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Abstract

Antibody structure prediction has made great strides, but accurately modeling complementarity 

determining region (CDR) H3 loops remains elusive. Unlike the other five CDR loops, CDR H3 

does not adopt canonical conformations and must be modeled de novo. During antibody modeling 

assessment II (AMA-II) we found that biasing simulations toward kinked conformations enables 

generating low-RMSD models(1), and since then, we have presented new geometric parameters 

defining the kink conformation(2). Here, we use these parameters to develop a new biasing 

constraint. When applied to a benchmark set of high-quality CDR H3 loops, the average minimum 

RMSD sampled is 0.93 Å, compared to 1.34 Å without the constraint. We then test the 

performance of the constrained de novo method for homology modeling and rigid-body docking, 

and present the results for (1) the AMA-II targets; (2) the 2009 RosettaAntibody benchmark set; 

and (3) the high-quality set.

Introduction

The adaptive immune system in vertebrates is capable of raising antibodies against a 

countless number of antigens. Additionally, engineered antibodies form various sources are 

used as therapeutic molecules(3, 4) and biosensors(5–7). In order to optimize specific modes 

of interactions, rational engineering techniques must be developed. Rational engineering of 

antibodies requires accurate structural models, but crystallization is not always practical or 

even possible. Additionally, expressing a large library of mutants in order to assess the 

energetic implications of specific mutations is time consuming, resource intensive and, in 

some cases, technically challenging. Computational methods, namely antibody homology 

modeling, are poised to enable the realization of rational design.

In addition to biotechnology applications, advances in next-generation sequencing 

techniques(8–10) have made it possible to routinely elucidate the sequences of 104–105 

antibodies per individual. Such a vast and complete snapshot of an individual’s antibody 

repertoire is ripe for extracting an unprecedented amount of immunological information(11). 

However, sequence analysis and structural analysis will need to be used in concert to 

produce a fully formed picture. The sheer number of sequences necessitate the use of 

computational structure prediction methods.
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Our goal is to develop methods to improve antibody structure prediction. Generating 

accurate structural models is critical for producing inputs for additional structure-based 

simulations such as docking(12), and for computational prediction of binding affinities and 

dissociation free energies(13, 14). The modeling tool we use, develop and study in this paper 

is RosettaAntibody. RosettaAntibody’s approach to modeling(15) is to break the structure 

into eight distinct structural components: the heavy- and light-chain frameworks; CDR loops 

L1–3; and CDR loops H1–3.

Because the non-H3 CDR loops adopt canonical conformations(16, 17), accurate backbone 

conformations for them can usually be found in known structures. RosettaAntibody exploits 

this by selecting templates from curated structural databases using BLAST(18) bit-score for 

CDRs L1–3, H1 and H2 and the framework regions. Each structural component is defined 

such that they have overlapping residues that can then be superposed to create a grafted 

model. An initial VL–VH orientation is also selected from databases, and the grafted heavy 

and light chains are each superposed to the corresponding chain in the orientation template. 

After this, the CDR H3 loop is modeled de novo while sampling the VL–VH orientation.

We have presented the performance of RosettaAntibody in Antibody Modeling Assessment 

II (AMA II)(1, 19). With few exceptions, RosettaAntibody selects templates for the 

framework regions and the non-H3 CDR loops that have backbone atomic coordinates with 

sub-angstrom optimal root-mean-squared deviations (RMSDs) from the native structure. 

Similarly, the other participants in the assessment were generally able to construct models 

with low RMSDs in the framework and non-H3 CDR loops(20–24). The most difficult 

aspect of antibody homology remains accurately predicting the VL–VH orientation and the 

CDR H3 conformation.

Because the CDR H3 loop lies at the interface between the heavy and light chains, incorrect 

VL–VH orientations can frustrate identifying correct CDR H3 conformations. In the time 

that has elapsed since AMA II was conducted, progress has been made in predicting VL–VH 

orientation(25) from sequence by training a random forest model on a set of “fingerprint” 

residues at the VL–VH interface using ABangle’s six degree-of-freedom description of 

orientation(26). Further improvement has been achieved with an ensemble approach to 

modeling VL–VH orientation called multiple-template grafting(27). Similarly, effort has 

been made to develop a CDR H3-specific loop modeling routine(22, 28, 29). Successful 

predictions require extremely accurate atomic coordinates for the rest of the FV(23, 28), 

which may make these tools better-suited for refining crystal structures with poor electron 

density around the CDR H3 loop than for homology modeling. Another method relies on 

restraining the dihedral angles of the three N-terminal and four C-terminal residues of the 

H3 loop based on distributions observed in crystal structures(29).

A large majority – over 80% of known structures – of CDR H3 loops have a C-terminal 

kink(2, 17, 30–34), a structure that resembles a β bulge in that it disrupts the hydrogen 

bonding pattern along a β strand and causes the backbone to twist. In AMA II we found that 

producing low-RMSD models required filtering out non-kinked H3 conformations. 

However, the scores of the kinked structures, which can be thought of as their free energies 

of folding, are higher (worse) than some of the extended structures that Rosetta produced. 
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Shirai et al. also used a filter to ensure the predicted H3 loops had appropriate base 

geometries(22). In response to these findings, we developed new geometric parameters that 

describe the kink, in particular that the C-terminal loop residues form a pseudo dihedral 

angle, α101 (100X–103 using Chothia numbering), of 39° and a pseudo bond angle, τ101 

(100X–102 using Chothia numbering), of 101°(2). Along with this enhanced description of 

the kink, we hypothesized that the kink serves to drive CDR H3 diversity and is stabilized by 

tertiary interactions and not by the sequence of the loop itself. This hypothesis is supported 

by the recent work by Teplyakov et al.(35) in which four heavy chains and four light chains 

were combined pairwise to create sixteen antibodies. All sixteen antibodies had the same 

CDR H3 loop, but the structure of the loop varied considerably.

De novo loop modeling has endured as a challenging problem in part because of the large 

number of degrees of freedom that need to be sampled, the closure requirement, and the 

challenges associated with accurately ranking different structures. Additionally, side-chain 

interactions often play key roles in stabilizing observed loop conformations, potentially 

complicating low-resolution searches.

CDR H3 loops, in addition to having a variety of lengths, are anchored on two adjacent β 
strands that are disrupted by the C-terminal kink. In previous work, we found that the 

simulation tends to continue the β strands well into the loop region, possibly due to the 

formation of favorable backbone–backbone hydrogen bonds in the low-resolution stage of 

the search(1).

Complicating the task even further is the most common source of the reference coordinates: 

crystal structures. Crystals are crowded environments in which each protein molecule is 

surrounded by several others; crystal contacts may influence the observed conformation 

within the asymmetric unit. Without the existence of a crystal structure of the same protein 

in more than one distinct crystal form, it cannot be determined if crystal contacts perturb the 

conformation of any region of the protein.

Finally, it is not justified to always assume that loop modeling must search for a single set of 

coordinates. Proteins in physiological conditions are not completely rigid, and estimating the 

conformational entropy of a loop requires supplying a model to describe the modes of 

flexibility accessible to the loop(36). Nevertheless, the possible existence of multiple 

degenerate-energy conformations cannot be dismissed.

In this paper, we use the parameters defined in our previous work(2) to constrain the kink 

during the course of a simulation. The constraint is tested by predicting H3 conformations 

on the crystal framework structure across the set of benchmark antibody structures. To limit 

the uncertainty in the crystallographic coordinates, we have constructed a set of high-

resolution H3 loops (described in Materials and Methods). Because our long-term goal is to 

predict entire FVs from sequence, we also assess CDR H3 modeling on homology modeled 

frameworks. Finally, we test the ability to dock an antibody with a modeled H3 loop. The 

results enable us to address long-standing questions about CDR H3 modeling, including the 

limitations of sampling and ranking candidate conformations, and whether an improved 

representation of the kink can enable accurate CDR H3 loop structure prediction. Finally, to 
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show the improvements we have made since the initial development of RosettaAntibody, we 

report the performance of the updated version for all 52 of the structures included in the 

2009 study. To place our work into the context of other antibody structure prediction tools, 

we model the targets from AMA II.

Materials and Methods

Dataset construction

A set of FVs with accurate CDR H3 coordinates was constructed by querying the backend 

databases of PyIgClassify(37) for structures with a resolution of 2.5 Å or better, a maximum 

R-value of 0.2, B-factor ≤ 80.0 Å2 for every atom in the structure, only one copy of the FV in 

the asymmetric unit, and CDR H3 loop-lengths ranging from 9–20 residues using the 

Honegger–Plückthun-based definition(38). To ensure the set has diverse chemical 

environments, no two heavy-chain CDR loops are permitted to be identical in sequence. The 

structures were further filtered to remove antibodies from species other than humans and 

mice, and modified residues (namely pyroglutamic acid (PCA), a cyclized form of glutamine 

or glutamic acid). The resulting set of structures contains 49 FVs and is summarized in Table 

I.

Kink constraint

In de novo loop modeling simulations, it is impossible to exhaustively sample all of the 

structural degrees of freedom. To increase the likelihood of generating CDR H3 models with 

near-native structures, we constrain(39) two parameters: (1) τ101, the Cα– Cα– Cα pseudo 

bond angle for the three C-terminal residues; and (2) α101, the Cα–Cα– Cα– Cα pseudo 

dihedral angle for the three C-terminal residues in the CDR H3 loop and one adjacent 

residue in the heavy chain framework.

Because an objective of this study is to determine whether or not Rosetta can correctly 

identify native H3 conformations, it is important not to over-constrain any of the 

simulations. With this in mind, a FLAT_HARMONIC potential, which has a region wherein no 

penalty is applied, is a natural choice (Figure 1A). The FLAT_HARMONIC potential is of the 

form

where µ is the mean, t (tolerance) is the distance from µ with no penalty, and ξ is the scaling 

factor that controls the penalty that is applied.

For the kink parameters α101 and τ101, we designed a penalty schedule with no penalty 

when the value is within 1.0 σ of the mean and a penalty of 1.0 at 3.0 σ, yielding ξ = 2t. 
This schedule encourages Rosetta to generate models with kinked H3 loops without forcing 

the geometry toward the mean values of both parameters. Using the values determined 

previously(2), the kink constraint for AHo-numbered antibodies is written for input into 

Rosetta as:
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# alpha: pseudo dihedral - last 3 residues in H3 and the following W

# mean: 38.85 degrees; SD: 11.75 degrees (in radians)

Dihedral CA 136H CA 137H CA 138H CA 139H FLAT_HARMONIC 0.678 0.41 0.205

# tau: pseudo bond angle of the last 3 residues in H3

# mean: 100.9 degrees; SD: 5.57 degrees (in radians)

Angle CA 136H CA 137H CA 138H FLAT_HARMONIC 1.761 0.194 0.0972

Figure 1B shows a contour plot of the combined value of the τ101 and α101 constraints, with 

each line representing an increase in score of 2.0 Rosetta Energy Units (REU). Figure 1B 

also shows the regions of τ101 and α101 that define kinked (orange; ± 3.0 σ of the mean of 

both parameters), unclear (gray; ± 3.0 σ of mean of one of the parameters), and extended 

(white; beyond 3.0 σ of both parameters) conformations. The output score is always derived 

from the unbiased score function, even when the constraint is employed in the simulation. 

These definitions are used throughout this study.

De novo loop structure prediction

Next-generation Kinematic Closure (KIC(40)), or NGK, has been developed to further 

improve the performance of loop modeling in Rosetta. Like KIC, NGK generates diverse 

loop conformations by drawing φ and ψ torsion angle pairs from Ramachandran 

distributions for all but three residues in the loop; the torsion angles of the remaining 

residues are determined analytically by polynomial resultants(41). The approach employed 

by NGK enhances KIC by using neighbor-dependent Ramachandran maps(42), explicitly 

sampling ω backbone dihedral angles as well as using a simulated annealing strategy for 

repulsive and Ramachandran score terms in the all-atom stage. On the same set of loops 

used to benchmark KIC, NGK generates substantially more near-native models(43), which is 

why it is used as the starting point in this study. During loop modeling, the backbone 

coordinates for the non-loop regions of the protein are held fixed.

The flags to run a standard NGK simulation are:

./loopmodel.macosclangrelease

      -native input_file.pdb

      -s input_file.pdb

      -nstruct 500

      -loops:loop_file h3.loops

      -loops:remodel perturb_kic

      -loops:refine refine_kic

      -loops:outer_cycles 5

      -kic_bump_overlap_factor 0.36

      -legacy_kic false

      -kic_min_after_repack true

      -corrections:score:use_bicubic_interpolation false
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      -loops:kic_omega_sampling

      -loops:kic_rama2b

      -allow_omega_move

      -loops:ramp_fa_rep

      -loops:ramp_rama

      -ex1

      -ex2

      -extrachi_cutoff 0

where h3.loops contains

# FORMAT JSON

{"LoopSet" : [{

        "start" : { "resSeq" : 107, "iCode" : " ", "chainID" : "H" },

        "stop" : { "resSeq" : 138, "iCode" : " ", "chainID" : "H" },

        "extras" : { "extend" : true },

    }]

}

We refer readers to the NGK publication(43) for a discussion of the various flags associated 

with it. NGK simulations with constraints use the above command line with the addition of 

the following flags to specifcy constraints in both the low-resolution and full atom (“fa”) 

stages:

        -constraints:cst_file kink.constraint

        -constraints:cst_weight 1.0

        -constraints:cst_fa_file kink.constraint

        -constraints:cst_fa_weight 1.0

where the file kink.constraint contains the constraints as shown above.

Scaled scores

In order to compare the results of simulations of different targets, the scores of a set of 

candidate models are scaled such that a value of 1.0 corresponds to the 95th percentile of 

scores and a value of 0.0 corresponds to the 5th percentile. After this normalization is 

completed, the score of the refined native structure is computed on the same scale.

Discrimination score

The discrimination score is used to measure how “funnel-like” a score vs. RMSD plot is, 

with a lower value being indicative of a more successful simulation. In this study, the 

reference for RMSD calculations is the set of atomic coordinates of the crystal structure 

subjected to refinement as described below. As defined by Conway et al.(44), the 

discrimination score is calculated as:
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where r is the RMSD cutoff in Å, Si are the dimensionless scaled scores calculated as 

described above, and the discrimination score, D, is the sum of the score-differences of the 

best-scoring models above and below the seven RMSD cutoffs.

Preparation of input structures

The raw crystallographic coordinates of protein structure often do not score favorably within 

Rosetta, typically because the packed environment of a crystal leads to side-chain 

conformations that would undesirable in solution and some contacts are classified as steric 

clashes by Rosetta. To compensate, crystal structures must be relaxed, that is, optimized 

with respect to the Rosetta scoring function. Relaxation will result in small changes to the 

atomic coordinates with significant improvements in the score; however, it is important that 

the backbone coordinates do not vary much, especially in the case of loop modeling. To 

ensure that only small changes to the backbone are allowed, all coordinates are constrained 

to their starting positions with a spring potential. The command line used for constrained 

relax is:

./relax.macosclangrelease

      -s input.pdb

      -nstruct 500

      -relax:constrain_relax_to_start_coords

      -relax:coord_constrain_sidechains

      -relax:ramp_constraints false

      -ex1

      -ex2

      -use_input_sc

Once the crystallographic coordinates have been optimized, the entire structure can be 

subjected to fixed-backbone side-chain optimization to further lower the score of the 

reference structure for loop modeling and to better approximate the side-chain 

conformations in the free, unbound conformation. The command line used for fixed-

backbone side-chain optimization is:

./relax.macosclangrelease

      -s lowest_scoring_model_from_previous_simulation.pdb

      -nstruct 100

      -relax:bb_move false

      -ex1

      -ex2

      -extrachi_cutoff 0
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The low-scoring model from this calculation is used as the input structure in the subsequent 

calculations.

CAPRI criteria

For a model to be considered a high-quality prediction by CAPRI metrics(45), the fraction 

of native residue–residue contacts recovered (fnat) must be ≥ 0.5 and the Interface RMSD 

(I_RMSD) or Ligand RMSD (L_RMSD) must be ≤ 1.0 Å. Medium-quality predictions must 

have fnat ≥ 0.3 and L_RMSD ≤ 5.0 Å or I_RMSD ≤ 2.0 Å, while acceptable predictions have 

fnat ≥ 0.1 and L_RMSD ≤ 10.0 Å or I_RMSD ≤ 4.0 Å. Models that have fnat ≤ 0.1 or 

L_RMSD ≥ 10.0 Å and I_RMSD ≥ 4.0 Å are considered incorrect.

Results

High-quality CDR H3 loop benchmark set

Figure 2 shows an example CDR H3 loop with the electron density map for the H3 residues 

shown in a gray mesh over the residues represented in sticks. At this level of detail, all of the 

side-chain coordinates are well-defined, and the map even shows a hole in aromatic residues. 

The level of agreement between the electron density map and the coordinates and the lack of 

ambiguity in the atomic coordinates suggests that this loop is in a stable conformation in the 

crystal, making it a prime candidate for loop modeling experiments. We constructed a set of 

49 high-quality CDR H3 structures as described in methods. The other loops in the set have 

similarly well-defined electron density. A limitation of this set is that several structures are 

in their bound form (annotations ending with “–Ag” in the Fragment column of Table I), and 

the unbound forms may differ or even be flexible. This danger is mitigated by the fact that 

usually these loops deviate less than 1.0 Å RMSD between the bound and unbound 

forms(46).

Table I lists all of the loops in the set and includes information on the quality and content of 

the crystal structure, the species from which the antibody was derived, the length of the loop, 

and the light chain isotype. In the set, 24 of the 49 structures are crystallized in the bound 

conformation with their antigen, 40 of the 49 structures are Fabs, six are FVs and the 

remaining three are scFVs. Eighteen of the structures are of human antibodies, and 11 have 

λ light chains, making this a diverse set of structures.

The definition of the bounds of the CDR H3 loop differ from the Chothia-based 

definition(47) used within RosettaAntibody(15), and instead are based on the structure-

based Honegger–Plückthun definition(38) used by North et al.(17) and in our previous work 

on the kink geometry(2). Both definitions end on Chothia residue number 102, but the 

Chothia-based definition begins at residue 95 while the Honegger–Plückthun-based 

definition begins at residue 93, making the Honegger–Plückthun CDR H3 loops two 

residues longer than Chothia loops. In this set, the median and mode of the loop lengths are 

both 12 residues.
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Unconstrained de novo modeling of CDR H3 loops

To establish a baseline, we first assessed whether Rosetta methods create native-like H3 kink 

structures using established methods. In AMA II(1) NGK was used to model CDR H3 loops 

on a crystallographic framework. In these cases, a filter was employed to favor kinked 

structures, using the θbase (α101 in this work) definition developed by Shirai et al. and 

refined by Kuroda et al.(30–32) Without this penalty, very few kinked structures were 

produced. From these results it remained unclear if the primary limitation for producing 

accurate CDR H3 models lies in generating low-RMSD conformations (sampling) or in 

ranking the candidate models effectively (scoring). Since then, we established the geometric 

parameters α101 and τ101 to describe the C-terminal kink in CDR H3 loops(2). We now use 

these parameters to probe model sets to determine if Rosetta modeling failures are in 

sampling, scoring or both.

Figure 3 shows the results of a de novo CDR H3 modeling simulation on an anti-

citrullinated collagen type II antibody (PDB accession code 2w60(48)). In Figure 3A, a 

score vs. RMSD plot (funnel plot) shows the models ranked by the scaled score and colored 

by their base geometry. The kinked models (orange points) make up a small fraction of the 

structures produced; however, they have lower scores than extended structures at the same 

RMSD value. The top-ranked models have very low RMSDs, but only three such models 

were produced. Nonetheless, because the score function successfully separates the near-

native and non-native conformations, the discrimination score is −0.5710 (negative 

discrimination scores indicate success). The scaled score of the refined, native (X-ray) 

structure is −1.4061, meaning that none of the predicted structures approach near-native 

scores.

Figure 3B shows the τ101 and α101 values for the models (black) and the crystal structure 

(red). The gray bars demarcate ± 3.0 σ from the mean of the distribution of each parameter 

in kinked antibodies as found in our previous work(2). This plot shows a clear preference for 

NGK to produce H3 loops in the extended conformation, likely because it can form 

backbone–backbone hydrogen bonds by extended the β strands of the framework in the low-

resolution stage of modeling.

Figures S1 and S2 show funnel plots and τ101 vs. α101 plots for the rest of the structures in 

the dataset. Across the whole set, kinked models represent a small fraction of the models 

that are produced, but those models tend to have lower RMSDs.

Across the set of antibodies, the native conformation has a significantly better score than the 

best decoys that are being produced by NGK (Table SI): the average scaled native score for 

kinked targets is −0.9480 with a standard deviation of 0.5033 (Table II).

The negative discrimination scores indicate that lower scoring conformations are correlated 

with lower RMSDs, while large, negative scaled native scores indicate that the native 

conformations score substantially more favorably than the predicted conformations. In this 

case, the negative discrimination score tells us that if we were to sort our models by score 

and pick the best-scoring models, we would indeed select the lowest-RMSD models. The 

large, negative scaled native tells us, however, that the score gap between the refined native 
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and the 5th percentile is, on average, equivalent to the difference between the 5th and 95th 

percentile of the models. Together, these pieces of information suggest that conformational 

sampling must be improved or directed.

Constrained de novo modeling of CDR H3 loops

Because the predicted kinked structures have low RMSDs and relaxation of native CDR H3 

structures can find substantially lower scores (Figure S3), we tested whether biasing the 

simulation toward kinked conformations would increase the number of low-scoring and low-

RMSD models produced in the course of the simulation. As described in methods, we use 

the parameters of the kink described in our previous work to develop a kink constraint that 

can be employed during a simulation (Figure 1). Because the constraint potential is smooth 

and continuous, the conformation of a structure can be minimized with the constraint 

enabled.

Figure 4 shows the results of the constrained NGK simulation for anti-citrullinated collagen 

type II antibody (2w60(48)). The τ101 vs. α101 plot (Figure 4B) shows that the constraint 

successfully biases the simulation to mostly produce kinked structures. At the same time, 

many models are not kinked, which indicates that the simulations are not being over-

constrained.

Figure 4A shows a funnel plot for the constrained NGK simulation of 2w60. The fraction of 

near-native structures has increased dramatically, demonstrating that generating more kinked 

structures is critical for successful CDR H3 predictions. The dashed horizontal line indicates 

the scaled score of the native structure, which was below the plotted bounds on the 

unconstrained plot. That is, the models now have scores near that of the refined, native 

structure. Therefore, the geometry of the models generated with constraints is more 

favorable than the geometry of the models generated by the unconstrained method.

Because many more models between 1.0 and 3.0 Å RMSD are generated and those models 

score more favorably, the discrimination score for the constrained simulation, −0.1721, is 

worse than the unconstrained case. Figure 4A shows that for many of the models with 

RMSDs < 2.0 Å, there is a model with RMSD 3.5 Å that scores as well. This result 

underscores the importance of producing many models even when using constrained NGK.

Figure S4 and S5 show funnel plots and τ101 vs. α101 plots for the rest of the structures in 

the high-resolution data set. Across the data set, with the exception of five targets (one of 

which has an unclear base geometry), the scaled native scores appear within the plot bounds, 

indicating that the models achieve scores close to those of the native structures. Figure S4 

shows that the four extended loops in the benchmark (1x9q, 2e27, 3liz, 3m8o) have sets of 

models that are predominantly kinked. While this is problematic, it appears that, with the 

exception of 1x9q, these particular targets were also not modeled successfully by 

unconstrained NGK, which confounds any analysis to determine if the constraint penalty 

could be overcome when appropriate. Table SII shows numerical results for each target.

The average RMSD of the 10 top-scoring models is lower with constraints in 40 of the 49 

targets, and 30 targets have a lower RMSD of the top-scoring model. Without constraints, 
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the average RMSD of the 10 top-scoring models is under 1.0 Å for three targets; this number 

increases to nine targets when using constraints. When considering only the top-scoring 

model, seven targets without constraints have RMSDs under 1.0 Å, while thirteen targets 

with constraints have sub-angstrom RMSDs. Table III shows the lowest RMSD CDR H3 

loop produced with and without the constraint for each target in the benchmark set.

Homology modeling with constraints

We tested the constrained method on crystallographic frameworks in order to isolate the loop 

modeling problem, but our ultimate objective remains predicting antibody structures from 

sequence. In order to assess the effect of the constraint in the context of homology modeled 

frameworks, we modified RosettaAntibody to apply constraints to the de novo loop 

modeling phase and enabled the neighbor-dependent Ramachandran map sampling from 

NGK. Figure 5 shows cumulative density estimates for CDR H3 loop RMSDs modeled 

using RosettaAntibody with a kink filter (gray curve) and with the new kink constraint 

(orange curve) for 2w60. Both methods can generate low-RMSD models of the H3 loop, but 

with the kink constraint, 1106 of the 2000 models have H3 RMSD < 2.0 Å as opposed to 

only 796 with the filter.

The enrichment of low-RMSD models shows that the kink constraint leads to sampling 

improvements even in cases where RosettaAntibody is already successful. Comparable 

results can be achieved while generating fewer models, and additional simulation time can 

be spent performing other stages of modeling, i.e. VL–VH optimization.

With this result, we produced homology models for the entire benchmark set including using 

the new multi-template VL–VH orientation method(49). Table SIII shows a summary of the 

H3 accuracy on a homology modeled framework for each target in the set. RosettaAntibody 

generates sub-angstrom predictions for 26 targets across a variety of loop lengths. The top-

scoring model has an H3 RMSD < 1.0 Å for 5 targets. If an ensemble of the top-ten models 

is considered, as it would be in the case of EnsembleDock(50), 12 targets have sub-angstrom 

H3 predictions. Notably, all of the loops that were predicted within 1.0 Å are 14 residues or 

less.

Docking with modeled CDR H3 loops

Successful docking is highly dependent on having accurate models of the bound 

conformation of each binding partner. To test whether or not the H3 loop conformations 

predicted using constrained NGK are accurate enough for binding, we focused on 2adf, 

which is crystallized with its antigen. The CDR H3 loop in 2adf is 11 residues and the 

constrained NGK simulation has a discrimination score of −0.1758, indicating successful 

CDR H3 prediction (Table SII). We selected the ten top-scoring models as an ensemble to 

dock to the bound form of the antigen using EnsembleDock(50). EnsembleDock functions 

by cycling through a set of distinct backbone conformations after each rigid-body move 

during the low-resolution stage of docking. Each member of the ensemble is scored, and the 

best-scoring conformation observed in the low-resolution stage is the starting point for all-

atom refinement. EnsembleDock does not resample any of the loop conformations during 

Weitzner and Gray Page 11

J Immunol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



docking, resulting in all non-H3 RMSDs being 0.0 Å. The kink constraint is not used in this 

simulation.

The EnsembleDock results are shown in Figure 6. Points are colored to indicate the Critical 

Assessment of PRedicted Interactions (CAPRI) quality rating(51) of each model, with gray 

points corresponding to incorrect structures, orange to acceptable quality, red to medium-

quality and blue to high-quality models (see methods). The fnat metric that is used to 

compute the CAPRI quality is not restricted to the H3 loop and thus the values we report 

also consider the contributions of non-H3 CDR loops to the interface. The 10 top models by 

interface score encompass one incorrect model, four acceptable models, one medium-quality 

model and four high-quality models.

The ten models used in the ensemble have scores ranging from −594.19 to −586.90, and the 

average H3 RMSD is 1.48 Å (Table IV). The top-ranked model has a loop RMSD of 1.53 Å, 

and the eighth structure in the set has an H3 RMSD of 0.75 Å. As shown in Table IV, the 10 

top models do not converge on a single member of the ensemble, showing that considering 

several models simultaneously is a path forward.

Big data (set)

In order to assess the progress we have made in the development of RosettaAntibody, we 

benchmarked the performance for two additional sets of structures: (1) the ten non-rabbit 

AMA II targets; and (2) the 54 targets in the initial RosettaAntibody study. Table SIV shows 

the summary of the H3 predictions in the context of a homology-modeled framework for the 

AMA II targets. In AMA II, RosettaAntibody produced sub-angstrom models for two 

targets(1). The average minimum RMSD of the ten targets is 1.28 Å. The new constrained 

method successfully produces sub-angstrom predictions for two of the ten targets, however 

these models are not ranked in a set of ten top-scoring structures. When considering the ten 

top-scoring models, six of ten targets are predicted within 2.0 Å RMSD. In AMA-II we were 

able to rank sub-angstrom predictions in the top-scoring models for two targets. The 

apparent degradation is due to our use of homology filters in this study to prevent 

RosettaAntibody from selecting the now-available crystal structures as templates. 

Additionally, the kink geometry can deviate from native values of τ101 and α101 with little 

change in overall RMSD, but this deficiency would expose itself during downstream 

simulations.

The 2009 RosettaAntibody benchmark set provides a more comprehensive view of 

improvements to de novo CDR H3 structure prediction on homology-modeled frameworks. 

Table SV shows the per-target summary of modeling and includes the lowest-RMSD 

achieved for the target in the 2009 study(15). There is a sampling improvement in 49 targets, 

with average (including the targets with larger RMSDs) improved RMSDs of 0.1 Å for very 

short loops (4–6 residues), 0.6 Å for short loops (7–9 residues), 0.7 Å for medium loops 

(10–11 residues), 1.3 Å for long loops (12–14 residues), and 1.1 Å for very long loops (17–

22 residues). Three of the five targets with degraded performance had RMSDs of 0.2 Å 

higher (1dqq: length 5, 0.2 Å → 0.4 Å; 1z3g: length 6, 1.8 Å → 2.0 Å; 1bql: length 7, 1.6 

Å → 1.8 Å), one increased by 0.4 Å (2h2h: length 12, 1.6 Å → 2.0 Å), and one increased 

by 0.6 Å (1bj1: length 14, 1.6 Å → 2.2 Å). Interestingly, 24 of the targets have a lower-

Weitzner and Gray Page 12

J Immunol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RMSD model in the ten top-scoring models than was even sampled in 2009. The smaller 

change in performance for shorter loops is due to the fact that they were predicted to high 

accuracy in the initial study, and can only improve marginally, while longer loops improve 

more substantially.

Discussion

Antibody structure prediction has made great strides, but accurately modeling CDR H3 

loops remains elusive due to its variable length, sequence and structure across antibodies. 

We found that state-of-the-art de novo loop prediction methods fail to generate near-native 

conformations based on both RMSD and the kink geometry parameters, τ101 and α101. In 

our previous work(2), we hypothesized that the kink creates the observed structural diversity 

of CDR H3 loops. In this paper we developed a constraint based on these parameters and 

tested it on a set of high-quality CDR H3 structures. The effectiveness of this constraint for 

enabling high-resolution H3 predictions suggests that creating models with native-like 

values for α101 and τ101 drives better results for the whole loop. We found this constraint is 

also effective in improving CDR H3 predictions on homology modeled frameworks and 

producing H3 models of sufficient quality to successfully dock to antigen.

Part of this study required constructing a set of high-resolution CDR H3 loops from crystal 

structures. Not all CDR H3 loops meet the strict quality cutoffs that were used in this study. 

It is possible that some of the loops that meet these criteria are simply more stable or rigid 

than some other H3 loops. If that is the case, these loops may be easier modeling targets. 

Regardless, since the atomic coordinates of these loops are well-defined, structural 

comparisons between models and the loops have clear meaning.

Although the atomic coordinates may be well-defined, the static conformation found in 

crystal structures may not tell a complete story, and this limitation may be particularly 

pronounced in loop regions. However, we do not believe that all loop regions are extremely 

flexible; indeed, such a view could lead one to conclude that the entire objective of loop 

structure prediction is poorly defined at best and a misguided exercise in futility at worst. In 

the cases of antibodies that have been crystallized in both the bound and free forms 

(predominantly antibodies with peptide antigens), CDR loop conformations do not change 

substantially (typically < 1.0 Å RMSD; 37% of CDR H3 loops deviate > 1.0 Å) (46) and, 

thus, can be treated as rigid. Additional evidence of CDR loop rigidity comes from studies 

that compare flexibility estimates of naïve and mature antibodies and find that one of the 

effects of somatic hypermutation is a decrease in loop flexibility(52–54). The degree to 

which these trends hold for antibodies with protein antigens, or vary as a function of the 

length of the CDR H3 loop remains to be established.

While there are not enough loops at each length to draw conclusions about prediction 

performance as a function of length, the longest loop where the average RMSD of the 10 

top-scoring models is sub-angstrom without constraints is 13 residues, and the longest with 

constraints is 14. This difference seems small, but the RMSD of the top-scoring model for 

some longer loops reveals the extent to which the kink constraint improves the performance 

of de novo loop modeling. For example, for the 19-residue CDR H3 loop in 2fb4, the RMSD 
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of 14.67 Å without constraints is reduced to 3.63 Å (Table III). While this is a substantial 

improvement, these models are unlikely to successfully dock. Further improvements might 

arise from using more cycles of NGK for longer loops, generating more models or 

incorporating knowledge of additional local structures (e.g. β turns, or additional constraints 

to the terminal residues of the loop(29)) in addition to the kink into the simulation.

A challenge remains in addressing non-kinked CDR H3 loops. In this study, we applied the 

kink constraint to all CDR H3 loops without considering whether the native loop has a kink. 

We made this decision for a few reasons. Most importantly, the vast majority of CDR H3 

loops are kinked, and we remain predominantly interested in developing a method to predict 

those conformations reliably. Second, all attempts to classify the base geometry of the H3 

loop by sequence alone have not held up as more structures have been solved, leaving us 

with no way to determine when we should not apply the constraint. While carrying out this 

work, we developed several alternate hypotheses to account for non-kinked H3 loops, 

including using the constraint stochastically with a probability in accordance with the 

observed populations of kinked loops (that is, each model would have an 85% chance of 

being constrained). Unfortunately, Rosetta was unable to generate low-RMSD 

conformations of the non-kinked H3 loops in our dataset even in the absence of the 

constraint. Because of this, there is no clear way to test alternatives to the approach 

described in this manuscript at this time.

The sampling performed in the low-resolution stage may lose information of some important 

interactions that are mediated by side chains. Some modeling methods have been developed 

that operate in all-atom mode throughout the entire simulation. One such method available 

in Rosetta is step-wise assembly (SWA)(55), which builds the loop one residue at a time. 

While this method has shown promise, it is extremely computationally expensive and is 

therefore not yet well-suited to antibody homology modeling tasks that rebuild the H3 loop 

while simultaneously sampling VL–VH orientation. Nevertheless, an all-atom loop-modeling 

routine may enable Rosetta to capture critical side-chain interactions.

In fact, an anti-dansyl antibody, which has been crystallized at two different pH-values (pH 

5.25, PDB accession code 1dlf; pH 6.75, 2dlf), has a histidine in its CDR H3 loop(56). 

Nakasako et al. found that the structure of the antibody remained the same except for the 

CDR H3 loop, which undergoes a pH-dependent conformational change, presumably 

controlled by the protonation state of the histidine within the loop. Preliminary tests using 

pH-aware loop prediction and side-chain packing failed to capture the effect of the 

protonation state(57), again highlighting the need for side-chain accuracy and increased 

score function detail.

While this study mostly focused on modeling CDR H3 loops on the crystallographic 

framework, the ultimate test of the utility of a new loop modeling method in the context of 

antibody modeling is predicting CDR H3 conformations on a homology framework. We 

tested the new method on a homology modeled framework by comparing the distribution of 

CDR H3 RMSDs from the standard method, which uses a filter based on α101, and the new 

constrained method, which evaluates a potential based on both τ101 and α101. The new 

constrained method produces a substantially larger fraction of low-RMSD models, which 
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should enable the development of new protocols that focus more time on other aspects of 

antibody modeling, e.g. VL–VH orientation optimization(27).

The new method can generate sub-angstrom loop predictions for 20 of the 40 very short, 

short, and medium-length loops in the 2009 benchmark set. While progress is being made, 

long loops still pose a challenge; on a homology framework, the best-sampled model for all 

10 of the long loops in the 2009 benchmark set lies within 1.0–2.0 Å RMSD.

Another goal for antibody structure prediction is to generate models of sufficient quality to 

be used in downstream applications, namely antibody–antigen docking. To assess the quality 

of the predicted H3 conformations, we used EnsembleDock with a set of the 10 top-scoring 

models and the bound conformation of the antigen. The simulation correctly predicts the 

conformation of the complex. This case is idealized in the sense that the CDR H3 loop was 

modeled on the crystal framework and the bound form of the antigen was used, but the 

successful simulation marks a necessary milestone in obtaining reliable blind docked 

complex predictions from sequence. The success of both the homology modeling and 

docking simulations is encouraging and these simulations should serve as the starting point 

for future development of improved antibody—antigen docking methods. In summary, a 

structure-based kink constraint has enabled accurate de novo structure prediction of the most 

diverse region of antibodies. We found that performance degrades on homology modeled 

frameworks, which reinforces the importance of the environment of the loop. Coupled with 

the chain pairings from Teplyakov et al.(35), there is support for the hypothesis we 

introduced previously: the C-terminal kink is the key to CDR H3’s diversity and is stabilized 

by the environment of the loop(2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Determining the parameters for the flat harmonic potential

Because the penalty should begin after 1.0 σ, t can be set to σ. Now we solve for ξ in order 

to produce the desired penalty schedule. First, we solve for ξ at 3.0 σ as follows:
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and then plug in ξ = 2t and evaluate the penalty at 2.0 σ to check the intermediate value

and we find that setting ξ to 2 σ will exactly produce a reasonable penalty schedule with the 

useful feature of being a factor of four larger at 3.0 σ than at 2.0 σ.

Mixing CCD and NGK

In addition to KIC and NGK, Rosetta also has implementations of loop modeling methods 

that use Cyclic Coordinate Descent (CCD(58)) to ensure the continuity of the loop. CCD 

closure calculates the dihedral angles required to minimize the gap between the loop end 

points for a single position in the loop, and iterates over each residue and until the loop is 

closed. In contrast to NGK, CCD-based methods can close loops while maintaining the 

overall conformation of the starting, open loop. Generally, the CCD-based methods use 

fragments from known structures for coarse-grained sampling and small perturbations of the 

conformation of each residue for refinement(59). Because of their object-oriented design, 

any of the loop modeling methods in Rosetta can be mixed-and-matched within a single 

simulation. To couple the more conservative CCD refinement with the aggressive NGK 

sampling, a combined NGK–CCD simulation can be run. The combined simulation uses the 

same command line as the constrained NGK simulation, but with

-loops:refine refine_kic changed to -loops:refine refine_ccd.

./loopmodel.macosclangrelease

      -native input_file.pdb
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      -s input_file.pdb

      -nstruct 500

      -loops:loop_file h3.loops

      -loops:remodel perturb_kic

      -loops:refine refine_ccd

      -loops:outer_cycles 5

      -kic_bump_overlap_factor 0.36

      -legacy_kic false

      -kic_min_after_repack true

      -corrections:score:use_bicubic_interpolation false

      -loops:kic_omega_sampling

      -loops:kic_rama2b

      -allow_omega_move

      -loops:ramp_fa_rep

      -loops:ramp_rama

      -ex1

      -ex2

      -extrachi_cutoff 0

The biophysical and numerical details of these flags are described in the original Rosetta 

kinematic closure papers(40, 43).
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Figure 1. Kink constraint
Functional form of the constraint used to bias de novo CDR H3 loop modeling simulations 

toward generating kinked conformations. (A) A plot of the FLAT_HARMONIC potential. (B) 

A contour plot showing the value of the kink constraint across all values of τ101 and α101. 

Each contour line represents a 2.0 Rosetta Energy Unit (REU) increase in penalty. The 

orange box demarcates ± 3.0 σ of the mean of the τ101 and α101 distributions. Throughout 

the rest of this paper, models falling within this region are classified as “kinked”, models 

with τ101 and α101 in the gray, shaded regions are classified as “unclear”, and all other 

models are classified as “extended”.
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Figure 2. Electron density of CDR H3 loop of an anti-peptidase S1 antibody
The FV of an anti-peptidase S1 antibody (PDB accession code 3nps(60)) is shown with the 

VH domain in cyan and the VL domain in magenta. The electron density of the 19-residue 

CDR H3 loop is indicated with a mesh contour map within 1.6 Å of the coordinates in the 

PDB file. The crystal structure has an R-value of 0.190 and a resolution of 1.50 Å. The 

electron density is clearly resolved across the entire CDR H3 loop, indicating both a high-

quality crystal and a stable loop conformation among several symmetric copies of the 

antibody in the crystal. The crystal structure contains the full Fab bound to the antigen, 

which may further stabilize the loop’s conformation.
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Figure 3. Results of unconstrained de novo NGK
Results of unconstrained de novo NGK H3 loop prediction on an anti-citrullinated collagen 

type II antibody (2w60(48)). 2w60 is derived from a mouse and has an 11-residue H3 loop 

and a κ light chain. (A) Funnel plot showing scaled score (see methods) vs. RMSD of 500 

generated models. Orange points correspond to a kinked base geometry, gray points to an 

unclear base geometry, and black points to an extended base geometry. The discrimination 

score of −0.5710 is shown in the lower right of the plot area. Very few kinked H3 models are 

produced, but the top-scoring models have sub-angstrom RMSDs. The refined, native score 

is −1.4061, meaning that none of the predicted structures have near-native scores. (B) τ101 

vs. α101 of 500 generated models. The red point is at the values of the native structure, and 

the black points correspond to the models. The vast majority of the points have τ101 and 

α101 values that correspond to extended conformations.
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Figure 4. Results of constrained de novo NGK
Results of constrained de novo NGK H3 loop prediction on an anti-citrullinated collagen 

type II antibody (2w60(48)). (A) Funnel plot showing scaled score vs. RMSD of 500 

generated models. Plot colors and annotations are the same as in Figure 3. Many kinked H3 

models are produced, and the top-scoring models have sub-angstrom RMSDs. The dashed 

horizontal line indicates the scaled score of the native structure, and shows that the best-

scoring models have a similar score to the native (the scaled score of the refined, native 

structure is −0.2736). (B) τ101 vs. α101 for 500 generated models. While many of the points 

have τ101 and α101 values that correspond to kinked conformations, there are still many 

models that are not kinked. These data suggest that the constraint has an appropriate penalty 

that can be overcome in cases with favorable interactions.
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Figure 5. Modeling CDR H3 on a homology framework
Modeling CDR H3 on a homology framework for 2w60. A cumulative density estimate of 

the RMSD of the backbone atoms in the CDR H3 loops of homology models built using the 

method described in AMA-II(1) (gray) and with the new kink constraint (orange). Dashed 

vertical lines indicate the fraction of models with RMSD of 1.0 and 2.0 Å or better for each 

method. The red dashed line shows that 50% of the models produced by the standard method 

have an RMSD of 3.74 Å or lower, while 50% of the models from the method that exploits 

the kink constraint have an RMSD of 1.64 Å or lower. Although both methods are successful 

in producing some low-RMSD models, a significantly larger fraction are produced when 

using the kink constraint based on τ101 and α101 as opposed to the filter based solely on 

α101.
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Figure 6. Results of docking an antibody with a modeled H3 loop
Results of docking an antithrombotic antibody to its antigen (2adf(61)) using 

EnsembleDock(50) with CDR H3 loops modeled with constrained NGK. Funnel plots 

showing scaled interface score vs. interface RMSD. Interface score is calculated as the score 

of the unbound partners subtracted from the score of the complex. Interface RMSD is the 

RMSD of the backbone atoms of the residues within 8.0 Å of a residue on the other docking 

partner. The points are colored using the CAPRI quality ratings(51), where gray points 

correspond to incorrect structures, orange points to acceptable (65 models), red points to 

medium (8 models), and blue points to high-quality models (4 models). The high-quality 

models are clearly separated from the other models by interface score as evidenced by the 

discrimination score of −0.9112 (lower right corner).
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Table III

Comparison of lowest-RMSD model produced from the unconstrained and unconstrained NGK simulations 

for the high-quality CDR H3 loop benchmark set.

Target CDR H3
length

Min. RMSD
unconstrained (Å)

Min. RMSD
constrained (Å)

1mlb 9 1.0512 0.8055

2d7t 9 0.9517 0.8841

3g5y 9 0.7744 0.4713

3hc4 9 0.7802 0.7545

1x9q* 9 0.1933 2.0763

2e27* 9 1.3989 2.5348

1jpt 10 0.9972 0.7319

3e8u 10 0.6829 0.263

3m8o* 10 0.8086 1.1371

1mfa 11 1.204 0.3159

1mqk 11 0.8169 0.7269

1nlb 11 0.4001 0.3155

2adf 11 1.4002 0.5459

2fbj 11 0.97 0.8883

2w60 11 0.445 0.3128

3gnm 11 0.7956 0.5754

3hnt 11 1.2357 0.9713

3v0w 11 0.5647 0.4142

1dlf 12 1.0057 0.8847

2xwt 12 0.3709 0.3651

2ypv 12 1.1427 0.5321

3ifl 12 0.7096 0.5588

3mxw 12 1.1074 0.9767

3oz9 12 0.573 0.5176

3umt 12 1.2153 1.0396

4h0h 12 1.1919 0.6141

4h20 12 0.8145 0.8209

3liz* 12 1.3761 2.007

1oaq 13 1.0488 0.8637

2v17 13 0.7926 0.8039

3t65 13 2.7751 0.9007

4hpy 13 0.497 0.5774

1jfq 14 1.8429 0.563

2r8s 14 0.6297 0.6658
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Target CDR H3
length

Min. RMSD
unconstrained (Å)

Min. RMSD
constrained (Å)

2vxv 14 1.1711 1.1523

3eo9 14 3.6195 1.2092

3i9g 14 0.7581 0.6414

3p0y 14 0.4399 0.3675

3giz 15 1.7031 0.862

1fns 16 1.9961 1.2479

1gig 16 2.5965 1.9806

3go1 16 1.495 1.6585

1seq† 16 3.1272 2.8814

3mlr 17 2.4555 2.2999

3lmj 18 1.8205 2.1115

4f57 18 1.7381 1.3136

4nzu 18 3.297 2.0598

2fb4 19 3.0953 1.8331

3nps 19 3.8113 2.6624

*
Extended base geometry

†
Unclear base geometry
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