar coordinate, and they are
transformed back after curve fitting. The fitted curve
transformed back into the original coordinate is then
used as the initial cup boundary.

The next step involves defining the search area for
the vessel bends in the vicinity of the initial cup
boundary. The confidence of the initial cup boundary
is not uniform due to differences in confidence of the
information points around the boundary. Therefore,
in regions with higher confidence on the initial cup
boundary, the color difference information is priori-
tized, such that the related search area for the vessel
bends can be smaller. In contrast, in regions with
lower confidence on the initial cup boundary, the ves-
sel bends information should be prioritized, such that



the related search area for the vessel bends should be
larger. This study adopted the strategy of setting the
local vessel bends search area in the vicinity of the
inner and outer sides of the 36 segments of the initial
optic cup boundary. In each fundus image, the color
difference information point with maximum confi-
dence has maximum search width. The maximum
width of the inner search area is set at half of the optic
cup radius, and the maximum width of the outer
search area is set at 80 percent of the initial rim width.
The optic cup radius of some point on the initial optic
cup boundary is defined as the distance between this
point and the center of gravity of the optic disc; mean-
while, the width of rim at this point is defined as the
distance between the point and the corresponding
point on the disc boundary. The value of the search
width is linear related to the confidence of the color
intensity difference. The relevant vessel bends are
identified within the search area defined above. In
addition to recording the positions of the relevant ves-
sel bends, the bends’ curvatures and the vessels” diam-
eters at the corresponding positions are also recorded
in order to calculate the confidence of the vessel bends.
In general, the greater the curvature, the higher the
confidence; the thicker the vessel, the higher the confi-
dence. Therefore, the product of the bend curvature
and the corresponding vessel diameter can be used to
set the confidence of the vessel bends. This study
adopted a dynamic region of support (ROS)-based
method to compute the bend points of vessels and the
curvatures of these bend points.*

Finally, the regularized curve fitting method is
used to fit the color difference information points
and the vessel bend information points in order to
generate the final cup boundary. First, the weight of
each information point must be determined. This
process includes 2 steps: first, the overall weights of
the color difference information points and the ves-
sel bend information points are determined; then,
the weight for each type of information points is
assigned to each point. In the first step, the mini-
mum weight for the color difference information
point is set to 1/3 and the maximum weight is set to
2/3. The weight is linear related to the sum of the
confidences of all the color difference information
points. In the second step, the weight for color dif-
ference information is assigned to each of the 36
color difference information points according to
their respective confidences; similarly, the weight for
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vessel bends information is assigned to each vessel
bend according to its respective confidence.

In the end, the weight of each information point is
multiplied by 100 and rounded as the number of
occurrences of this information point in fitting. The
two types of points within the circular area containing
the optic disc are transformed from “Cartesian” to
“polar” and fitted by the regularized curve fitting
method. Finally, the fitted curve obtained is trans-
formed from “polar” to “Cartesian” to generate the fit-
ted curve in the original coordinate system. Thus, the
final optic cup boundary is created.

Experiment

The proposed optic cup segmentation method was eval-
uated on a public dataset and compared to other optic
cup segmentation methods. The results demonstrate
that the proposed method has obvious advantages in
segmentation accuracy, and the obtained cup boundary
is very close to that obtained by ophthalmologists.

Experimental design

The proposed algorithm was evaluated using the pub-
lic fundus photographs database DRIVE (Digital Reti-
nal Images for Vessel Extraction),”® and it was then
compared to other methods. DRIVE data sets can be
downloaded at http://www.isi.uu.nl/Research/Data
bases, which includes 40 fundus images. In this experi-
ment, 2 ophthalmologists (A and B) were invited to
draw the optic cup boundaries. Ophthalmologist A
has 10 y of experience in glaucoma diagnosis, and
Ophthalmologist B has 5 y of experience in glaucoma
diagnosis. The ophthalmologists did not know if the
fundus image came from a normal eye or a glaucoma-
affected eye. Ophthalmologist A selected 10 fundus
images with highest confidence to draw the optic cup
boundaries, and the results are used as the standard.
Ophthalmologist B’s results and other methods were
compared to the results from Ophthalmologist A.

The difference of 2 optic cups “A” and “B” drawn
by 2 different methods for the same fundus image is
defined as Fgiference =1 — i‘i—ii Here, Synp represents

the intersection area of the optic cups drawn by the 2
different methods, and S4 y g represents the union area
of the optic cups drawn by the 2 different methods.
The larger the difference between the 2 drawn bound-
aries, the greater the value of Fyjfrenceis, and vice versa.
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Table 1. Values of Fjifrence With Ophthalmologist A for different methods.

Image number 1 2 3 4 5 6 7 8 9 10 Average
Fitting 0.68 0.61 0.19 0.53 0.43 0.47 0.77 0.48 0.38 0.21 0.48
Interpolation 0.34 0.45 0.31 033 0.32 0.36 0.22 0.36 0.24 0.29 0.31
Proposed 0.18 0.45 0.22 0.20 0.14 0.17 0.20 0.14 0.26 0.12 0.22

When the 2 boundaries are completely identical, the
value of Fiiference is 0. When the 2 boundaries are
completely different, the value of Fyjgerence is 1. This
experiment used Fgiference to represent the difference
between the cup drawn by the tested method and the
cup drawn by Ophthalmologist A. The average value
of Fiifference between the cups drawn by a test method
and by Ophthalmologist A for each of the 10 fundus
images was used as a reference to evaluate the accu-
racy of that test method.

Experimental results

The proposed method was compared to 2 classical
optic cup segmentation methods. The first is an ellipse
fitting method whose basic idea is to identify the clos-
est ellipse to the color difference points as the optic
cup boundary. The detailed process is as follows: first,

the points with maximum radial color differences are
used as information points for fitting; then, the ellipse
fitted with regard to these points using the least
squares method is taken as the final result. The second
classical method is a vessel bends-based interpolation
method. The detailed process is as follows: first, the
vessel bends points are used as the interpolation infor-
mation points; then, the Catmull-Rom spline interpo-
lation is used to generate the final result.

Table 1 displays the optic cup segmentation results
of the proposed approach and the 2 methods
described above. The data in Table 1 indicated that
the proposed method achieved a smaller average value
of Fjifference With Ophthalmologist A than the other 2
methods, suggesting that the cup segmentation result
obtained by the proposed approach is closer to that
obtained by Ophthalmologist A. In addition, the aver-
age value of Fifrence between Ophthalmologists A and

Manual

Ongina

Fitting

Interpolation Proposed

Figure 3. Sample results. From left to right columns: the original images, the manual results, the ellipse fitting, the vessel bends

interpolation and the proposed method.



B is 0.15. This value can be taken as a reference for
evaluating the other methods. As Table 1 shows, the
average value of Fjigerence for the proposed method is
0.22, which is only slightly larger than the average
value for Ophthalmologist B. This indicates that the
difference between the optic cup segmentation result
of the proposed method and that of Ophthalmologist
A is roughly the same as the difference between the
results drawn by the 2 ophthalmologists.

Figure 3 illustrates the optic cup segmentation
results from the different methods for 3 typical fundus
images. As Fig. 3 shows, the ellipse fitting method
worked well for the part of the optic cup with a dis-
tinct color difference, but poorly for the part covered
by vessels. In contrast, the vessel bends interpolation
method extracted a more accurate cup boundary for
the part crowded with vessels, with larger errors in the
part with sparse vessels. The proposed method simul-
taneously took advantage of both types of informa-
tion, allowing it to extract accurate cup boundaries
both in areas with high color differences and sparse
vessels and in areas with small color differences and
crowded vessels.

Conclusion

This paper proposed an automatic method to extract
the optic cup from fundus images. This method takes
advantage of both the color difference and the vessel
bends simultaneously in order to determine the final
cup boundary in a fundus image. During the process
of applying both types of information, we learned
from the ophthalmologist’s strategy by assigning con-
fidence to each information point.

Based on the DRIVE dataset, the proposed method
exhibited high consistency with results drawn by oph-
thalmologists, showing clear advantages over both the
ellipse fitting method, which relies only on color infor-
mation, and the vessel bends interpolation method,
which depends only on vessel bends information. Fur-
thermore, the proposed method demonstrated a
strong anti-noise effect. In the presence of a small
number of inaccurate color information points or ves-
sel bend points, the proposed method can still achieve
an accurate optic cup boundary.
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