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Abstract

Objective—Depression is a leading cause of disability and hospitalization. Women are at the 

highest risk of depression during their childbearing years, and the birth of a child may precipitate a 

depressive episode in vulnerable women. Postpartum depression (PPD) is associated with 

diminished maternal somatic health as well as health and developmental problems in their 

offspring. This review focuses on 2 PPD risk factors of emerging interest: serotonin transporter (5-

HTT) genotype and omega-3 polyunsaturated fatty acid (n-3 PUFA) status.

Method—The MEDLINE, PubMed, and Web of Science databases were searched using the key 

words postpartum depression, nutrition, omega-3 fatty acids, and serotonin transporter gene. 

Studies were also located by reviewing the reference lists of selected articles.

Results—Seventy-five articles were identified as relevant to this review. Three carefully 

conducted studies reported associations between the 5-HTT genotype and PPD. As well, there is 

accumulating evidence that n-3 PUFA intake is associated with risk of PPD. Preliminary evidence 

suggests that there could be an interaction between these 2 emerging risk factors. However, further 

studies are required to confirm such an interaction and to elucidate the underlying mechanisms.

Conclusions—Evidence to date supports a research agenda clarifying the associations between 

n-3 PUFAs, the 5-HTT genotype, and PPD. This is of particular interest owing to the high 

prevalence of poor n-3 PUFA intake among women of childbearing age and the consequent 

potential for alternative preventive measures and treatments for PPD.
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Major depressive disorder is the most common mental disorder in Canada,1 with a lifetime 

incidence of 7.9% to 8.6%, a 1-year prevalence of 4% to 5%, and a 6% point prevalence of 

symptoms consistent with depression.2 The rate of outpatient treatment for depression 

increased more than 3-fold in the United States between 1987 and 1997.3 Among women of 

childbearing age, depression is the second-leading cause of disability worldwide.4 Taken 

together, depression and other affective disorders constitute the leading cause of nonobstetric 

hospitalization among women of childbearing age in the United States.5 In Canada, the 

incidence and rate of hospitalization for MDD is about 50% higher for women than for men.
2,6 Finally, it is during the first postpartum year that women are at the highest risk of 

depression, with 45% to 65% of ever-depressed women having their first episode.7

Postpartum Depression

PPD is defined as a nonpsychotic depressive illness of mild-to-moderate severity occurring 

in a mother during the first postnatal year. Though clinically heterogeneous, PPD is distinct 

from the less severe postpartum blues or baby blues (a mild depressive reaction within the 

first few days following birth, occurring in 15% to 84% of mothers depending on timing, 

number of assessments, and criteria used to establish a case)8 and the much less frequent, 

though more serious, postpartum psychosis (a psychiatric emergency occurring in fewer than 

1 of 500 mothers, with rapid onset within the first 4 weeks after delivery, generally 

associated with bipolar disorder and requiring hospitalization).9 The prevalence of PPD is 

generally reported as between 10% and 15%.7,10

Consequences of PPD

PPD is associated with reduced maternal functional status,11 chronic disease12 and 

diminished physical health-related quality of life.13 PPD has also been linked with numerous 

somatic and psychiatric problems in the children of depressed mothers.14,15 Research 

suggests that mothers suffering from PPD tend to be more disengaged, hostile, critical, and 

less sensitive and responsive toward their children.16–18 These patterns can lead children to 

develop an insecure attachment relationship with their mother, resulting in disruptions in 

sleep patterns, delays in language and cognitive development, poor affect regulation, and 

other emotional and behavioural problems.19 For example, 10-year-old children exposed to 

maternal PPD symptoms since birth have larger left and right amygdala and a heightened 

cortisol response to stress,20 and other long-term associations have also been observed 

between maternal PPD and cognitive outcomes including IQ in adolescents.21

Clinical Implications

• Nutritional and genetic exposures are emerging as risk factors of interest in 

the etiology of PPD.

• If confirmed in future studies, these exposures hold potential as part of a 

screening strategy to identify women at risk of PPD, and to define target 

populations for evaluating prevention strategies.
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• Intakes of n-3 PUFA in pregnant women are well below recommendations 

and are amenable to improvement.

Limitations

• The number of studies on these risk factors is too small to be able to draw 

firm conclusions.

• More evidence is required concerning the specific biological mechanisms 

underlying PPD, and the pathways through which these risk factors could 

potentially interact.

PPD, Compared With Other Depression

While the diagnostic criteria for PPD are otherwise identical to those for depression 

occurring at other times, certain biologic markers distinguish PPD from other types of 

depression. It is likely that hormonal changes associated with parturition contribute to mood 

alterations in vulnerable women.22 Studies have shown decreased susceptibility to 

depression in women during times of reproductive hormone stability, suggesting that PPD 

may stem, in part, from marked hormonal variations associated with childbirth.23 Over the 

course of pregnancy, cortisol levels double,24 while progesterone and estradiol levels 

increase 10 and 50 times, respectively; these hormones then abruptly return to normal levels 

within the first 2 weeks of the postpartum period.25 Experimental evidence suggests that 

women who develop PPD may be particularly sensitive to these hormonal fluctuations.26–28 

Further, decreased levels of monoamines, including 5-HT, norepinephrine, and dopamine, 

are implicated in the pathogenesis of depression,29 and data from animal models suggest that 

estrogen and other steroid hormones mediate the transcription of genes regulating synthesis 

and metabolism of neurotransmitters and their receptors,30,31 supporting the hypothesis that 

hormonal fluctuations affect the risk of PPD, in part, through their effects on the central 

nervous system. Finally, the prenatal and postpartum periods involve exceptional social 

stressors and demands on women that have been found to increase both the risk and the 

consequences of depression.32,33

Treatment of PPD

The care and treatment of women with PPD varies widely between countries, owing, in part, 

to inadequate guidelines and disparities in accessible treatment options.34 Nonetheless, there 

is evidence supporting pharmacologic and other biological interventions (for example, 

hormonal interventions or bright light therapy) for the treatment of moderate-to-severe 

depression in postpartum women.35,36 While few placebo-controlled trials of ADs have been 

conducted in women with PPD, 2 trials have yielded positive body of research results,37,38 

and ADs appear to be as effective for PPD as for MDD occurring at other times in the life 

cycle.36 However, concerns have been raised regarding the robustness of evidence on which 

these conclusions are based,35 and few studies have compared different classes of 

medications for the treatment of PPD.39 In addition, evidence suggests that adherence to 

ADs during the postpartum period may be poor.34 Psychotherapeutic and other 

nonpharmacologic interventions, including relaxation and massage therapy, infant sleep 
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interventions, and maternal exercise, have also shown promise in the treatment of PPD. 

However, the evidence base concerning their effectiveness is still limited.40,41

Risk Factors for PPD

Given the limited knowledge regarding efficient and safe treatment of PPD, one avenue for 

reducing PPD and need for treatment would be through preventive approaches targeting risk 

factors. A constellation of risk factors for PPD has been identified that includes social, 

demographic, obstetric, biological, hormonal, psychiatric, and genetic features, as well as 

characteristics of the newborn child. Among the key social factors predicting PPD are a 

strained marital relationship, low social support, and stressful life events.7,14 Low SES42,43 

and personal or family history of depression or mood disorders14 have also been identified 

as significant risk factors for PPD. PPD has been linked with severe obstetrical 

complications during pregnancy44,45 and at delivery46; with adverse birth outcomes (low 

birth weight and preterm birth)47; and with adverse neonatal outcomes, such as infant 

irritability and poor motor function.48

It has also been proposed that the environmental risk for depression may be moderated by 

genetic factors. It is estimated that about 40% to 50% of the risk for depression is genetic,49 

with family studies showing a 3- to 4-fold increased risk of depression for family members 

with depression, depending on the degree of relation.50 However, the specific mechanisms of 

genetic causality are not well understood,25 and the relative contribution of various 

combinations of genetic and environmental factors to PPD is as yet undetermined.

Beyond social influences, one key environmental factor may be nutrition. There is indeed 

evidence that diet quality, dietary intake, and overall nutritional status can affect the risk of 

PPD.51 Pregnancy is a period during which nutritional requirements and vulnerability to 

poor nutritional status are heightened. In fact, requirements for many nutrients in women 

reach a lifetime peak during pregnancy or lactation. Improved nutritional status during these 

periods may positively impact on maternal mental health, both directly and by augmenting 

the effectiveness of ADs.51

Therefore, our review will focus on 2 risk factors of emerging interest, 5-HTT genotype and 

n-3 PUFA status. The 5-HTT gene was selected because it has become the most investigated 

genetic variant in psychiatry, psychology, and neuroscience.52 Further, a significant body of 

research has explored the association between n-3 PUFAs and PPD.53–56 Because n-3 

PUFAs are hypothesized to reduce the risk of depression, in part through the regulation of 

gene expression,53 studies testing the interaction between n-3 PUFAs and genetic exposures 

in the prediction of PPD would be warranted. This is particularly important as nutrition is a 

potentially modifiable environmental risk factor51,57 that could interact with a genetic 

predisposition to PDD.

Literature Search

We searched the MEDLINE (1950 to 2011), PubMed (1966 to 2011), and Web of Science 

(1965 to 2011) databases for articles in English or French using the key words postpartum 

depression, nutrition, omega-3 fatty acids, and serotonin transporter gene. We included 
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narrative and systematic reviews, original research reports of observational or experimental 

studies, and editorials. Studies were also located by reviewing the reference lists of selected 

articles. Our search generated 257 articles. Abstracts from research reports and systematic 

reviews were assessed for exposure and outcome measures. To be included, studies needed 

to have PPD or depressive symptoms as an outcome. At least one of the following exposures 

was also required: 5-HTT genotype, n-3 PUFA dietary intake, supplementation, or 

biomarker measurement, and fish consumption. Review articles and editorials addressing 

these exposures, as well as other genetic and nutritional risk factors for PPD, were included. 

This left 75 articles forming the core of our narrative review.

The 5-HTT Gene and PPD

Following reports of associations between the short allele of the 5-HTTLPR and anxiety-

related personality traits,58 studies have addressed the influence of the 5-HTT gene on 

depression, both alone59 and in interaction with environmental risk factors.60 The 5-HTT 

gene modulates the reuptake of 5-HT at brain synapses, a principal neurobiological feature 

of depression and the target of selective serotonin reuptake inhibitor ADs.60

Nevertheless, the precise relation between 5-HTT and the risk of depression is somewhat 

controversial, with a recent meta-analysis concluding no overall effect.61 However, this 

finding has been critiqued on several grounds, including heterogeneity in measurement of 

outcome and environmental exposure, exclusion of studies with high-quality designs,62 

inadequate measurement of relevant environmental exposures,62,63 and use of inappropriate 

interaction models.64,65 Another meta-analysis concluding that positive results for 

interactions between 5-HTTLPR and stressful life events in the prediction of depression 

were compatible with chance findings66 has also been critiqued on some of these same 

grounds.67 A third meta-analysis with broader inclusion criteria68 concluded that 5-

HTTLPR moderates the relation between stress and depression. In addition, significant 

associations between 5-HTTLPR genotype and depression were found in 2 other meta-

analyses that did not take into account stress as a covariable.69,70 Accordingly, there are 

reasons to suspect that the 5-HTT gene is related to depression in some subpopulations, 

including women in the postpartum period.

Biologic evidence suggests a role of the 5-HT system in PPD that may differ from that in 

other forms of depression.71 Synthesis of cerebral 5-HT decreases during pregnancy owing 

to placental catabolism of tryptophan, the precursor to 5-HT.72 PPD symptoms are positively 

correlated with postnatal tryptophan catabolism73 and inversely correlated with maternal 

plasma tryptophan concentrations.71 This suggests that the 5-HT system may be of 

particular importance in the pathophysiology of depression in postpartum women.

Epidemiologic evidence suggests that 5-HTT gene expression patterns may have differential 

effects for men and women, particularly in the context of psychosocial stress. One study74 

on 5-HTT, family environmental risk, and depression showed effects for women but not 

men. Two additional studies75,76 showed increased depressive symptoms in females carrying 

the short allele but a protective effect of the short allele in males.
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The 5-HTT genotype was linked to PPD in 3 other studies. A study77 looking at depressive 

symptoms at 3 time points after delivery found a significant positive association between 

depressive symptoms and 5-HTT expression level at 8 weeks into the postpartum period. 

Another study78 of women with a prior history of depression found that short allele carrier 

status (either 1 or 2 copies of the short allele) of the 5-HTT gene predicted depression at 1- 

to 8-weeks during the postpartum period (OR 5.13; 95% CI 1.16 to 22.7, P = 0.02). Finally, 

a recent study79 showed the 5-HTT short allele to be associated with increased risk of PPD 

in low-SES women but with decreased risk in high-SES women. Taken together, these 

heterogeneous results suggest that null findings from other studies, 80,81 particularly meta-

analyses,61,66 may mask interactions between 5-HTT genotype and environmental risk 

factors.

n-3 PUFA and PPD

Found in fish as well as some seeds and nuts,82 n-3 PUFAs are essential unsaturated fatty 

acids, and they merit attention and further study for several reasons. First, n-3 PUFAs 

directly affect brain activities, including receptor function, neurotransmitter uptake, and 

signal transmission,51 and evidence suggests a beneficial role of n-3 PUFAs in the treatment 

of patients with diagnosed depression.83,84 Second, dietary intake of n-3 PUFAs is 

particularly poor, and the ratio of n-6 to n-3 PUFA intake has risen dramatically over the last 

century.85 This ratio is a commonly used marker of dietary fatty acid composition and is 

positively related to risk for various diseases.86 Finally, as n-3 PUFA stores are transferred 

from the mother to the developing fetus during gestation and later to the infant by lactating 

mothers, maternal n-3 PUFA levels decrease during pregnancy and remain lowered at least 6 

weeks into the postpartum period.87

Research on n-3 PUFAs and PPD has been informed by an interest in the interrelations 

between fatty acids, depression, and cardiovascular disease.88,89 Patients with depression 

show increased cardiovascular mortality, and depression is a frequent comorbidity in patients 

with coronary artery disease and is associated with worse outcomes in these patients.89–91 

Depression and cardiovascular disease may exacerbate each other directly, but it is also 

hypothesized that these 2 seemingly disparate health problems share common causes.92 n-3 

PUFAs are understood to modulate both serotonergic neurotransmission and thrombotic and 

inflammatory mechanisms associated with coronary disease,90,93 and it is likely that 

inflammatory markers comprise part of the physiological mechanism of depression as well.
94–97

Evidence linking n-3 PUFAs and depression spans multiple study designs and populations.
85,98,99 Associations have been found in case–control, cross-sectional, and cohort studies; 

with exposures including blood lipid samples, adipose tissue samples (reflecting long-term 

or habitual intake), fish consumption, overall dietary fatty acid intake,100 and postmortem 

brain cortex analyses;101 and with outcomes including clinical depression, depressive 

symptoms,99 depression during pregnancy, and PPD.102 Serum levels of DHA, one of the 

principal n-3 PUFAs associated with depression, have been observed to decline during 

pregnancy and after delivery, leaving postpartum women vulnerable to DHA deficiency.
55,103 Dietary intake and serum levels of n-3 PUFAs have been inversely associated with 
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PPD53,55 and with depression in other populations.99,104 Ecologic and cross-sectional 

studies85 have found inverse associations between consumption of fish (a primary dietary 

source of n-3 PUFAs) and major depression and PPD.

Evaluating research on n-3 PUFAs and PPD must be done with caution. This research is 

conducted against a background of robust links between psychosocial exposures and 

affective disorders and strong demonstrated associations between depression, before or 

during pregnancy, and PPD. An emerging body of research also shows links between 

depression and other nutrients whose intake is likely to exhibit some collinearity with n-3 

PUFAs. Nevertheless, randomized controlled trials have shown n-3 PUFAs to be effective as 

AD treatment,84,105 suggesting a causal role for this nutrient class in the etiology of 

depression. This claim is supported by evidence linking n-3 PUFAs with efficient 

neurotransmission106 and with inflammatory mechanisms connected to depression. Several 

clinical trials of n-3 PUFA supplementation for patients with MDD have shown large effect 

sizes.107 However, meta-analyses suggest it is more realistic to expect moderate effect sizes 

from supplementation.83,84 Observational studies of n-3 PUFAs and depression have also 

shown moderate effect sizes. For example, in a study91 of patients with recent acute 

coronary syndromes (representing a high-risk group), the per cent of phospholipid fatty 

acids represented by n-3 PUFAs was about 12% lower in people with depression, and the 

percentage of DHA about 14% lower, compared with nondepressed people.

Finally, it needs to be considered that plasma levels of fatty acids are an imperfect measure 

of dietary intake and also an imperfect predictor of fatty acid levels in brain tissue. Serum 

fatty acid levels have been shown to be sensitive to recent changes in dietary fatty acid 

intake in adults.108–110 This pattern has specifically been observed in pregnant women, with 

n-3 PUFA supplementation associated with elevated plasma and postpartum breast milk 

DHA levels.111 Findings from animal studies85,112 suggest a robust relation between serum 

and brain fatty acid levels, and dietary deficiency in n-3 PUFAs has been associated with 

observed changes in brain composition and neural functioning in animal models.85 

Significantly, n-3 PUFA deficiency has been associated with altered metabolism of 

dopamine and 5-HT,109 2 of the key neurotransmitters underlying the neural physiology of 

depression. However, animal models show the mechanisms through which fatty acids. are 

absorbed, converted, synthesized, and processed in the brain are complex and change over 

the life course.109,113–118 Dietary fatty acid intake affects brain fatty acid levels most readily 

during early development,119–121 and it is unclear how quickly brain fatty acid levels change 

in relation to dietary intake in mature animals. Nevertheless, significant changes in brain 

fatty acid levels were observed in adult female rats within a time span of one reproductive 

cycle following diet modification.122

n-3 PUFA Status and Modification of Intake

Evidence from numerous fronts suggests that intakes of n-3 PUFAs are far below 

recommended levels and are amenable to improvement. In the US adult population, intake of 

DHA and EPA in 2000 was more than 70% below recommendations from the National 

Institutes of Health.123 A 4-fold increase in fish consumption would be required to bring 

EPA and DHA intake to recommended levels. In Canada and Australia, maternal milk 
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concentrations of DHA appear to have decreased by about 50% over the 15-year period 

ending in 1999.124

Inadequate n-3 PUFA levels are of even greater concern in pregnant women. In a cross-

sectional survey125 of pregnant women in central Mexico, the median DHA and EPA 

intakes, as calculated from a food frequency questionnaire, were 55 and 18 mg/day, 

respectively. This compares with recommendations by the American Dietetic Association 

and Dietitians of Canada of 500 mg/day DHA and EPA combined.126 A Canadian study127 

of adults in Quebec found that 85% had an EPA and DHA intake lower than this 

recommendation. Among the women of childbearing age in that study, median intake of 

DHA was 126 mg/day,127 while a study124 of pregnant women in British Columbia showed 

a mean DHA intake of 160 mg/day.

Because maternal plasma n-3 PUFA concentrations decline substantially after delivery,
128,129 maintaining a sufficient intake of n-3 PUFAs is important to ensure adequate fatty 

acid stores during the postpartum period. In addition to the implications for maternal mental 

health, n-3 PUFAs are essential for infant neural and visual development.130 n-3 PUFA 

intake is thus critical for lactating mothers. While there has been considerable focus on n-3 

PUFA status in adolescent mothers owing to the enhanced nutritional risks associated with 

adolescence,131 several studies have also examined n-3 PUFA levels in adult postpartum 

women. Two studies found DHA intake of 30 to 58 mg/day and concentration in breast milk 

of about 0.10%, well below recommendations of 0.2% to 0.4%.132,133 A study comparing 

lactating and nonlactating women found a DHA intake of 29 to 47 mg/day and EPA intake 

of 52 to 91 mg/day,128 again well below recommendations. These results suggest poor 

maternal n-3 PUFA intake to be a significant problem, not only during pregnancy but also in 

the postpartum period.

n-3 PUFA, 5-HTT Genotype, and PPD

A growing body of literature is exploring nutritional aspects of depression134 and PPD 

specifically.25,51 However, little research has addressed interactions between nutritional and 

genetic risk factors in the prediction and etiology of depression. There has been considerable 

focus on interactions between the 5-HTT gene and psychosocial stress68,135 but little 

investigation into genetic interactions with nutritional exposures that may exhibit some of 

the same effects as stress on brain function. Two studies examining the seasonal variation in 

n-3 PUFAs, plasma tryptophan, and serotonergic markers136,137 suggest that fatty acid levels 

in the brain may modulate 5-HT release and reuptake. These findings support research into 

interactions between n-3 PUFAs and the 5-HTT gene and suggest that these 2 seemingly 

disparate exposures may affect the risk of PPD through a common neurobiological 

mechanism. Accordingly, studying their association in the prediction of PPD may help 

further elucidate the neurobiological underpinnings of this condition while helping to target 

prevention and treatment efforts.
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Conclusion

There is a growing awareness of the importance of nutritional and genetic exposures as risk 

factors for PPD. The 5-HTT gene is a promising avenue for genetic research, and it appears 

highly likely that this gene affects the risk of depression and other psychiatric conditions. 

However, it is unclear which genotypes are associated with elevated risk in which 

populations, and specifically how associations between 5-HTT genotype and depression may 

differ during the perinatal period from other time points across the life course. Similarly, 

increasing evidence links n-3 PUFAs and depression in diverse populations. However, the 

biological mechanisms through which these links function, and the ways in which they may 

be modified in pregnancy, are not clearly understood.

One of these mechanisms could operate through a gene–environment interaction. Because it 

can be reasonably hypothesized that the 5-HTT genotype and n-3 PUFAs impact on the risk 

of PPD, in part through the same mechanism, studying them jointly would present an 

opportunity to advance our understanding of how genetic and dietary exposures may interact 

in the etiology of PPD. Knowledge garnered from this effort has the potential to improve the 

prediction, prevention, and treatment of this significant public health problem. This is 

particularly important as current intake of n-3 PUFAs in pregnant women is well below 

recommendations and is thus amenable to improvement.
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Abbreviations

5-HT serotonin

5-HTT serotonin transporter

5-HTTLPR serotonin transporter gene linked polymorphic region

AD antidepressant

DHA docosahexaenoic acid

EPA eicosapentaenoic acid

MDD major depressive disorder

PPD postpartum depression

n-3 PUFA omega-3 polyunsaturated fatty acid

SES socioeconomic status
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