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Abstract

Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine 

nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory 

cells by engaging one or more cell-surface receptors. The expression and function of adenosine 

receptors on different cell types change during the course of rheumatic diseases, such as 

rheumatoid arthritis. Targeting adenosine receptors directly for the treatment of rheumatic diseases 

is currently under study; however, indirect targeting of adenosine receptors by enhancing 

adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of 

methotrexate, the anchor drug for the treatment of rheumatoid arthritis. In this Review, we discuss 

the regulation of extracellular adenosine levels and the role of adenosine in regulating the 

inflammatory and immune responses in rheumatic diseases such as Rheumatoid Arthritis, psoriasis 

and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in 

promoting fibrous matrix production in the skin and other organs and the role of adenosine in 

fibrosis and fibrosing diseases will also be discussed.

Introduction

Many different intercellular signals maintain homeostasis in tissues and organs. One of the 

first of these signals identified in the regulation of a large number of physiological and 

pathological processes was adenosine. First identified as a potent vasodilator in 1929 by 

Drury and Szent-Gyorgi1, adenosine was subsequently shown to mediate its effects on cells 

via engagement of specific receptors (A1, A2a, A2b and A3 2,3). Indeed, adenosine has been 

described as a ‘retaliatory metabolite’ 4 that is released from cells in response to hypoxia, 

metabolic stress or injury and promotes the processes required to alleviate these noxious 

stimuli. Among its other functions, adenosine is an endogenous regulator of inflammation 
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that mediates the transition from inflammation to healing. Pathological changes in, or 

pharmacological manipulation of, adenosine metabolism or adenosine receptor expression 

and/or function might have a role in both the pathogenesis and therapy of rheumatic 

diseases. We review the metabolic changes that regulate adenosine levels in inflamed tissue, 

the receptors that mediate the pharmacological and pathological effects of adenosine and 

their role in rheumatic diseases, as well as the potential role for therapeutic targeting of 

adenosine and its receptors.

Adenosine in inflammation and fibrosis

Inflammation of the joints, connective tissue, muscle and bone are the most common 

manifestations of the rheumatic diseases; both the innate and adaptive immune systems can 

contribute to the inflammation observed in diseases such as rheumatoid arthritis (RA) and 

psoriatic arthritis. In most inflammatory arthritides neutrophils are the most abundant cells 

in synovial fluids whereas T cells, B cells and macrophages predominate in the synovial 

tissues. At inflamed sites a large number of intercellular messengers and effector molecules 

secreted by the various cells are present, ranging in size from low molecular weight products 

(such as nitric oxide and prostaglandins among many others) to proteins (cytokines, growth 

factors, proteolytic enzymes and others). The cells (for example, synovial fibroblast-like 

cells and vascular endothelial cells) of the tissues that comprise the joint also contribute to 

injury and destruction of the structures of the joint; osteoclasts are critical to bone 

destruction, and chondrocytes secrete enzymes that destroy cartilage in inflamed joints. 

Adenosine, acting at its receptors, regulates the activation of all of these cell types and their 

secretion of intercellular messengers and effector molecules of all classes.

A common end point of inflammation is fibrosis or scarring, which can disrupt the 

appropriate functioning of the organ affected. Thus, joint contractures are also characteristic 

of inflammatory arthritis, and fibrosis characterizes organs affected in extra-articular RA, 

such as in the lung. The major manifestations of systemic sclerosis (SSc) are fibrosis of the 

skin and internal organs. Adenosine and its receptors also have a role in the pathogenesis of 

fibrosis in many different organs and might have a role in SSc as well.

Sources of adenosine

Intracellular ATP, the most abundant molecule in the cell, serves as the reservoir for the 

production of adenosine; however, most adenosine is formed in the extracellular space as a 

result of the sequential dephosphorylation of adenine nucleotides to adenosine (Figure 1). A 

number of transporters are involved in the export of ATP, including the proteins connexin-43 

(also known as gap junction alpha-1 protein) 5, progressive ankylosis protein homolog 

(ANK) 6, pannexin-1 and pannexin-3 7, and probably others as well, including P2×78. Under 

resting conditions some ATP is dephosphorylated to adenosine but injury, hypoxia or other 

metabolic assault can trigger increased rates of intracellular conversion of ATP to adenosine 

or, more commonly, stimulate the release of adenine nucleotides into the extracellular space 

where they are dephosphorylated to adenosine by ectoenzymes at the cell surface 

(ecto-5’nucleotidase [CD73] and ecto-nucleoside triphosphate phosphohydrolase [CD39]) 

and by enzymes in blood or other extracellular fluids (for example, alkaline or acid 
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phosphatases, including tissue nonspecific alkaline phosphatase [TNAP]). Once formed or 

released into the extracellular space adenosine can be deaminated to inosine and, in humans, 

ultimately to uric acid or taken up directly by cells by specific nucleoside transporters 

(ENT1 and ENT2) 9 and re-phosphorylated to ATP (Figure 1) 6,9-16.

Inflammation in the joint has long been known to lead to hypoxia due, in part, to pressure 

from synovial exudates, the disordered vasculature that develops in chronically inflamed 

synovium and the marked influx of inflammatory cells 17-19. Although acute hypoxia leads 

to increased adenosine release that helps to ameliorate tissue injury following ischemia–

reperfusion (reviewed elsewhere20), in settings of chronic hypoxia and inflammation the 

ongoing cellular injury results in mitochondrial dysfunction21. In addition to release of 

inflammatory reactants from dysfunctional mitochondria, reduced ATP production probably 

leads to a reduction of ATP and/or adenosine levels in extracellular fluid (Corciulo and 

Cronstein, unpublished observations. Despite upregulation of adenosine receptors at 

inflamed sites (see below) the diminished adenosine level present in chronically inflamed 

joints probably permits further activation of inflammatory cells in the synovium 21. Hypoxia 

contributes to both acute and chronic inflammation by other mechanisms as well 21.

Adenosine receptors

Four subtypes of adenosine receptor exist, named in order of discovery: A1, A2a, A2b and 

A3. These receptors are all members of the G-protein-coupled family of 7-transmembrane 

spanning receptors 3 (FIGURE 2). A1 and A2a are high affinity receptors with activity in the 

low to mid-nanomolar range whereas A2b has a substantially lower affinity for adenosine 

(micromolar). Considerable species-dependent variability in A3 exists22. Adenosine 

receptors are widespread in their expression and are important regulators of many different 

types of physiological and pathological processes. A1 and A3 signal via Gαi signalling 

proteins, which downregulate cAMP expression, whereas A2a and A2b are linked to GαS 

proteins, which trigger increases in cellular cAMP content. A2b also signals through Gq 

proteins23.

Expression of adenosine receptors is regulated by a number of stimuli, including 

inflammatory stimuli. In particular, A2a is upregulated by agents that stimulate activation of 

NFκB (a central transcriptional regulator in the inflammatory process), such as TNF, IL-1 

and endotoxin, 24-28 and acts, as described below, as a feedback inhibitor of inflammation. 

Evidence from patients with RA confirms these observations: increased expression of A2a on 

peripheral white blood cells in these patients is reduced by treatment with anti-TNF 

agents29,30. In addition to regulation of A2a expression, TNF and other proinflammatory 

cytokines increase the function of these receptors by preventing receptor desensitization31, 

further downregulating inflammation. By contrast, interferon-γ (IFNγ) downregulates both 

the expression and function of A2a 32-34. This downregulation (which occurs following the 

increase in both extracellular adenosine levels and A2a expression and function after cellular 

injury or necrosis) indicates the potent role of adenosine and its receptors as feedback 

regulators of inflammation and innate immune responses.
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Similarly, A3 adenosine receptor expression is increased on peripheral blood white cells in 

patients with RA, and treatment with anti-TNF antibodies reduces adenosine receptor 

overexpression29,35-37.

Adenosine receptors and innate immunity

Neutrophils

The anti-inflammatory effects of adenosine were first suggested in 1983 when the capacity 

of extracellular adenosine to inhibit stimulated neutrophil superoxide anion generation was 

demonstrated 38, effects subsequently confirmed and expanded upon by many others 39-42. 

Later studies revealed that these effects were mediated by adnesoine receptor A2a 43-45. 

Thus, A2a engagement inhibits phagocytosis.

Before neutrophils can destroy invading bacteria or clear debris from a wound they must be 

recruited from the vasculature into the extravascular space, a process mediated by a series of 

adhesive interactions among neutrophils, endothelial cells and matrix. Numerous studies 

revealed that engagement of adenosine receptor A2a and A2b inhibited adhesion of 

neutrophils to both endothelial cells and other surfaces 46-50 by inhibiting both selectin and 

integrin-mediated adhesive interactions. Interestingly, in vitro studies demonstrated that A1 

enhanced neutrophil adhesion to endothelial cells via α4 integrins 49. This same group had 

reported, based on studies with pharmacological inhibitors, that stimulation of A1 enhanced 

neutrophil chemotaxis; 43,51 however, later studies using knockout mice and their 

neutrophils demonstrated that, in fact, it was A3 that mediated enhanced chemotaxis 52,53.

One of the mechanisms by which inflammatory cell activation is terminated or 

downregulated is by engulfment of apoptotic cells, such as occurs at sites of crystal-induced 

inflammation. A2a engagement promotes engulfment-mediated neutrophil downregulation, 

whereas A3 engagement diminishes engulfment-mediated downregulation of 

proinflammatory actions (TABLE 1) 54,55.

It has often been noted that imitation is the most sincere form of flattery and this adage is no 

less true for imitation of critical biological mechanisms by pathogens. Although most of the 

adenosine that mediates suppression of inflammation is produced endogenously some is 

produced by pathogens as a virulence factor. Invasive forms of Candida albicans, 

Staphylococcus aureus and Streptococcus suis have all been reported to produce adenosine 

as a virulence factor to protect against phagocyte-mediated injury 56-58. The hijacking of 

adenosine-mediated immunosuppression by pathogens provides strong evidence for the 

importance of this biological mechanism.

Monocytes and macrophages

Macrophages have critical roles in initiating the innate immune response against microbes 

and in eliminating debris at sites of injury. In addition to destroying most microbes, 

macrophages produce a variety of cytokines and mediators involved in regulating 

inflammatory responses and present antigens to T cells in order to orient the adaptive 

immune response. Macrophages are antigen presenting cells that promote the selective 

expansion and differentiation of lymphocytes specific for invaders or cancer cells and, in the 
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rheumatic diseases, direct immune response to self-antigens. Two types of macrophages 

have been identified: M1 or classical macrophages and M2 or alternatively activated 

macrophages 59,60. In diseases such as RA, M1 macrophages have an important role by 

releasing a variety of proinflammatory cytokines (including TNF, IFNγ and IL-12 among 

many others), as well as oxidants, nitric oxide and other small-molecule mediators of tissue 

injury. M2 macrophages have a role in terminating inflammation after ingestion of apoptotic 

cells and promote wound healing by producing angiogenic and profibrotic cytokines.

Adenosine, acting at A2a, suppresses production of proinflammatory cytokines and 

stimulates expression of anti-inflammatory mediators such as IL-10 and vascular endothelial 

growth factor (VEGF) 61-72. More generally, A2a stimulation induces a switch from an M1 

to a modified M2 phenotype 62,71. One mechanism by which A2a ligation alters macrophage 

function is via stimulating expression of the orphan nuclear receptor NR4A, which 

diminishes activation of NFκB-dependent gene expression 73,74. A2b also stimulates the 

switch from an M1 to an M2 phenotype 75-77. The role of A3 in regulation of inflammatory 

macrophage function is less clear; A3 stimulation clearly suppresses cytokine expression and 

release by macrophages and diminishes inflammation in mouse models of arthritis and 

inflammatory bowel disease 70,78-86. Indeed, the relatively poor anti-infective function of 

macrophages from human neonates is thought to reflect the dominance of A3 expressed by 

these cells 80. By contrast, studies have indicated that A3 ligation diminishes the suppression 

of inflammation induced by engulfment of apoptotic cells 54. In patients with RA, A3 

expression is a marker of disease severity and can predict the efficacy of treatment of 

symptoms with a selective adenosine receptor A3 ligand (TABLE 1) 35.

The effect of A2b activation on the overall immune response remains ambiguous. As noted 

above, A2b promotes a phenotypical switch from M1 to M2 macrophages, 75-77 but also 

stimulates the differentiation of dendritic cells, which can promote type 17 T helper cells 

(TH17) immune responses via production of IL-6 87-89. Indeed, in in vivo studies high 

concentrations of adenosine exacerbated arthritis and tissue destruction in rats via an A2b 

mechanism 90.

Multinucleated giant cells, formed from the fusion of macrophages, are characteristic 

accompaniments of inflammation in response to foreign bodies or certain pathogens (most 

notably tuberculosis) and their presence in inflamed vessels gives Giant Cell Arteritis its 

name.. Adenosine receptors have a critical role in the formation of these syncytia as A1 

stimulation is essential for formation of giant cells in vitro 91. Osteoclasts, a specialized 

form of multinucleated giant cell involved in bone remodelling and turnover, also depend on 

A1 to complete differentiation by a mechanism involving the signalling molecule 

TRAF6 92,93. By contrast, A2a and A2b stimulation inhibits osteoclast differentiation; mice 

lacking these receptors have osteopaenia 94-96 due, in part, to increased osteoclast-mediated 

bone resorption. Owing to its effects on osteoclasts and macrophages and production of 

proinflammatory cytokines, A2a also inhibits inflammatory bone damage induced by 

prosthetic wear particles97. Interestingly, both A2a and A2b stimulate bone formation in vivo
98 although only the direct stimulatory effects of A2b on osteoblast function have been well 

characterized 99,100.
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The adaptive immune system

Regulation of T cells by A2a

Effector functions of T cells in RA synovium are triggered by the T cell receptor (TCR) 

recognition event followed by transmembrane signalling of the TCR–CD3 complex and by 

multiple interconnected intracellular biochemical pathways; therefore, it is important to 

explore the therapeutic opportunities of targeting T cells in both hypoxic and adenosine-rich 

microenvironments and normoxic and adenosine-poor tissue microenvironments of inflamed 

joints in RA. Studies of adenosine receptors on T cells were largely motivated by the need to 

understand their role in anti-pathogen and anti-tumour immunity, with a primary focus, until 

recently, on A2a 101,102. The high-affinity A2a, but not A1 or A3, was identified as the 

predominant adenosine receptor on the surface of mouse T cells103,104. Expression and 

functional coupling of A2a in mouse peripheral T cells and B cells correlated with 

adenosine-induced cAMP accumulation in lymphocytes and with adenosine-induced 

inhibition of TCR-triggered T cell activation103,104. The capacity of A2a stimulation to 

inhibit effector functions of different subsets of mouse T cells was subsequently 

confirmed105 and in vivo genetic and pharmacological evidence was provided showing that 

A2a is critical and non-redundant in controlling the extent of T-cell-mediated immune 

responses, inflammation and tissue damage in different models of antipathogen immune 

responses and antitumour immune responses 101,106. Non-redundance of A2a in T cells and 

myeloid cells was demonstrated by the observation that none of the other cAMP-elevating 

G-protein-coupled receptors on immune cells could replace A2a and compensate for the A2a-

mediated attenuation of T-cell-driven immune responses and inflammatory damage in 

models of autoimmune and viral hepatitis101.

ADORA2A gene–dose effect

Naive T cells express low levels of A2a 103,104 but following TCR-triggered activation of T 

cells ADORA2A mRNA and A2a-mediated signalling rapidly increase105. Other studies 

have demonstrated a clear gene–dose effect for extracellular adenosine signalling at A2a and 

that no receptor reserve exists on these cells 107. The lack of ‘spare’ immunosuppressive A2a 

on T cells points toward the importance of every individual A2a molecule on these cells in 

maintaining the balance between immunosuppression and immunostimulation and the need 

for the precise regulation of numbers of A2a molecules to avoid autoimmunity without 

tolerization of T cells. Extracellular adenosine is short-lived in vivo but its 

immunosuppressive effects on T cells are prolonged due to the intracellular biochemical 

‘memory’ of exposure of T cells to adenosine104.

In view of the direct evidence for the effect of A2a on T cells and the role of TH17 and T 

regulatory (Treg) cells in the pathogenesis of RA it would be of significant interest to 

investigate the genetic differences in ADORA2A between individual patients with RA and 

to search for correlations between the number of A2a molecules per immune cell and 

severity of the disease. ADORA2A gene polymorphisms, as well as the number of A2a 

molecules per immune cell, might also predispose a patient to developing RA or, equally 

importantly, to respond to adenosine-dependent therapies such as methotrexate (see below). 

An interesting experimental approach to testing this hypothesis was presented in studies of 
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functional changes caused by genetic variation of ADORA2A that used personalized 

lymphoblastoid cell lines from twins as a model system108. This study demonstrated that 

there was altered potency of a partial A2A agonist for A2A receptor activation in cells 

expressing a receptor in which there was a previously described polymorphism associated 

with caffeine-induced sleep disorders.

A2a and subsets of human T cells

Further characterization of which T cell subsets express A2a and whether and how their 

functions are regulated is required, although early studies clearly demonstrated differential 

expression and function of this receptor on T cell subsets109,110. CD4+ T helper cells express 

A2a which, when stimulated by adenosine or an A2A agonist, inhibits the proinflammatory 

functions of these cells110,111. Similar to mouse T cells, human T helper cells increased 

ADORA2A mRNA levels as soon as 4 hours after activation, and A2a was the predominant 

subtype of adenosine receptor expressed by these cells. Activation of A2a on T cells is of 

great consequence not only to T cell function but also to the fate of T cells, memory T cells 

and T-cell homeostasis as A2a counteracts processes leading to activation-induced cell death 

and Fas–Fas-ligand-mediated cell death in CD4+ T lymphocytes112. (TABLE 1) These 

original studies were carried out on mouse CD4+ hybridomas and human Jurkat cells (a 

transformed T cell line and were subsequently expanded to in vivo studies of naive T cell 

development and peripheral maintenance, which is the overall outcome of extracellular 

signalling to T cells in different tissue microenvironments113. The possibility of A2a 

involvement in T-cell selection processes was also the implication of early studies of 

immature T cells114.

A2a signalling in T cells

A2a is a Gs-linked receptor that stimulates an increase in intracellular cAMP levels, which in 

turn activates protein kinase A (PKA). cAMP–PKA signalling directly inhibits all known 

TCR-triggered effector functions104,106 because cAMP–PKA is the ‘high fidelity’ 

immunosuppressor that intercepts both early and late events in the TCR-triggered 

intracellular T cell activation pathway 115,116. Moreover, signalling mediated by A2a, cAMP, 

PKA, cAMP response element (CRE) and cAMP response element binding (CREB) protein 

can redirect proinflammatory T cell responses toward an immunosuppressive phenotype. 

This change in phenotype also occurs because the extracellular adenosine accumulation 

driven by hypoxia and hypoxia-inducible factor (HIF)-1α results in hypoxia response 

element (HRE) and CRE-dependent redirection of CD8 and CD4 and myeloid-cell-mediated 

immune responses toward production of immunosuppressive cytokines and molecules such 

as TGFβ, IL-10 and CTLA-4, and promotes the development of Treg cells and their 

inhibition of effector T cells117,118. Taken together, any interpretation of the effects of 

adenosine on T cells should consider A2a signalling regulating T cell development, 

maintenance and effector functions.

Regulation of T cells by A2b

Compared with adenosine receptor A2a, much less is known about the low affinity A2b on T 

cells, but—of relevance to RA—evidence indicates that activation of A2b by synthetic 

agonists could have TH17-promoting effects by redirecting the differentiation of bone 
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marrow cells to a CD11c+GR1+ dendritic cell subset89,119. (TABLE 1) Moreover, A2b 

stimulation might also promote TH17 differentiation by stimulating IL-6 expression in a 

cAMP-independent manner88,119. Others have reported that A2b promotes Treg-cell 

differentiation and limits inflammatory injury120. A2b signals by multiple pathways; not only 

does A2b increase cAMP via coupling to Gs proteins but they might also signal via Gq and 

Gi proteins, thereby explaining their cAMP-independent effects on generation of IL-6121.

ADORA1 and ADORA3 in T cells

The expression and function of A1 and A3 on T cells and their subsets is not fully 

established. A report indicates that A3 is expressed on Jurkat cells but its expression and 

function in primary cells has not been established122.

Other cell types in inflammation

New blood vessel formation is a characteristic of the inflamed synovium, and hypoxia is a 

major driving force for neovascularization. Adenosine and its receptors have direct and 

indirect roles in stimulating new vessel formation. Acting at both A2a and A2b, adenosine 

stimulates both angiogenesis and production of such proangiogenic mediators as VEGF123. 

Moreover, both A2a and A2b directly stimulate endothelial cells to form new vessels123. 

(TABLE 1)

The effects of adenosine receptor stimulation on the formation and resolution of vascular 

oedema seems to vary with the tissue studied. A2a has been reported to promote vascular 

leakage in healing wounds and inflamed sites as a result of the increase in new blood vessels 

that form at these sites124. By contrast, the barrier integrity of human umbilical vein 

endothelial cells is enhanced by A2a stimulation125. Interestingly, A2b stimulation promotes 

clearance of pulmonary oedema126. A2b stimulation might have opposing effects in other 

vascular beds: excess adenosine generation, acting via A2b, can increase inflammation and 

inflammatory oedema in rat models of arthritis127. Thus, targeting adenosine receptors in the 

prevention of angiogenesis and vascular oedema in inflammation is complex.

Similar to the effects on oedema formation and angiogenesis, the effects of adenosine and 

adenosine receptors on collagen and matrix production by fibroblasts and fibroblast-like 

cells varies from tissue to tissue. Adenosine, acting at A2a, directly stimulates dermal 

fibroblasts to produce collagen and also stimulates the production of factors, such as IL-13 

and connective tissue growth factor, that are capable of further amplifying collagen 

production 128. By contrast, A2b stimulation inhibits collagen production by some tissue 

fibroblasts (cardiac fibroblasts) but stimulates collagen production by fibroblasts in other 

tissues 128.

Adenosine and resolution of inflammation

The inflammatory response is critical for clearance of debris and protection from invading 

microorganisms; inflammation sets the stage for tissue repair. As with suppression of 

inflammation, adenosine, acting at its receptors, promotes tissue repair and regeneration. As 

noted above, A2a stimulation promotes the transformation of macrophages to an M2 

phenotype, which is associated with lower levels of production of TNF, IL-12 and other 
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proinflammatory mediators than the M1 phenotype, and with increased production of IL-10, 

IL-13 and VEGF,59,60 which promote angiogenesis and fibrosis. Moreover, A2a and A2b 

stimulation promotes angiogenesis and generation of matrix by directly stimulating 

endothelial cells, endothelial cell precursors and fibroblasts 123,129.

Adenosine receptors and fibrosis

Adenosine mediates the transition from inflammation to wound healing but an excess of 

wound healing might result in fibrosis, which can disrupt organ architecture and function. 

Fibrous contractions of the joints and fibrosis in the lungs and other tissues are common 

complications of RA and other rheumatic diseases, and fibrosis characterizes SSc. Results 

from animal models of scarring or diffuse fibrosis, a manifestation of SSc, indicate a role for 

adenosine and its receptors in fibrosis 130-133. Moreover, mice lacking adenosine deaminase 

have high levels of adenosine in the skin and spontaneously develop diffuse dermal 

fibrosis 131. Elevated adenosine levels in the tissue of mice lacking adenosine deaminase 

also lead to pulmonary fibrosis by engaging both A2a and A2b 134-141. In the liver, 

extracellular adenosine production with A2b stimulation mediates hepatic fibrosis in mouse 

models, a phenomenon that is inhibited by caffeine, a nonselective adenosine receptor 

antagonist142-144. This latter finding might account for the well-documented observation that 

coffee drinking and caffeine ingestion reduces deaths from liver disease 145-149. Peritoneal 

fibrosis also depends on A2a stimulation in animal models150. In the setting of priapism, in 

which the chronically engorged penis becomes hypoxic, adenosine release leads to both 

vasodilation and fibrosis via activation of A2b 151,152. Thus, although adenosine and its 

receptors generally have a beneficial role in terminating inflammation, these same receptors, 

if persistently stimulated, lead to enhanced fibrosis with resulting tissue and organ 

dysfunction.

Regulation of extracellular adenosine

Under some pathological conditions tissue adenosine levels are markedly increased. Perhaps 

the best studied condition under which adenosine levels increase is hypoxia. As noted above, 

adenosine was first described as a coronary vasodilator in 19291 and in subsequent studies it 

became increasingly clear that the hyperaemic response to hypoxia was attributable, in large 

part, to adenosine release153. Presumably the breakdown of ATP and release of adenine 

nucleotides into the extracellular space has a role in the generation of increased extracellular 

adenosine; HIF-1α and adenosine kinase were shown to have an important role in this 

pathway154. In addition, ENT1-mediated uptake of adenosine is downregulated by increases 

in intracellular cAMP155, and increases in extracellular adenosine drive further increases in 

adenosine levels by diminishing ENT1 function via adenosine-receptor-mediated increases 

in cAMP 156. It was recognized quite early that inflamed joints tend to be chronically 

hypoxic as a result of the increased cellular bulk, tissue oedema (with resulting compression 

of the microvasculature) and the pressure of increased synovial fluid17-19,157,158. 

Nonetheless, estimating the actual level of adenosine in synovial fluid is difficult as cells 

present in synovial fluid might undergo lysis, thus releasing ATP (which is converted to 

adenosine during processing); furthermore, adenosine is hydrolyzed by the adenosine 

deaminase present in synovial fluid159-161.
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Extracellular adenosine levels can also fluctuate in other settings. A number of drugs can 

regulate adenosine levels in the extracellular fluid. Most notable among these are 

dipyridamole and ticagrelor, which are agents that inhibit ENT1-mediated adenosine 

uptake 156,162,163. Ethanol, which is metabolized as a lipid and requires ATP hydrolysis in 

order to be metabolized to acetyl-CoA, also causes adenosine release as a result of ATP 

breakdown156,164-167. More recently, it has been appreciated that extracellular adenosine 

levels might reach extremely high concentrations in the setting of rapid cellular breakdown 

and hypoxia, such as occurs in tumours, leading to consequences such as 

immunosuppression by tumours101,102,168.

Therapeutic targeting of adenosine

Although no drugs have been developed to treat rheumatic diseases that directly target 

adenosine and its receptors, adenosine-based targeting has been reported for a number of 

commonly used drugs. Anti-inflammatory and antirheumatic drugs that mediate at least 

some of their anti-inflammatory effects via targeting adenosine metabolism include 

methotrexate, sulfasalazine and high-dose aspirin.

Methotrexate

Weekly, low-dose methotrexate remains the gold standard therapy for patients with 

rheumatic diseases. Although its mechanism of action has not been fully elucidated (Box 1), 

it seems that enhancing adenosine release at inflamed sites has a major role in the anti-

inflammatory actions of low-dose methotrexate. The enzyme inhibited best by intracellular 

methotrexate polyglutamates is aminoimidazolecarboxamidoribonucleotide (AICAR) 

transformylase; intracellular accumulation of AICAR leads to adenosine release169 (Figure 

1). In 1991, the first results were published suggesting that methotrexate promotes adenosine 

release, which diminishes inflammation in vitro170; it was subsequently demonstrated that 

adenosine mediates the anti-inflammatory effects of methotrexate in an in vivo model in 

which increased intracellular AICAR levels at an inflamed site were documented171. 

Adenosine mediates the anti-inflammatory effects of methotrexate via occupancy of A2a and 

A3
169. Moreover, adenosine receptor antagonists, including caffeine, block the anti-

inflammatory effects of methotrexate treatment in an animal model of arthritis172 and in 

patients with Rheumatoid Arthritis. in prospective studies173,174. A large retrospective study 

of patients taking methotrexate did not support the contention that caffeine ingestion 

reversed the anti-inflammatory effects of weekly low-dose methotrexate; however, given that 

patients in this study had been successfully treated for RA for a number of years, those who 

had not responded to methotrexate were excluded from the analysis175. Nonetheless, other 

studies provide further evidence for the role of adenosine in the mechanism of action of 

methotrexate; for example, the expression of CD39, an ectoenzyme that catalyzes the 

dephosphorylation of ATP and ADP to AMP (which is critical for extracellular adenosine 

production), is a biomarker for methotrexate efficacy in patients with RA176. Other 

mechanisms of action have been described for the anti-inflammatory actions of methotrexate 

in the treatment of Rheumatoid Arthritis and other rheumatic conditions that do not include 

a role for adenosine169,177-179.
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Sulfasalazine

Sulfasalazine was first developed as a specific therapy for RA in the 1940s and remains in 

use today. Sulfasalazine is broken down by gut bacteria to 5-aminosalicylate and 

sulfapyridine; sulfasalazine itself and 5-aminosalicylate are poorly absorbed from the gut 

and sulfapyridine acts as an antifolate once absorbed. Indeed, folate deficiency is a 

recognized side effect of sulfasalazine180. Among its other effects sulfasalazine promotes 

accumulation of intracellular AICAR and release of adenine nucleotides into the 

extracellular space where they are dephosphorylated to adenosine; blockade or loss of 

ecto-5’nucleotidase prevents adenosine release induced by sulfasalazine both in vitro and in 
vivo and reverses the adenosine-receptor-dependent anti-inflammatory effects of the drug in 

a mouse model of inflammation181,182 (Figure 1). These results suggest that, like 

methotrexate, adenosine mediates at least some of the anti-inflammatory effects of 

sulfasalazine.

High-dose aspirin

Although not commonly used anymore for the treatment of RA and other rheumatic 

diseases, high-dose aspirin was a mainstay of antirheumatic therapy until the development of 

less-toxic NSAIDs in the 1970s. Before the recognition that aspirin and other NSAIDs 

mediated many of their actions by inhibiting cyclooxygenases, it was thought that one 

mechanism by which high-dose aspirin mediated its therapeutic and toxic effects was by 

uncoupling oxidative phosphorylation and loss of intracellular ATP 183,184. Results of 

studies in human neutrophils indicated that some of the effects of high-dose salicylates on 

stimulated neutrophil function resulted from ATP loss and extracellular conversion to 

adenosine 185. Subsequent studies in mice confirmed that adenosine mediates the anti-

inflammatory effects of high-dose aspirin in vivo as well 186. The doses of aspirin required 

verge on the toxic and are almost never used at present.

Antirheumatic drugs in development

On the basis of their anti-inflammatory activity in a variety of animal models [187, A3 

agonists are currently under development for the treatment of RA. Indeed, a phase II clinical 

trial of CF101, an A3 agonist, reduced RA activity although the improvement did not 

achieve statistical significance188. Interestingly, an increased clinical response to CF101 was 

seen in patients in whom A3 was overexpressed on peripheral blood mononuclear cells 188. 

CF101 has also been administered to patients for the treatment of psoriasis and an early 

phase study demonstrates clear evidence of efficacy for this indication 189.

Conclusions

The role of adenosine and its receptors in regulating inflammation and immune responses 

has been well established. Adenosine, released by hypoxic or injured tissues or following 

treatment with drugs such as methotrexate, suppresses inflammation and immune responses 

via stimulation of its receptors on inflammatory and immune cells. Although this mechanism 

of action is useful for the treatment of diseases such as RA, in the setting of tumours the 

immunosuppression that occurs might be deleterious. The conditional benefits of modulating 

Cronstein and Sitkovsky Page 11

Nat Rev Rheumatol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammation and immunity dictate that targeting adenosine receptors with agonists or 

antagonists will require individual tailoring.
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BOX 1

Methotrexate was originally developed as a folic acid antagonist to prevent the de novo 
synthesis of purines and pyrimidines in the treatment of cancer and leukaemia, which 

remain indications for use of this drug. Although high-dose aminopterin, an analogue of 

methotrexate, was reported to be useful in the treatment of rheumatoid arthritis (RA) in 

the early 1950s190, methotrexate was not widely used to treat inflammatory arthritis until 

anecdotal reports and uncontrolled trials were carried out in the 1970s followed by 

placebo-controlled trials in the 1980s and approval for the treatment of RA in 1989191. 

Although initially thought to block lymphocyte proliferation via inhibition of purine and 

pyrimidine synthesis, the inability of folic acid supplementation to reverse the efficacy of 

methotrexate treatment while preventing folate-dependent toxicities did not support this 

effect for methotrexate used at doses up to 1/100th of the dose given to treat 

malignancy192-194. In the treatment of Rheumatoid Arthritis, psoriasis and other 

inflammatory conditions methotrexate is administered, in low doses (5-25mg) once per 

week and has a half-life that is relatively short. It is undetectable in the circulation after 

18 h but is widely distributed and present in tissues as long-lived polyglutamates, which 

remain potent inhibitors of a number of enzymes involved in the synthesis of purines and 

pyrimidines. The enzyme inhibited most potently by methotrexate polyglutamates is 

aminoimidazole carboxamidoribonucleotide (AICAR) transferase (AICART); inhibition 

of this enzyme leads to intracellular AICAR accumulation (see Figure 1). Increased 

intracellular AICAR promotes adenosine release, and blockade or deletion of adenosine 

receptors reverses the anti-inflammatory effects of methotrexate in animal models and 

patients with Rheumatoid Arthritis 169.
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Key Points

• Adenosine, generated from the extracellular hydrolysis of ATP, is a 

potent endogenous regulator of inflammation and immune reactions via 

interaction with one or more cell surface receptors.

• The principal adenosine receptor involved in regulation of adaptive T 

cell responses is ADORA2A.

• ADORA2A, ADORA2B and ADORA3 downregulate macrophage-

mediated inflammatory actions, although ADORA2B might indirectly 

stimulate type 17 T helper cell immune responses via increased IL-6 

production.

• Adenosine mediates the anti-inflammatory effects of low-dose 

methotrexate treatment as well as some of the anti-inflammatory effects 

of sulfasalazine.
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Figure 1. Cellular adenosine production in response to hypoxia and medications
Adenosine is produced extracellularly from the hydrolysis of adenine nucleotides (ATP, 

ADP and AMP) by the ectoenzymes nucleoside triphosphate phosphohydrolase (NTPP or 

CD39) and ecto- 5’nucleotidase (CD73) whereas adenosine levels in the extracellular space 

are reduced by cellular uptake via the extracellular nucleoside transporter (ent1) and 

breakdown extracellularly to inosine by adenosine deaminase. Both methotrexate and 

sulfasalazine diminish the activity of aminoimidazolecarboxamido ribonucleotide (AICAR) 

transformylase leading to accumulation of AICAR and reduction of its metabolite formyl 

AICAR (FAICAR). Intracellular accumulation of AICAR leads to increased ATP release 

into the extracellular space.
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Figure 2. Adenosine receptors
Adenosine receptors are all G protein-coupled receptors whose signal transduction is 

mediated by activation of intracellular G proteins. ADORA1 has the highest affinity for 

adenosine and is activated by high picomolar to low nanomolar adenosine concentrations; 

ADORA2A is activated by concentrations of adenosine in the mid-nanomolar range. By 

contrast, ADORA2B and ADORA3 are activated by adenosine concentrations in the 

micromolar range.
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TABLE 1

Adenosine receptors regulate the function of inflammatory cells

Inflammatory cell Adenosine receptor

ADORA1 ADORA2A ADORA2B ADORA3

Neutrophil Increases adhesion 
to matrix49

Inhibits 
superoxide anion 
generation43-45

Inhibits adhesion 
and recruitment 
Increases 
engulfment-
mediated 
downregulation 
of neutrophil 
function46-50

Unknown Chemotaxis52,53

Macrophage Increases giant 
cell formation91

Increases 
osteoclast 
differentiation92,93

Promotes M1 to 
M2 transition62,71

Inhibits cytokine 
expression61-72

Inhibits osteoclast 
formation94-96

Inhibits osteoclast formation94-96

Promotes M1 to M2 transition75-77
Inhibits cytokine expression70,78-86

T cell Unknown Inhibits TCR-
triggered 
activation103,104

Inhibits 
activation-
induced cell 
death112

Inhibits Fas/FasL-
mediated cell 
death112

Stimulates TH17 differentiation by 
increasing dendritic cell IL-6 
production87-89

Unknown

Endothelial cell Unknown Increases 
angiogenesis123

Increases barrier 
integrity 
(prevents 
oedema) 123,125

Increases angiogenesis123

Increases oedema formation in 
arthritis90

Promotes clearance of pulmonary 
oedema126

Unknown

Fibroblast Unknown Stimulates 
fibroblast 
production of 
collagen I and 
III130-133

Promotes skin, 
lung and hepatic 
fibrosis130-144

Stimulates collagen production130-133 Unknown
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