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Abstract

Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a
disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed
fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing,
which have been used in a wide variety of fields, including biomedical research and tissue
engineering. The ability to print biocompatible, patient-specific geometries with controlled macro-
and micropores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for
orthopaedic applications, such as bone grafting. Herein, we performed a systematic review
examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their
biocompatibility /n vitro, and their bone regenerative potential /77 vivo, as well as their use in
localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of
the different 3D printing approaches, CaP materials, and bioactive additives through critical
evaluation of /n vitroand in vivo evidence of efficacy is essential for developing new classes of
bone graft substitutes that can perform as well as autografts and allografts or even surpass the
performance of these clinical standards.
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INTRODUCTION

Three-dimensional (3D) printing, also known as additive manufacturing, is a digital
fabrication process in which geometrical data are used to produce 3D solids by incremental
addition of material layers. Charles Hull pioneered the modern idea of 3D printing when he
first described a vat polymerization method, known as stereolithography (SL), in a 1984
patent.#! The advent of this new photopolymer-based fabrication technique ushered in the
era of rapid and economical production of physical prototypes directly from computer-aided
designs, with near limitless geometrical complexity. Originally focused on rapid prototyping
of preliminary concept models, advances in materials and technologies are enabling the
creation of functional products; and thus, are transitioning these fabrication techniques from
prototyping to mainstream manufacturing applications. Beyond vat polymerization, other
additive technologies including powder bed fusion, material extrusion, and binder jetting,3
have since been developed, and are discussed in more detail in the following sections.

3D printing is being adopted in nearly every industry, including the medical field, with
extensive research pursuits focused on novel materials and combinations of techniques that
could enhance product functionality and reduce costs. For example, 3D printing an object
can enable formation of composites with controlled spatial heterogeneity for superior
structure—function relationships that are unachievable with traditional strategies such as
machining. This vast potential has made 3D printing extremely popular in the fields of
biomedical research and tissue engineering, due to the ability to replicate the intricate
architecture as well as the cellular and constituent heterogeneity of tissues and organs.5”
Bone, for example, is a complex composite of minerals (mostly calcium phosphates (CaP))
and organic matrix (mostly type | collagen) with exquisite structural organization. This
organization spans multiple size scales, such as cortical vs. trabecular bone at the macro-
scale and lamellar osteons at the micro-scale. The organization of bone can in theory be
imitated using 3D printing. Additionally, 3D printing is amenable to producing patient-
specific geometries that are derived from medical images, such as CT scans. This paper
systematically reviews progress in 3D printing strategies over the past decade, which have
been utilized for bone repair and tissue engineering, with a specific focus on 3D printed pure
or composite CaP ceramic scaffolds. The review contrasts the advantages and disadvantages
of low-temperature printing vs. high-temperature postprocessing for bone tissue engineering
applications. It also reviews the state-of-the-art in 3D printed scaffolds for cell and drug
delivery /n vitroand in vivo in applications involving bone repair and regeneration as well as
management of infection.

THREE-DIMENSIONAL PRINTING PROCESSES

Vat Polymerization

In the vat polymerization process (e.g., stereolithography), a photo-curable liquid polymer is
selectively polymerized at the surface of a vat by a low-power ultraviolet (UV) light source.
As the z-axis is translated down, a new thin layer of liquid is spread over the solid surface
and this process is repeated until the build is complete (Fig. 1a). Continuous liquid interface
production (CLIP) 3D printing has recently been described as an innovative vat
polymerization technique that uses UV laser for photocuring and oxygen to create a non-
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polymerized dead zone to enable the projection of continuous solid objects without the
lamination typically seen in standard layer by layer SLA polymerization.84 Some polymers
that have been used with vat polymerization for bone tissue engineering applications include
poly(propylene fumarate) (PPF)>’ and poly(e-caprolactone fumarate) (PCLF)% as well as
PPF/PCLF blends8” (Table 1). Supplementing these polymers with hydroxyapatite (HA)
nanoparticles has been shown to increase the elastic modulus and potentially enhance the
osteoconductivity>°28.88 Alternatively, vat polymerization has also been employed to
produce complex sacrificial molds for HA scaffolds, which are pyrolyzed before or during
sintering of the ceramic.18 The primary advantages of vat polymerization are: (1) the fine
resolution that enables interconnected pore diameters and wall thicknesses as small as 100
um, (2) the tunability of the scaffold stiffness due to the variety of polymers that can be
printed and the degree to which crosslinking can be controlled, and (3) the potential for
incorporation of bioactive molecules within the polymer.51:56 For bone tissue engineering,
vat polymerization is constrained to photo-curable polymers and can be limited in terms of
the amounts of ceramic additives.

Powder Bed Fusion

Powder bed fusion (e.g., laser sintering) employs a fine resolution laser or electron beam to
achieve selective thermal binding of materials in a layer-by-layer fashion, but unlike liquid
photopolymers used in vat polymerization, solid particles from a variety of materials can be
bound together by partial or full melting (Fig. 1b). New thin layers of powder are then rolled
out over the previous layer and the process is repeated until the build is complete. Materials
that have been utilized with these fabrication methods for bone applications include plastics
such as poly(e-caprolactone) (PCL),%3 biphasic calcium phosphates,’® polymer/calcium
phosphate composites,24:60.95 and titanium alloys8® (Table 1). Although these materials are
generally viewed as osteoconductive, they are unable to facilitate complete bone healing
without the addition of cells or growth factors. In one study, bone regeneration was
enhanced in a rat segmental femoral defect by augmentation of porous titanium scaffolds
with growth factor-laden gelatin hydrogels after printing.86 The primary advantage of
powder bed fusion is the production of highly detailed, high strength porous scaffolds, which
could be used in partial or full load-bearing applications, as in the case of titanium.
However, sintering of plastics, ceramics and metals produces localized ultra high
temperatures, which preclude the potential for simultaneous incorporation of cells, proteins,
or heat-labile bioactive molecules.

Material Extrusion

Material extrusion encompasses any process in which materials are deposited as continuous
strands through a nozzle or a dispensing orifice in an incremental layer-by-layer fashion that
will yield a 3D product upon solidification of the extruded material (Fig. 1c). A wide variety
of material extrusion techniques have been devised and are referred to by an expanding
terminology including, but not limited to, 3D (bio)plotting, dispense plotting, or bioprinting
which can be used to print bioadditive- and cell-laden hydrogels, to be cross-linked once
extruded. In addition extrusion can be achieved by dispensing nearly molten plastic filament
through a nozzle (e.g., thermal material extrusion). The material then cools and solidifies
into the final 3D form. Material extrusion techniques are the most widely employed 3D
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printing strategies for tissue engineering, which have led to remarkable progress in the field.
This technology has been recently advanced to enable multi-material printing that include
cell-laden hydrogels, supporting polymer fibers and sacrificial materials, and has
demonstrated the ability to fabricate human-scale tissues of any form including mandible,
calvarial bone, cartilage and skeletal muscle.48

With specific focus on bone applications, extrusion-based systems have employed the widest
variety of materials using multiple deposition techniques. These materials include synthetic
polymers such as polyesters,3474.75.77 natural polymers such as alginate,6%70 and polymer/
ceramic (including bioactive glass) composites30:47:50.54,59,62,73,94.97 (Taple 1). While
ceramics that are printed by material extrusion often require a secondary heat treatment or
sintering, some polymer-based or hybrid scaffolds can be fabricated under mild conditions
that are amenable to simultaneous incorporation of growth factors or live cells.89.70.75 The
resolution of these techniques depends on the diameter of the dispensing nozzles and the
stability of the material after extrusion. Extruded strands commonly have a diameter of 100-
200 microns. In some cases, which may depend on the material or geometry, an additional
sacrificial support material might be necessary for the scaffolds to maintain form until they
can be post-processed.

Binder Jetting

Similar to powder bed fusion, binder jetting selectively binds particulate materials in a layer-
by-layer fashion. Instead of fusing the particles with lasers or an electron beam, binder
jetting selectively sprays one or more binding solutions from inkjets to unify the particles
(Fig. 1d). In bone tissue engineering, the powder phase is most often a CaP, such as
tricalcium phosphate (TCP) or hydroxyapatite (HA) (Table 1). The binding solution is
usually a sacrificial polymer, which is pyrolyzed during sintering after printing, or an
aqueous solution. CaP powders typically require aqueous binding solutions, such as dilute
phosphoric acid (in a concentration range of 5-30 wt.%). The acidic binder initiates a
dissolution-precipitation reaction within the powder to fuse the particles.3® Typically, a
commercial 3D inkjet printer is minimally adapted for printing CaP bone graft substitutes.
These printers utilize thermal or piezoelectric inkjet cartridges that are identical to those
found in common desktop printers. These ink cartridges can be opened, cleaned, and refilled
with the binder solution or bioactive “inks’.

The solubility of CaP in the aqueous binder is an important parameter of printability and it
depends on its mineral phase as summarized in Table 1. It should be noted that the solubility
properties of a given CaP phase can vary depending on synthesis techniques and
environmental conditions.2533 The approximate solubility product constants (Ksp) provided
in Table 2 indicate equilibrium solubility conditions in a specific chemical system, which is
independent of pH and does not represent the absolute dissolution. Solubility isotherms as a
function of pH can be better indicators of dissolution and such calculations have been
performed for all of the CaP phases listed in Table 1.246 Furthermore, mixing CaP with
more reactive minerals such as calcium sulfates (CS) has also been shown to improve
solubility and binding using aqueous binders, independent of pH.82.99
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A comprehensive review of CaP for bone regeneration using fabrication techniques other
than 3D printing is beyond the scope of this review, but the interested reader is referred to
previous reviews of the topic.6.8:10.16.17 The CaP phase most commonly used in binder
jetting is a-TCP, which is more thermodynamically unstable (and thus more soluble) than s
TCP.11 When TCP is combined with phosphoric acid, the dissolution-precipitation reaction
yields brushite (CaHPO,4-2H,0). Butscher and colleagues demonstrated the superior binder
jetting quality and geometrical accuracy of a-TCP vs. S-TCP when using 10% phosphoric
acid as the binder solution.12 This study also examined the effects of particle size on
printability and observed that when the particle size is too small, flowability is compromised
due to agglomeration of the particles, resulting in surface mottling of the powder bed. If the
particle size is too large, the powder flows easily but does not pack sufficiently, causing
interlayer instability that compromises binding and geometrical accuracy. Powder particles
in the size range of 10-50 microns are generally considered optimal.12:43:52,99

SYSTEMATIC REVIEW OF THE LITERATURE: SEARCH ALGORITHM AND
INCLUSION/EXCLUSION CRITERIA

The PubMed database was searched on January 5th, 2016 using the string *(3D printing OR
3D printed OR rapid prototyping OR additive manufacturing OR inkjet OR granular
material binding) AND (bone OR scaffold OR graft) AND (bioceramic OR ceramic OR
calcium phosphate)’ to identify articles that investigated the use of 3D-printing to fabricate
CaP scaffolds for bone graft substitutes. The search was limited to publications within the
last 10 years. Articles in languages other than English were excluded and all reviews were
omitted. This search returned 103 results. Studies that utilized 3D-printing, but did not
directly involve calcium phosphate in the printing process or bone applications were
excluded, as were papers that focused only on optimization or characterization of chemical
or mechanical properties of 3D-printed CaP scaffolds with no biological or /n vivo
assessments. Additional studies that were not returned in the PubMed search, but were
identified to be relevant to the topic of this review were included. With this search algorithm
and inclusion/exclusion criteria, a total of 45 articles involving /n vitro and vivo approaches
for bone tissue engineering or drug delivery were fully reviewed and discussed herein, as
summarized in Tables 3, 4, 5, 6, and 7. The reviewed papers were broadly categorized into
bone regeneration and drug delivery studies in the context of bone repair and infection,
which were then further classified into low- and high-temperature 3D printing approaches.

3D PRINTING FOR BONE REGENERATION

Low Temperature 3D Printing of CaP Scaffolds for Bone Regeneration

Of the papers reviewed in Table 3, the majority used binder jetting approaches, and two
studies investigated material extrusion approaches. As described earlier, acidic binder
solutions applied to CaP powders in binder jetting enable low temperature binding of the
particles in a dissolution-precipitation reaction. In material extrusion, CaP slurries or
cements are typically extruded through a non-heated print-head or nozzle under mild
conditions, and the extruded materials are then solidified in a variety of ways based on their
chemical composition. For example, extruded CaP (composed primarily of a-TCP) paste in
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a carrier liquid composed of short-chain triglyceride are solidified by placement in water to
initiate the cement-setting reaction in just a few minutes, and can be further hardened by
incubation at 37 °C for several hours.61 Photocurable hydrogels (poly(ethylene
glycol)dimethacrylate (PEGDMA)) with suspended MSCs, bioactive glass (BG), and
hydroxyapatite (HA) particles are photo polymerized by UV light.32 Poly(lactic acid) (PLA)
(with 5% PEG) polymer blend with BG are cross-linked with NaOH (8% w/v) in 70%
ethanol deposited during the 3D printing process and then set by evaporation of the solvent
chloroform.?

Regardless of the fabrication method or material, for regenerative applications it is necessary
to determine the biocompatibility of the 3D printed scaffold. This is commonly
accomplished by seeding cells onto the scaffold and assessing cell viability and
proliferation, among a variety of other biological responses.15:3243.61 |ndeed, seeded cells
have been shown to attach to a variety of 3D printed scaffolds and achieve a normal cell
morphology.#361.79 |n binder jetting, additives to either the binder solution or CaP powder
have been shown to affect cell behavior.1543 For example, Inzana et a/. (2014) added
solubilized collagen to a phosphoric acid binder solution and observed a significant
improvement in relative cell viability (normalized to tissue culture plastic) of C3H/10T1/2
cells seeded onto CaP scaffolds.#3 Additionally, Castilho et a/. (2015) demonstrated that
mixing CaP powder with alginate, enhanced both cell viability and cell proliferation, while
vacuum infiltration of alginate into the printed scaffold reduced both cell viability and cell
proliferation of the osteoblastic cell line MG63.1° For material extrusion, Lode et a/. (2014)
showed that human mesenchymal stem cells (hMSCs) attached to a CaP cement scaffold,
and the attachment was improved by inducing osteogenic differentiation of hMSCs prior to
seeding.61

Low temperature extrusion 3D printing of CaP scaffolds enables direct printing of living
cells suspended in ‘bioinks’.32 Investigating the composition of a variety of bioinks
consisting of poly(ethylene glycol) dimethacrylate (PEGDMA), BG, HA, and hMSCs Gao
et al. (2014) found that cell viability of directly printed hMSCs was highest in pure
PEGDMA and PEGDMA-HA bioinks, while PEGDMA-BG had a significantly lower cell
viability. The presence of HA in the bioink also led to differentiation towards the
osteoblastic lineage. The high resolution (ink drops <0.03 mm diameter) achieved by this
material extrusion approach enables precise patterning of cells within the CaP scaffold,
which overcomes limitations of post-printing seeding of cells, including reduced cell
attachment and inhomogeneous cellular distribution within the porous scaffolds. Mehrban et
al. (2013) showed that preconditioning 3D printed CaP scaffolds in acellular and cellular in
vitro conditions can help obtain desired physical characteristics for /n vivo
implementation.5® Morphological changes of 3D printed CaP scaffolds occurred when
immersed in culture media over a 28-day period. These changes included an increase in
porosity and fluctuations in surface roughness suggesting degradation of the exterior layer of
the CaP scaffold. However, the seeding of cells (tenocytes) and the production of ECM on
the CaP scaffolds inhibited dissolution and morphological changes.8® Thus, it is important to
recognize that not only does the scaffold affect cell function, but the seeded cells can also
play an important role in stabilizing the scaffold and controlling its degradation.
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When implanted /n vivo, scaffolds can elicit a host inflammatory response, but it is not fully
understood how this might affect regeneration since inflammation is an important stage in
bone repair.38:66.96 Almeida er a/. (2014) demonstrated that the immune response of
macrophages to 3D printed CaP scaffolds /n vitrois sensitive not only to surface properties
(i.e., surface chemistry) but also to scaffold geometry (porosity and pore size).2 More
research is needed to determine the ideal response and cytokine environment for favorable
scaffold-initiated bone regeneration.

3D printed CaP bone graft substitutes fabricated at low temperatures have been shown to be
osteoconductive 77 vivo in a variety of orthotopic implantation models.39:4243.53 |nzana et
al. (2014) showed that binder jetting (inkjet) 3D printed CaP scaffolds with and without
incorporated collagen stimulated bone ingrowth and served as osteoconductive spacers in a
critically sized murine femoral defect.#3 However, CaP-collagen composites did not improve
in vivobone regeneration and complete bridging of the defect. The osteoconductivity of the
binder jetting 3D printed TCP scaffolds has been shown to be better than that of HA
scaffolds.#2 Interestingly, while the size of macropores in 3D printed CaP scaffolds has been
shown to affect osteoconductivity and bone regeneration in vivo,*2 Habibiovic et af. (2008)
reported that pore morphology (open vs. closed macropores of comparable size of 1.3 mm)
had no effect on new bone formation in a goat decorticated lumbar implant.3°

High Temperature 3D Printing of CaP Scaffolds for Bone Regeneration

The production of CaP scaffolds at high temperatures is necessary for certain 3D printing
techniques (i.e., powder bed fusion or thermal material extrusion). Moreover, high
temperature post-processing techniques (i.e., heat sintering) applied to 3D printed CaP
scaffolds have the primary benefit of enhancing mechanical strength. However, these high
temperature limit the ability to incorporate heat-labile biofactors or cells during the
fabrication process. This section examines 3D printed CaP scaffolds fabricated or
postprocessed at high temperatures without incorporated drugs or growth factors. The
studies reviewed in Tables 4 and 5 mostly used material extrusion or binder jetting to
fabricate pure or composite CaP scaffolds, and assessed their osteogenic potential /n vitro or
in vivo, and far fewer studies used powder bed fusion or vat polymerization.

CaP scaffolds printed at high temperatures were characterized /n vitroto assess
biocompatability (Table 4). A wide variety of cells have been used for such characterization,
including osteoblasts,”+14:20.24.71.91 preosteoblastic cells, 1949 stromal cells,22:71.98
osteoclasts,?! mesenchymal stem cells (MSCs),58.72 epithelial cells,* and Schwan cells.&0
Cell viability,1421:22.24,71.80.98 proliferation, 14:19.2122.24,32,40,68,71,72,80,91 gn
cytotoxicity9:91 assays all show a general consensus of favorable biocompatibility
regardless of the 3D printing method using different biomaterials. Furthermore
differentiation of MSCs seeded on 3D printed CaP scaffolds into the osteoblastic lineage
was only evident when culturing with osteogenic media21:68.71 or an osteoinductive element
(e.g., mesoporous glass®8). Yet one study demonstrated the ability of HA/TCP scaffolds
fabricated by vat polymerization to induce seeded MSCs to differentiate into osteoblast-like
cells without osteogenic media as determined by expression of osteogenic markers /n vitro
and improved calvaria defect repair /n7 vivo.”2 Cells not directly involved in the production
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or resorption of bone have also been seeded and characterized on 3D printed CaP scaffolds
to indirectly enhance bone regeneration by supporting innervation and angiogenesis. Sweet
et al. (2015) demonstrated that extruding patterned g-TCP composite scaffolds can support
the growth of viable Schwann (SC) cells and develop normal nerve-related cell phenotypes
and morphologies.8°

Castilho et al. (2014) investigated how the composition of CaP (Ca/P ratio) affects
biocompatibility, and concluded that biphasic TCP and HA scaffolds produced by binder
jetting!4 enhanced seeded osteoblasts’ cellular response (viability and proliferation),
compared to pure TCP scaffolds. However, Seol et al. (2014) reported that 3D printed HA
scaffolds produced from a slurry mixture of ceramic powder with photocurable resin
(FA1260T; a urethane acrylate monomer) by vat polymerization, and suggested that these
scaffolds promote proliferation of osteoblasts and MSCs, while HA-TCP scaffolds
fabricated similarly promote osteoblastic differentiation /n vitro.

Almost half of the studies utilizing high temperature 3D printing of CaP scaffolds
investigated bone regeneration /n vivo (Table 5). The enhanced mechanical properties of
CaP scaffolds produced at high temperatures enable them to be structurally sound when
orthotopically implanted, especially in load bearing models. Results of these studies showed
varying degrees of osteoconductivity for 3D printed CaP scaffolds and collectively conclude
that 3D printed CaP scaffolds alone generally do not stimulate bone healing and
regeneration compared to autologous bone grafts.8!

Osteoinductive dopants or surface modifications were often incorporated pre- or post-
fabrication to better enhance the bone regenerative potential of 3D printed CaP scaffolds.
Doping 3D printed CaP scaffolds with metal oxides or incorporating additional bioactive
materials have been shown to enhance osteoinductivity.2%:98 For example, doping raw CaP
powder with both SiO, and ZnO, prior to 3D printing (binder jetting) of CaP scaffolds and
post-fabrication sintering at 1250 °C, have been reported to enhance both osteogenic
differentiation, as well as neovascularization in a load-bearing rat femoral defect
reconstructed with the printed scaffolds.2? CaP scaffolds prepared by material extrusion of
B-TCP-PVA slurry and subsequently surface coated with a nanolayer of mesoporous BG and
annealed at 650 °C enhanced bone regeneration and angiogenesis in a rabbit calvaria defect
model compared to non-coated S-TCP-PVA scaffolds.% Wang et a/. (2014) performed
unique post-fabrication modifications to extruded CaP scaffolds, by creating a “virus
activated matrix or VAM” wherein RGD-phage nanofibers act as a mimetic ECM for
enhanced attachment of endothelial and osteo-progenitor cells, and demonstrated that this
approach leads to enhanced vascularization and bone regeneration in a load bearing rat
radius defect.89

Cell seeding on 3D printed scaffolds has also been investigated as a strategy for enhancing
bone regenerative potential /n vivo. For example, Barboni et al. (2013) demonstrated the
osteogenic potential of ovine amniotic epithelial cells (0AEC) seeded on a CaP scaffold
fabricated by material extrusion of a paste-like aqueous ceramic slurry of HA/B-TCP.# When
implanted in sheep to augment maxillary sinus defects, 0AEC-seeding of the 3D printed CaP
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scaffolds significantly increased bone ingrowth into the defect and accelerated angiogenesis
when compared to scaffolds without cells.

3D PRINTING FOR DRUG DELIVERY

Low Temperature 3D Printing of CaP Scaffolds for Drug and Growth Factor Delivery

CaP scaffolds produced by binder jetting at low temperature (<37 °C) are theoretically
amenable to incorporation of heat-labile bioactive molecules for localized and controlled
delivery. These molecules include growth factors to promote angiogenesis and bone
regeneration or antibiotics to combat bone infections (Table 6). While it is possible to adsorb
growth factors and drugs onto the 3D printed CaP scaffolds after post-processing,-36-37 the
amount of drug adsorption and kinetics of release vary depending on the CaP phase used and
the method of drug loading. Regardless, this approach results in burst release of the surface-
adsorbed drug within hours and almost consistently fails to sustain release beyond 24 h jn
vitro. The potential to enable homogeneous volumetric drug loading and to create spatial
gradients or site-specific drug localization within a scaffold using 3D printing may offer
significant functional advantages over surface adsorption and could dramatically enhance the
therapeutic potential of these 3D printed scaffolds. Yet, few studies investigated this
approach using low temperature 3D printing and pure CaP scaffolds. In a study by Inzana et
al. (2015), volumetric incorporation of antibiotics within 3D printed CaP scaffolds was
evaluated as a treatment strategy for implant associated bone infection (osteomyelitis).
Cylindrical CaP scaffolds produced by binder jetting incorporated antibiotics either by
mixing vancomycin and rifampin directly with phase-pure a-TCP or direct jetting as
“bioink” from the color inkjets along with the phosphoric acid binder from the black inkjet
cartridge.** Strategies to control the release kinetics by post-printing coating of the CaP
scaffolds with poly (D,L-lactide-co-glycolide) (PLGA) achieved first-order release Kinetics,
sustained the release over 14 days /n vitroand in vivo, and improved flexural biomechanics
to values reaching those of dense cancellous bone.** Interestingly, these CaP scaffolds with
incorporated antibiotics significantly reduced the bacterial burden in a mouse model of
established femoral osteomyelitis.*4

Material extrusion can be more versatile than binder jetting, and when performed under low
temperature and mild post-processing conditions it can be amenable to generating drug- or
growth factor-loaded composite CaP scaffolds. Mineralized slurry or paste compositions,
which can be extruded at physiologic temperature are especially suited for this approach.
Martinez-Vazquez et al. (2015) demonstrated the feasibility of 3D printing of porous silicon-
doped hydroxyapatite and gelatin (HASI/G) composite scaffolds for delivery of
vancomycin.®4 These scaffolds behaved as hydrogels, but displayed compressive strength-
mineral density relationships that were closer to cancellous than cortical bone, and in
general showed a favorable biocompatibility profile /n vitro. When loaded with vancomycin,
the HASI/G scaffolds achieved first-order diffusive release kinetics, but did not sustain
release beyond 10 h /n vitro. Furthermore, the incorporation of the antibiotic under the mild
scaffold fabrication conditions maintained the drug’s antimicrobial activity in standard /n
vitro assays.8* Akkineniet al. (2015) described a similar approach of extrudinga-TCP-based
CaP cement (CPC) premixed with chitosan/dextran sulphate microparticles encapsulating
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vascular endothelial growth factor (VEGF) or bovine serum albumin (BSA) in a liquid
carrier consisting of a biocompatible oil.> The extruded CPC scaffolds had compressive
strength and moduli in the range of the compressive properties of trabecular bone. The
bioocompatibility of the scaffolds was demonstrated by the viability and alkaline
phosphatase activity of mesenchymal stem cells cultivated on the scaffolds for up 21 days.

While extrusion of CaP composite pastes and hydrogels has the advantage of permitting
premixing with drugs and growth factors, this usually means lower printing resolution due to
viscosity of these flowable mineralized slurries, which requires large nozzle diameters (>500
microns). The liquid carriers can be organic hydrogels or inorganic carriers, and both require
post-processing to allow them to set and harden. Few studies have investigated the
performance of 3D printed CaP composites/n vivo. Poldervaartet al. (2013) used material
extrusion to fabricate composite macroporous alginate scaffolds, which were laden with
gelatin microparticles (GMPs) and mesenchymal stem cells.”? The resulting scaffolds had a
uniformly distributed array of pores on the order of 500 microns with alginate struts as wide
as 2 mm. Due to the viscosity of the composite alginate suspension, concentrations greater
than 3% w/v alginate could not be extruded, and this seemed to affect the stability of the
printed scaffolds. While this study demonstrates the feasibility of bioprinting CaP
composites, and provides one of few examples ofinn vivo proof of concept, it also highlights
the limitations of extrusion based bioprinting; namely the low resolution and the effects of
the flowable polymer viscosity on printability.

High Temperature 3D Printing of CaP Scaffolds for Drug and Growth Factor Delivery

High temperature fabrication methods or high temperature post-processing techniques have
the primary benefit of enabling CaP ceramics to achieve enhanced mechanical properties.
Yet, this methodology hinders the ability to uniformly print cells and/or bioactive molecules.
To circumvent this limitation, additional post-processing techniques can be utilized to
incorporate biofactors and cells onto the printed construct including surface adsorption or
surface modifications, irrespective of the 3D printing technology (Table 7). The most
commons additive is BMP-2, which is typically incorporated during the post-processing
steps to add an osteoinductive element. For example, Duanet a/. (2010) utilized a modified
commercial laser sintering (powder bed fusion) system to fabricate composite scaffolds from
CaP/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microspheres.23 Rectangular
scaffolds with designed macropores of 2 mm evenly patterned throughout the scaffold were
fabricated with layer thickness (resolution) of 0.1 mm. This study demonstrated the
favorable/n vitro biocompatibility of the laser-sintered CaP scaffolds with heparin surface
modifications and BMP-2 adsorption, but lacked characterization of drug release release
kinetics.

El-Ghannamet al. (2013) adsorbed rhBMP-2 onto sintered silicon doped CaP (SCaP)
scaffolds produced by binder jetting and then implanted these scaffolds into a 10 mm rabbit
ulna defect.? Silicon doped CaP has been shown to enhance both the bioactivity and
mechanical properties of CaP scaffolds and in combination with rhBMP-2 these CaP
scaffolds enabled bone ingrowth, osseointegration, and vascularization.27-28 Strobelet a/.
(2014) fabricated CaP scaffolds composed of HA,5-TCP, and of an acid-hydrolytic modified
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potato starch (dextrin) powder using a commercial inkjet 3D-printer with water-glycerol as a
binder solution.”® When coated with fibrin premixed with BMP-2 or seeded with
osteoblasts, and implanted in subcutaneous pockets in rats, significant ectopic bone
formation was observed. One study demonstrated that osteoinductive elements, other than
BMP-2 or cells, can be incorporated into 3D-printed CaP scaffolds for enhancing bone
formation. Ishacker a/. (2015) extruded biphasic CaP (15% HA and 85%8-TCP) inin a
colloidal gel ink, and then loaded these scaffolds with either BMP-2 or dipyridamole, a drug
that upregulates extracellular adenosine.#> When implanted into a mouse calvarial defect,
both BMP-2 and dipyridamole loaded scaffolds promoted bone regeneration 8 weeks post-
operatively.

CONCLUSIONS

In summary, CaP scaffolds produced using approaches involving low- or high-temperature
3D printing processes or post-processing steps have been shown to be osteoconductive in a
variety of animal models; however, complete bone regeneration is typically not achieved
without the addition of osteoinductive elements such as cells or biofactors. Future work must
focus on refining the right combination of cell populations, growth factors, or other
osteoinductive elements needed for complete bone regeneration in orthotopic models of
bone regeneration. It is also not known precisely what porosity and pore size distribution are
ideal for supporting and enabling bone growth, but this information is vital for optimizing
sintering temperatures and duration that affect both mechanical strength and pore
morphologies. The advantages of low temperature fabrication approaches are nullified by the
poor biomechanical properties of these scaffolds, which makes their use in load-bearing
orthotopic models of bone repair challenging. New binders or printing technologies that
could improve the mechanical properties of printed CaP scaffolds at biologically-relevant
temperatures are an area of research that requires attention. The current 3D printing
platforms have limitations intrinsic to the technology used, as described, and future research
and development should focus on overcoming these limitations with the goals of enhancing
biomechanical properties, resolution, biocompatibility, and sustained drug release that could
approach first- or zero-order kinetics. However, an argument can be made that the 3D
printing technology has matured to the point where further testing in large animals is
required to demonstrate level | preclinical evidence of efficacy.
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(a) Vat Polymerization (b) Powder Bed Fusion
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FIGURE 1.
Schematic depiction of the major technologies used in 3D printing of pure or composite

calcium phosphate scaffolds for bone regeneration and drug delivery.
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TABLE 2

Calcium phosphates relevant to bone regeneration.810.16.17

Name Formula Ca:Pratio  Solubility (~Kg)

Hydroxyapatite (HA) Cayp(POy)6(OH), 1.67 107120

Tricalcium phosphate (TCP) Cag(POy), 15 a.5cal 1072
325 cal 1072

Tetracalcium phosphate (TTCP) Cay(P0O,),0 2.0 10744-10738

Dicalcium phosphate dihydrate (DCPD; Brushite) CaHPO,42H,0 1.0 10766

Dicalcium phosphate anhydrous (DCPA; Monetite) ~CaHPO, 1.0 10769

Octacalcium phosphate (OCP) CagH,(PO,)g5H,O0  1.33 10797

Calcium pyrophosphate (CPP) CayP,07 1.0 10715
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