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Abstract

Large-scale microparticle arrays (LSMA) are key for material science and bioengineering 

applications. However, previous approaches suffer from tradeoffs between scalability, precision, 

specificity, and versatility. Here, we present a porous microwell-based approach to create large-

scale microparticle arrays with complex motifs. Microparticles are guided to and pushed into 

microwells by fluid flow through small open pores at the bottom of the porous well arrays. A 

scaling theory allows for the rational design of LSMAs to sort and array particles based on their 

size, shape or modulus. Sequential particle assembly allows for proximal and nested particle 

arrangements, as well as particle recollection and pattern transfer. We demonstrate the capabilities 

of the approach by means of three applications: high-throughput single-cell arrays; 

microenvironment fabrication for neutrophil chemotaxis; and complex, covert tags by the transfer 

of an upconversion nanocrystal laden LSMA.

Large-scale microparticle arrays (LSMA) have unmatched encoding capacities and rapid 

decoding capabilities that make them very attractive for a broad range of applications. 

LSMAs are of utmost interest in biochemical assays1, 2, 3, 4, significantly reducing the 

amount of time and labor. With high specificity, spatial positioning plays an important role 

in mimicking biological tissues in vitro to study cellular behavior, such as migration5 and 
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intercellular communication6. The ability to specifically position microparticles enables one 

to spatially encode chemical or cellular building blocks, resulting in the local control of the 

microenvironment. For anti-counterfeiting applications, spectrally or graphically coded 

microparticles are desirable as information carriers because of their high encoding capacity 

within a small area7, 8, 9. Arrangements of multiple microparticles exponentially increase the 

potential encoding capacity. However, current approaches to position microscale particles in 

large arrays cannot simultaneously accomplish the requirements of scalability, precision, 

specificity, and versatility that will make LSMAs practical. For example, optical 

tweezers10, 11, 12 provide the high resolution of positioning, but can only be applied to small 

arrays and small dielectric objects with high object-medium refractive indexes mismatch. 

Manipulation methods using optoelectronic tweezers13 could accomplish large-scale, high 

resolution arrangement and sorting, but the technique is unsuitable to generate a 

heterogeneous pattern containing different types of particles. Magnetic techniques14, 15 have 

a limitation in versatility because arranged objects should be doped with magnetic materials. 

Micro-magnetic robotic coding16 overcomes this limitation but becomes unsuitable for 

large-scale arrangement. Microwells have been used as an assembly template, but are only 

useful for single particle arrangement and scaling-up efforts resulted in particle 

arrangements with some degree of randomness1, 3, 4, 17. Recently, geometric docking into 

conformal microwells enables shape specific positioning, but requires a large particle size 

and significantly long assembly time5. Therefore, to achieve the full potential of LSMAs, 

new techniques are required to assemble functional microparticles in precise locations that 

also have high yields and small error rates.

Here, we develop a porous microwell platform to generate LSMAs with high specificity. 

Microparticles are steered to the microwells via hydrodynamic forces associated with fluid 

flow through open pores at the bottom of the microwell. Guided microparticles are inserted 

into congruent microwells, whereas geometrically mismatched particles are removed in a 

washing step. Controllable driving forces provide the appropriate magnitude for various 

microparticles, and have the ideal directionality of a force field (i.e. directed towards the 

well) to assemble the microparticles. By iterative assembly and washing steps, large-scale 

particle assembly with high yield is demonstrated within 100 seconds. Shape, size, and 

modulus sorting is achieved with high specificity. We demonstrate that the technique is also 

compatible with particle recollection and pattern transfer. As a demonstration, we generate a 

2D particle-array-code for anti-counterfeiting applications, which we then transfer to a 

precise location on a target substrate. We also generate high throughput single cell arrays, 

and 2D chemokine-releasing particle arrays to study the motility of immune cells in 

complex-gradient microenvironments.

Design principles for LSMA

We fabricate porous microwell arrays to generate optimal conditions for particle assembly. 

We postulate that the ideal force driving for particle assembly should have a direction which 

points into the assembly template (i.e. microwells). Moreover, the force should have a 

magnitude which is controllable in order to achieve a high-throughput arrangement without 

damaging the microparticles during the process. Upon application of a pressure difference 

across the porous microwells, the resulting driving force in our platform meets these two 
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criteria: flow streamlines point toward open pores inside the microwells, and the magnitude 

of the driving force is proportional to the applied pressure difference across the well (Fig. 

1b). We fabricated the microwell arrays on top of a porous polyethylene terephthalate (PET) 

membrane (Fig. 1d) and fine-tuned their geometry with the aid of a polydimethylsiloxane 

(PDMS) mold (Fig. 1a). The mold and the flat PDMS were assembled at the top and bottom 

of the PET membrane respectively, and a curable material was injected into the mold. Pores 

that were in contact with the mold were not filled by the curable material. After we cured the 

microwells, the PDMS mold was peeled away to leave the porous microwell arrays. Both 

photocurable Norland optical adhesive (NOA) (Fig. 1e, f) and thermal curable PDMS (Fig. 

1g) were successfully used to fabricate microwells with distinct shapes, sizes, and 

arrangements (see Fig. S5, S6 for porous microwells made by a variety of photo/thermal 

curable materials).

Microparticles to be assembled were synthesized by stop flow lithography (SFL) with a 

throughput of 105 particles/h1, 2, 7, 8 (Fig. 1c), and stored in aqueous solution. The particle 

synthesis throughput can be increased two orders of magnitude by using contact flow 

lithography18, which is an advanced form of SFL. To show the widespread potential of our 

platform, we synthesized and assembled various microparticles from two very different sets 

of prepolymer solutions. Soft, biocompatible microparticles, which are widely used in 

bioassays and microenvironment fabrication, were synthesized from a poly(ethylene glycol) 

diacrylate (PEGDA) prepolymer solution. More rigid and thermally stable microparticles for 

anti-counterfeiting applications were made from a mixture of polyurethane acrylate (PUA) 

and acrylic acid (AA).

Microparticle assembly in microwells

To generate LSMA, a particle suspension was deposited on top of the microwells, and a 

negative pressure was applied to the bottom of the array. Microparticles were guided to 

microwells via fluid flow through the open pores and assembled into shape-matched 

microwells. Within 10 iterations of assembly and washing, where each cycle takes 

approximately 10 seconds, large-scale (3800) PEGDA microparticle arrays were 

successfully generated (Fig. 1h, see Fig. S7–S10 for the largest particle array (15000) and 

the smallest assembled particles (15 µm)). The applied pressure deformed the soft PEGDA 

microparticles to squeeze them into slightly smaller but geometrically conformal 

microwells. Once pushed inside a microwell, the compressed microparticle will push upon 

the side wall of the microwell which in turn helps to keep a particle in the well during 

successive wash and assembly steps. This ability to keep particles retained within a well 

during successive assembly steps, and the ideal driving force directed into the microwells 

ensure high assembly yield. In Figure 1h, 93.7 (±0.8) % of the microwells were filled with 

particles, and 87.3 (± 0.7) % of the initially deposited particles were assembled into 

microwells.

Physics of the LSMA assembly

Ad hoc choice of microwell dimensions, particle attributes and operating conditions would 

limit the utility of our approach. For example, it is possible to increase the magnitude of the 
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driving force to increase the assembly speed, but eventually particles will be damaged and 

result in non-specific particle assembly – a particle with a square cross-section could be 

jammed into a non-conformal cylindrical well. Understanding the physics behind the 

assembly process allows us to tune the driving force and engineer characteristics of the 

microwells and microparticles to achieve highly specific assembly of complex motifs. Here, 

we introduce the key dimensionless parameters governing operation of the devices.

Consider a soft PEGDA particle which conformally blocks the entrance of a microwell. The 

force originated from the applied pressure difference (Δ) is balanced with the wall friction 

(Fig. 2a). By using the theory behind the interference fit19 and capillary 

micromechanics20, 21, scaling analysis is conducted to define the dimensionless number Ψ 
governing particle assembly which is the ratio of the applied pressure difference to the wall 

friction (see the supplementary information for the derivation).

(1)

where ΔP is the applied pressure difference, Ep is the compressive modulus of particle, rp is 

the radius of particle, rw is the radius of microwell, μ is the friction coefficient between 

microwell and particle (~ 10−3 for hydrogel particles22), Hp is height of microparticle, and 

ΔApw (=Σi ΔApw) is the area of particle cross section which sticks out from the cross section 

of the microwell (Fig. 2a–d). We can recognize that Ψ is the ratio of two dimensionless 

numbers: (i) the combination of the applied pressure difference and materials’ properties 

(Ψ1), and (ii) a purely geometric group (Ψ2).

(2)

(3)

Microparticles are assembled into microwells only when the dimensionless parameter Ψ is 

larger than a critical value, i.e. when applied pressure overcomes wall friction. This criterion 

is confirmed by plotting Ψ1 as a function of Ψ2, and the critical value of Ψ is found as 0.3 

(Fig. 2e). This scaling analysis allows us to specifically position particles based on their 

characteristics. Size specific positioning was successfully demonstrated with high specificity 

(96.6 % for Fig. 2f). Specificity is defined as the number of correctly assembled particles per 

the total number of assembled particles. Particles which are slightly larger than microwells 

were selectively assembled into microwells, whereas too small particles were inserted but 

then removed in the washing step. As rp increases, Ψ2 increases because ΔApw increases 

more rapidly than rp, resulting in Ψ smaller than the critical value; particles with too large rp 

cannot fit into microwells. Likewise, particles of the same size but different modulus can be 
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sorted with high specificity (97.5 % for Fig. 2g, and 95.8 % for Fig. 2h) due to the 

dependence of Ψ on Ep. Soft particles were successfully sorted from hard particles and 

positioned in wells (Fig. 2g); as Ep increases, Ψ1 decreases, resulting in Ψ smaller than 

critical value. As rp decreases, more rigid particles were able to fit into microwell (Fig. 2h, 

see Fig. S16 for the relationship between rp and Ep).

Even though particles have the same dimension and modulus, they can be specifically 

positioned depending on another characteristic, shape (Fig. 2i). If the shape of a 

microparticle is not matched with the microwell shape, the assembly driving force acting on 

the particles becomes significantly smaller than the shape matched case- because the 

hydrodynamic resistance of membrane (Rm) is much larger than that of the uncovered area 

(i.e. gaps) (Rwp) between the microparticle and microwell (Fig. 2c), pressure difference 

across the particle becomes much smaller than pressure difference across the microwell. A 

dimensionless number for the shape mismatched case is (see the supplementary information 

for the derivation)

(4)

(5)

where Dpore is the number of pores inside a microwell, Apore is the cross section area of 

pore, Hpore is the height of pore, and ΔAwpi is the cross section area of a microwell not 

covered by a microparticle (Fig. 2c, d). The ratio of pressure difference across the particle to 

ΔP is defined as a dimensionless number C, which is also the ratio of particle assembly 

driving force between shape matched and mismatched cases. Because C is much smaller 

than 1, high specificity of shape sorting was achieved in Fig. 2i (98.8 %, the phase diagram 

for Fig. 2i is shown in Fig. S17).

In a bioassay, the sensitivity for target molecule (e.g. microRNA, DNA, protein) detection 

depends on the porosity and surface area of the particle probe region23, 24. Thus, shape 

sorted particles with the same gel properties will have the same sensitivities and are useful in 

multiplexed bioassays.

Encoding capacity of the LSMA is the product of each physical characteristic specifying 

positioning, size and stiffness, and does not depend on the chemical functionality of 

particles. To our knowledge, this is the best result to place microparticles at a precise 

location depending on the largest number of physical characteristics (= 3) with the highest 

specificity and resulting in the highest encoding capacity.
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LSMAs with complex structures

High encoding capacity and persistent positioning of particles in LSMA allowed PEGDA 

microparticles to be assembled sequentially in order of size to generate the complex motif 

shown in Figure 3a. With previous approaches, particles did not maintain their positions 

during iterative assembly5, so it was impossible to assembly microparticles sequentially to 

generate perfectly filled arrays. Multiple particles can be assembled not only into different 

microwells, but also at a proximal or nested location inside one microwell. Using sequential 

assembly, the first set of microparticles was assembled in microwells but did not fully 

occupy all space in the well, and the second set of microparticles filled the rest of the open 

space left in a microwell. Particles were located next to each other (Fig. 3b), or inside the 

hole of another particle (Fig. 3c). These types of arrangement generate the interface of two 

particles which is critical for the intercellular communication by direct contact6. To our 

knowledge, this is the first demonstration of non-spherical microparticle assembly resulting 

in direct particle contact via a microwell approach.

Thus far, encoding capacity was generated by positioning microparticles at precise locations 

depending on their characteristics. However, this post-synthesis processing is not the only 

way to generate codes. Chemically anisotropic microparticles (e.g. Janus or multi-striped) 

can be synthesized by co-flowing multiple laminar streams in microfluidic channel during 

the particle synthesis2, 7. In Figure 3d we demonstrate that Janus particles can be arrayed 

with a specified orientation in the LSMA. Encoding capacity can be exponentially scaled 

using the combination of the particle’s chemical anisotropy (e.g. chemically distinct stripes) 

and particle arrangement.

LSMA transfer techniques

Compared to optoelectronic tweezer13 and microfluidic techniques25, 26, in our approach the 

arranged particles are not confined in a closed system. Therefore, particle arrays can be 

readily repositioned via particle recollection or pattern transfer techniques. Assembled 

microparticles were recollected by shear stress associated with pressure-driven fluid flow 

through a tygon tube (Fig. 4c). Microparticles which were positioned inside the inner 

diameter of tygon tube were selectively recollected (Fig. 4d). After recollection, particles 

restored to their original size with negligible shrinkage (< 2 %).

Pattern transfer technique requires oxygen permeable PDMS microwell arrays (Fig. 4a). 

After particle assembly, prepolymer solution was spread on top of the arrays and covered 

with a pre-cured polymer block. Ultraviolet light (365 nm) was specifically exposed to the 

particle arrays which were transferred. Cured prepolymer chemically bonded with the 

microparticles and pre-cured block, but prepolymer near the PDMS microwells was not 

cured because oxygen permeability of PDMS generates an oxygen inhibition layer27. 

Microparticle patterns were transferred with the pre-cured block while their relative 

positions did not change. Biocompatible PEGDA microparticle arrays were successfully 

transferred to a glass slide (Fig. 4b).
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LSMAs for biological applications

The ability to generate large arrays of cells is important for cell screening applications when 

the yield and throughput are critical. For example, arranging cells in 2D arrays for the study 

of cellular processes that progress over time has significant advantages compared to serial 

approaches, like flow cytometry28. Cells in a 2D array can be analyzed more than once and 

several cells imaged simultaneously29 for higher yield and to avoid potential differences 

between the first and last cell analyzed which are typical issues for flow cytometry. Here, we 

tested the performance of LSMA techniques by trapping mammalian glioma cells (U87) in 

25 µm diameter wells, spaced at 25 µm apart. We generated arrays of more than 10,000 cells 

with high yield. The time required to achieve acceptable yield for each array was 

approximately 60 seconds (Fig. 5a, Fig. S29, S30), significantly faster than passive cell 

settling in microwells, which requires between 5 and 40 minutes30, 31. Compared to existing 

technologies28, 29, 30, 31, our platform provides a way to arrange cells with high throughput 

and enables massively parallel imaging.

Induced by chemical gradients, leukocytes display typical migratory responses toward 

infection and inflammation sites32, 33. Multiple cytokines are usually involved, in 

heterogeneous patterns in tissues34, and distinct patterns of migration are elicited be each 

cytokine35, resulting in complex leukocyte responses. This complexity is lost in current state 

of the art in vitro assays that probe leukocyte responses to one cytokine at a time, in uniform 

gradients, and lack the ability to generate 2D heterogeneous chemical gradients36, 37, 38. 

Using our platform’s ability to generate complex arrays, we generated a heterogeneous 

biochemical microenvironment for the study of neutrophil chemotaxis (Fig. 5b–c). Here, we 

arranged two distinct chemoattractant-laden microparticles loaded with leukotriene B4 

(LTB4) and interleukin-8 (IL-8) in alternate patterns with 300 µm spacing. We took 

advantage of the ability of LSMA techniques to arrange the microparticles quickly before a 

significant amount of chemoattractant diffuses out of the particles upon wetting. We 

observed the migration patterns of neutrophils in response to the adjacent LTB4 and IL-8 

gradients in the array (Fig. 5b). Neutrophils showed migratory responses with a high 

directional persistence toward LTB4-laden particles and migratory response with no 

directionality in the vicinity of IL-8 particles (Fig. S32, S33). The consequence of the two 

distinct migration patterns was a larger accumulation of neutrophils around the LTB4-laden 

particles (Fig. 5c). These results are consistent with previous reports of cell migration in 

competing gradients of LTB4 and IL-839. Moreover, they underline the contributions of 

distinct migration patterns to steering neutrophil populations precisely towards targets in 

complex microenvironments. These results also underscore the unique characteristics of high 

throughput, precision, and large-scale manipulation of individual targets, which clearly 

surpass the abilities of current techniques employing micropipettes40 or optically trapped 

beads36.

LSMAs for anti-counterfeiting applications

To demonstrate the encoding/decoding capacity of LSMA, we generated a 2D arrangement 

of upconversion nanocrystals (UCNs) laden PUA/AA microparticles for use in anti-

counterfeiting. UCNs, synthesized in large quantity41, emit the rationally fine-tuned visible 
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light7, 42 under near-infrared (NIR) exposure via an upconversion process. A covert pattern 

shows spectrally distinct codes with a single NIR excitation source, resulting in an appealing 

platform for the security technologies7, 43. A direct ink jet printing method has generated a 

multicolored, covert pattern, though with a limited precision and resolution43. Soft 

lithography44 (e.g. microcontact printing) requires a manual alignment of multiple 

components45, which is not easily achievable. Compared to those conventional patterning 

methods, our approach is attractive to anti-counterfeiting application because it generates a 

high resolution, multicomponent pattern by using a prealigned microwell array. For 2D 

particle arrays, encoding capacity scales as CS × SM, where C is the number of distinctive 

colors of the UCNs, S is the number of microparticle sizes which is used as a characteristic 

for specific positioning, and M is the number of microwells. For example, by arranging 

particles with an individual encoding capacity of 27 (3 different size microparticles and 9 

distinct UCN colors) into 36 microwells, we exponentially increased the encoding capacity 

to 1020 (Fig. S35b) - enough to encode every grain of sand on the Earth (< 1019). Not only a 

6 × 6 rectangular pattern, but also other rectangular matrices (Fig. 5d) or even a circular 

pattern (Fig. S35c) can be used. As particles were located at precise locations and in the 

same optical plane, particle ensembles can be readily decoded (Fig. 5d, Fig. S36). Also, this 

approach avoids potential problems such as tilting, overlapping, or touching of particles. The 

LSMA can be transferred to a target surface (Fig. 5d). Transferred particles were covert 

without NIR exposure because their refractive index was closely matched with the PUA 

resin used to transfer and adhere them to the target object. An image of the transferred 

pattern was taken with an iPhone under NIR exposure and was successfully decoded into a 

text form within 10 seconds.

Outlook

Our new LSMA platform enables one to position microparticles at precise locations 

depending on their physical characteristics with high scalability, precision, specificity, and 

versatility. Assembly in a given microwell is uncoupled from adjacent microwells, leading to 

a robust, parallelized and scalable process. Our approach is a top-down assembly process 

wherein the microparticles’ locations are predefined by the microfabrication of the 

microwell template, ensuring a high precision. Design rules based on a model of the system 

combined with the ability to fine-tune the properties of the microwells and microparticles, 

enables the resulting high specificity. The hydrodynamic driving force is not limited by 

particle composition, allowing our assembly method to be applied to a variety of 

microparticle chemistries.

We expect that the desirable performance of our approach will expand the utility of 

microparticles and microparticle arrays in many areas. LSMA allows for the generation of 

increasingly complex and covert codes than can be transferred to a variety of surfaces to 

expand the utility of particle-based anti-counterfeiting. LMSA of chemokine loaded particles 

could help replicate the biochemical heterogeneity of tissues at microscale for a variety of 

biological studies of immune cell responses, development, or tissue engineering. Complex 

arrangements of cells have great potential for large-scale studies of cell-cell communication 

and for the monitoring of cellular response over time29. The fast flow-assisted assembly of 

LSMA will greatly increase the speed and efficiency of existing microwell-based single cell 
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assays46 or potentially expand them to selectively collect a subpopulation of cells by sorting 

them based on physical characteristics47. The ability to arrange small objects at proximal 

locations will pave the way to assemble functional MEMS components, such as 

microgears48, to tailor acoustic properties of materials49 or to develop new bioassays which 

take advantage of the proximal location of a single cell and particle within a microwell. We 

envision that this robust LSMA platform will inspire other particle manipulation techniques 

and find utility in a variety of material science and bioengineering applications.

Methods

Porous microwell fabrication

Porous microwell arrays are fabricated with a PDMS (Sylgard 184, Dow Corning) mold on 

top of a porous PET membrane (Millipore, diameter of pore = 3 µm) (Fig. S1, S2). To 

prepare the mold, PDMS is mixed with curing agents in a 10:1 ratio and cured on a SU-8 

(Microchem) master prepared by standard photo-lithography procedures. For PDMS 

microwell fabrication, the PDMS mold is plasma treated and functionalized with 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Aldrich) to ensure the detachment of 

PDMS microwell arrays from the PDMS mold. The PDMS mold and flat PDMS are placed 

at top and bottom of PET membrane. Curable materials (e.g. NOA 81, PDMS) are placed on 

top of the inlet of mold. The entire device is placed inside a vacuum desiccator. As vacuum 

is applied, air trapped in the mold is removed, and curable materials are injected to the mold 

by the pressure difference. After photo (365 nm light) or thermal (65 °C) curing, the PDMS 

mold and flat PDMS are removed from the porous microwell arrays. For the anti-

counterfeiting demonstration, PDMS microwell arrays were plasma-treated, and 

functionalized with fluorinated silane to increase the hydrophilicity difference between 

microwells and microparticles, eliminating any undesired adhesion.

Particle assembly

Microparticle solution dispensed on top of the porous microwell array. Negative pressure is 

applied at the bottom of porous microwell arrays to generate the driving force for particle 

assembly. A Kimwipe (Kimberly-Clark) is placed under the NOA microwell arrays to 

generate the negative pressure due to the capillary wetting (Fig. S2i). For PDMS microwells, 

vacuum suction is used to generate negative pressure (Fig. S2k). After particle assembly, 

redundant particles were washed out by water flow using a squeeze bottle (Fig. S2j). Particle 

assembly and washing steps are repeated to ensure a high yield.

Microparticle synthesis

Microparticles are synthesized in a microfluidic channel via stop flow lithography1, 2, 7, 8. 

The top part of the PDMS channel (mixed in 10:1 ratio) is cured on SU-8 master overnight 

at 65 °C, and then placed on the glass slide which is covered by half cured PDMS (mixed in 

10:1 ratio, cured for 20 minutes at 65 °C). The assembled device is fully cured overnight at 

65 °C. The prepolymer solution is flowed through the channel by compressed air, stopped, 

and exposed by ultraviolet light (365 nm). Ultraviolet light is patterned by a transparency 

mask (Fineline) designed in AUTOCAD. 2D extruded-shape microparticles are synthesized 

by photo-crosslinking. Three steps-flow, stop, exposure- are repeated to synthesize the 
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microparticles in a semi-continuous manner. Flushed microparticles are centrifuged and 

resuspended several times, and then stored in 1× TET solution (1× tris-EDTA buffer with 

0.05% (v/v) Tween-20).

Particle recollection

Two tygon tubes are connected to the recollection reservoir. One is connected to a vacuum 

line, and another one is used as recollection tube. Particle arrays are submerged in 1× TET 

solution, and the recollection tube is placed on top of targeted area using a xyz stage. The 

recollection tube is brought into contact with the array, and vacuum is applied to generate 

the pressure difference. After few seconds, the recollection tube is slightly displaced upward 

to make a gap between the tube and array. The 1× TET solution is aspirated through this gap 

and particles are recollected due to the shear stress associated with the fluid flow.

Pattern transfer

PDMS microwell arrays are desired for pattern transfer due to the lubricating layer provided 

by oxygen inhibition near the PDMS27. Prepolymer solution is dispensed on assembled 

particle arrays, and pre-cured polymer block is then placed on top. Ultra-violet light (365 

nm) exposes to the targeted area from the bottom. In this exposure step, oxygen permeability 

of PDMS ensures the prepolymer solution does not stick to the PDMS microwell arrays 

whereas particles and the pre-cured block are covalently connected by cured prepolymer 

solution. After UV exposure, uncured prepolymer solution is washed out, and pre-cured 

block is transferred with attached particle arrays. Fluorinated PDMS microwells were 

plasma-treated to enhance the spreading of the prepolymer solution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Porous microwells for microparticle arrays
a, Porous microwell fabrication and microparticle assembly. b, Direction of negative 

pressure induced driving force of porous microwell arrays. c, Synthesis of microparticles by 

stop flow lithography. d, Porous PET membrane (pore diameter = 3 µm). e–g, Geometry 

fine-tuned microwell arrays with photo-curable NOA (e, f) and thermal-curable PDMS (g). 

h, Large-scale (3800), high throughput microparticle assembly: Porous NOA microwell 

arrays (top-left), PEGDA microparticles (top-middle), assembled PEGDA microparticle 

arrays in close (top-right) and wide view (bottom).
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Figure 2. Scaling analysis and characteristic specific positioning
a–d, Schematics for scaling analysis: Shape matched (a,b) and shape mismatched cases 

(c,d) at side (a,c) and top views (b,d). Schematics of hydrodynamic resistance of platform 

are shown next to the side view (a, c). e, Phase diagram, Ψ1 as a function of Ψ2, for particle 

assembly in shape matched cases. PEGDA particles fit into NOA microwells only when Ψ is 

larger than critical value (= 0.3). f–i, Characteristic specific positioning of particles based on 

size (f), modulus (g, h), and shape (i). f, Diameter of green, yellow, and red particles are 30, 

60, and 81 µm respectively. Only yellow particles fit into 54 µm microwells. g, h, Modulus 

of green, yellow, and red particles are 240, 140, and 63 kPa. Diameters of particles are 63 

µm (g) and 59 µm (h). Particles with a smaller modulus than critical value in each case can 
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fit into 54 µm microwells. i, Shape of green, yellow, and red particles are star, square, and 

cross respectively while all particles have same modulus and size. Particles fit into only 

congruent microwells. Specificities of positioning are 96.6 (± 1.8) % (f), 97.5 (± 2.2) % (g), 

95.8 (±5.3) % (h), and 98.8 (±0.8) (i). Error bars represent standard deviation (n = 3, 4).
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Figure 3. Advanced assembly techniques
a, Sequential assembly for biocompatible, complex microparticle array fabrication. PEGDA 

particles are assembled in order of size while pre-assembled particles are remained in 

microwells. b, c, Sequentially assembly of microparticles at proximal locations. Green 

particles are assembled before red particle assembly. d, Oriented assembly of Janus 

microparticles. Particles and microwell arrays were made of PEGDA and NOA 81, 

respectively.
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Figure 4. Post-assembly techniques
a, Schematic of pattern transfer with PDMS microwell arrays. b, Biocompatible PEGDA 

microparticle arrays before (left) and after (right) the transfer to the glass slide. c, d, 

Schematic (c) and results (d) of particle recollection. PEGDA microparticles inside red 

circled area (inner diameter of tygon tube) were selectively recollected from NOA 

microwells. In the middle image, the inner diameter of the tygon tube is discerned due to the 

autofluorescence of the tube.
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Figure 5. Application of large scale microwell arrays
a, High throughput single-cell arrays using glioma cell line (U87) and porous microwells. 

Cells that are slightly larger than a microwell are squeezed into the microwells. Cells that are 

smaller than the microwells remain trapped inside the microwells after the washing step. b–
c, Larger particles (green), loaded with protein chemoattractant IL-8, and smaller particles 

(red), loaded with leukotriene chemoattractant LTB4, are arranged in a regular, alternate 

pattern using LMSA. Human neutrophils (blue) navigate in the heterogeneous 

microenvironment created by the diffusion of the two chemoattractants from the particles. b, 

Neutrophils accumulate preferentially around the LTB4 source-particles after 19 minutes. c, 

Neutrophil accumulation is quantified by the change in average intensity around source-

particles over time (blue fluorescence channel). Neutrophil accumulation is slightly faster 

around LTB4 than IL-8 particles. Control is a region of the array with no particles. Error 

bars represent standard deviation (n = 3). d, Anti-counterfeiting demonstration. Sequentially 

assembled 4×7 code was transferred to a target object (poker chip) and decoded into a text 

form. From the left, images show sequentially assembly UCN-laden microparticles, surface 

encoded object (poker chip), transferred particle arrays under NIR exposure, decoded results 

in a text form (top), and bight field image of encoded area (red circled area on poker chip). 

In decoding results, the alphabet character and number represents color (Table S4) and size 

of the particles, respectively.
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