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Abstract

Prostate cancer rates vary substantially by race, ethnicity, and geography. These disparities can be 

explained by variation in access to screening and treatment, variation in exposure to prostate 

cancer risk factors, and variation in the underlying biology of prostate carcinogenesis (including 

genomic propensity of some groups to develop biologically aggressive disease). It is clear that 

access to screening and treatment are critical influencers of prostate cancer rates, yet even among 

geographically diverse populations with similar access to care (e.g., low and medium income 

countries), African descent men have higher prostate cancer rates and poorer prognosis. To date, 

the proportion of prostate cancer that can be explained by environmental exposures is small, and 

the impact of these factors across different racial, ethnic, or geographical populations is poorly 

understood. In contrast, prostate cancer has one of the highest heritabilities of all major cancers. 

Numerous genetic susceptibility markers have been identified from family-based studies, 

candidate gene association studies, and genome-wide association studies. Some prostate cancer 

loci, including the risk loci found at chromosome 8q24, have consistent effects in all groups 

studied to date. However, replication of many susceptibility loci across race, ethnicity, and 

geography remains limited, and additional studies in certain populations (particularly in men of 

African descent) are needed to better understand the underlying genetic basis of prostate cancer.

Variation in Prostate Cancer Rates by Race, Ethnicity, and Geography

Prostate cancer is the leading non-cutaneous cancer in men in many parts of the world, 

although incidence and mortality rates vary substantially by population (Figure 1). Prostate 

cancer incidence rates tend to be highest in more developed parts of the world (e.g., North 

America, Western and Northern Europe, and Australia), in part reflecting access to medical 

care, including screening and early detection. In contrast, prostate cancer mortality is highest 

in men of African descent. Afro-Caribbean (AC) and Sub-sSaharan African (SSA) men 

suffer from the highest prostate cancer mortality in the world with rates ranging from 

18.7-29.3 deaths per 100,000 populations based on 2012 GLOBOCAN data 1. African 

American (AA) men have a similarly high mortality rate of 43 per 100,000 in the period 
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2008-20112, 3. These rates are substantially higher than other US men, including Whites 

(19.8 per 100,000), Hispanics (17.8 per 100,000) and Asian/Pacific Islanders (9.4 per 

100,000). In contrast, East, Southeast, and South Central Asian men have the lowest rates of 

prostate cancer death (2.9, 31, and 6.7 per 100,000, respectively; Figure 1). Of note, North 

African men have rates near those of Asians and lower than the global average (7 per 

100,000).

Additional epidemiological data support the high rates and poor outcomes of prostate cancer 

among African descent men. A population survey of unselected Ghanaian men demonstrated 

prostate cancer prevalence higher than that reported in AA men 4, suggesting that prostate 

cancer in SSA men is more common than reported from tumor registries. Autopsy studies 

confirm that the highest rates of latent prostate cancer is found in African descent men, with 

the lowest rates in Asian men 5. A survey of biopsy-detected prostate cancer in SSA men 

revealed a high proportion of Gleason 8+ tumors 6. Despite these consistent observations, 

variation in access to medical care and extent of cancer registration also vary by geography 

and confound the ability to make strong inferences about the relationship between race, 

ethnicity, and geography and prostate cancer aggressiveness based on epidemiological 

evidence alone.

Based on both epidemiological and biological data, there is growing evidence that prostate 

cancer risk, aggressiveness, and prognosis vary substantially by race, ethnicity, and 

geography. The evidence for a role of germline genomics in explaining this variation is 

explored in the subsequent sections.

Hereditary Prostate Cancer

Prostate cancer exhibits the highest reported heritability of any major cancer 7-10, yet unlike 

other cancers, the ability to define hereditary prostate cancer syndromes and identify 

hereditary cancer genes has been limited. Family-based linkage studies of hereditary prostate 

cancer focused largely on European descent populations to identify a series of genes 

responsible for hereditary prostate cancer. These include HPC1 (1q24-25) 11-13, PCAP 
(1q42-43) 13-15, HPCX (Xq27-28) 16, CAPB (1q36) 13, 15, HPC20 (20q13) 17, HOXB13
18, 19 and others. Among these, a series of loci were identified specifically or confirmed in 

Non-European descent families by family studies, including 12q24 20, 1q24-25, 2p16, and 

2p21 20, 21, and 1p36 in Japanese 22 and AA21. Additional linkage signals have been 

detected in AA pedigrees at 2p21, 11q22, 17p11, 22q12, and Xq21 23 among others. Many 

of these loci were validated across ethnic and geographic populations, suggesting common 

origins for some hereditary prostate cancer susceptibility.

Despite the success of these discovery efforts, genetic testing for hereditary prostate cancer 

and recommendations for reduction of that risk based on genetic information have not 

evolved into clinical practice as has been the case for many other cancer sites. Recently, 

potentially clinically meaningful associations have been identified, including associations of 

inherited mutations in BRCA2 and aggressive prostate cancer, with implications for 

treatment 24, 25.
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Some loci identified by family studies have also been implicated in GWAS studies, and have 

been validated in multiple ethnic and racial groups. Among these are 12q24, 1q24-25 and 

8q24 26-28. While the loci that would be detected by family studies vs. association (GWAS) 

studies are not expected to be the same, the fact that some loci are found commonly across 

populations and by using multiple methods provides interesting evidence for the role of 

these genes across the spectrum of prostate cancer etiology.

Candidate Gene Studies

Candidate gene association studies in prostate cancer and other diseases were quite common 

before the advent of the genome-wide association study. These studies began with the 

identification of pathways and genes that played a biologically plausible role in the etiology 

of a disease. From this information, associations of individual SNPs or haplotypes were 

studied. Many such studies have been published, but this approach came under scrutiny 

because they often used inappropriate sampling designs and were underpowered to detect 

relevant effects. Many associations could not be replicated, although many were replicated 

and may still represent valid candidate susceptibility genes. Similarly, few candidate 

associations have also been detected in GWAS studies, which tend to use a more stringent 

methodology. Variation (and lack of replication) in results of associations across race, 

ethnicity, and geography were generally not accounted for in making determinations about 

the validity of associations. Highly variable allele and haplotype frequencies, different 

patterns of linkage disequilibrium, and population stratification across groups were generally 

not taken into consideration, and could easily have led to lack of replication across studies 

and populations. Similar issues continue to affect GWAS studies (See below).

Genes involved in DNA damage and repair, carcinogen metabolism, inflammation, steroid 

hormone metabolism, and many others have been reported in candidate gene association 

studies and have involved populations worldwide (reviewed by Naylor 29). Of the many 

candidates that have been considered few have also been reported in linkage or GWAS 

studies. Examples of candidate genes that have been identified using large gene panels or 

GWAS include the androgen receptor (AR; 26), kallekrein genes (e.g., KLK3, that encodes 

prostate specific antigen; 30-32), telomere-related genes (TERT, TET; 26, 33), and loci 

containing carcinogen metabolism (UGT1A8, CYP21A2; 34), microRNAs (34) or matrix 

metalloprotein genes (34). Many smaller studies have been undertaken in diverse populations 

around the world. However, the majority of these reports have not been validated in 

independent samples, and most of these candidate loci have not been reported in GWAS 

studies.

Genome-Wide Association Studies

Numerous prostate cancer susceptibility loci with a p-value of 10−8 have been reported to 

date using genome-wide association study (GWAS) approaches according to the NHGRI-

EBI Catalog of Published Genome-Wide Association Studies (July 8, 2016; https://

www.ebi.ac.uk/gwas/). CaP susceptibility loci are found on all chromosomes except 15, 16, 

21, and 23. A summary of currently reported GWAS loci is found in Table 1.
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As of July 2016, nearly 200 independent GWAS loci have been associated with CaP 

(NHGRI-EBI Catalog of Published Genome-Wide Association Studies, July 8, 2016; https://

www.ebi.ac.uk/gwas/; Table 1). This includes numerous loci with multiple independent 

associations in the same region. In addition, associations have been reported with early onset 

CaP, aggressive CaP, or gene × gene interactions. Prostate cancer susceptibility loci are 

found on all chromosomes (Table 1). The majority of prostate cancer GWAS loci have been 

discovered in European descent populations. Of the 191 independent and replicated 

associations that reach genome-wide significance (i.e., p<10−8), 123 (64%) were reported in 

European and European descent populations, 21 (11%) in Asian or Asian descent 

populations, and 45 (24%) in sample sets using multiple populations (e.g., European, Asian, 

AA, Hispanic, etc.). Only one locus (17q21) has reached genome-wide level significance in 

African descent populations to date 35. This locus has since been validated as a prostate 

cancer risk locus in European descent populations 34. A novel locus at Chromosome 10p14 

was reported in a GWAS undertaken in a Ghanaian population 36, although this association 

did not reach genome-wide significance.

Many loci have been consistently shown to be associated with prostate cancer risk across 

populations, and suggest that these are strongly associated with risk in most settings. Han et 

al. demonstrated limited heterogeneity in the directionality of associated prostate cancer 

variants across populations 37-43. However, many loci detected in European or Asian descent 

populations have not been replicated in African descent populations, or the magnitude of 

effect was less (or directionally opposite) by race 38-40. A number of studies have attempted 

to validate reported associations in AA. Xu et al. 38 studied 868 cases and 878 controls and 

validated the loci at 8q24 (p=0.034 to p=2×10−5) and 3p12 (p=0.029). Waters et al. 39 

studied 860 cases and 575 controls, and validated KLK2/3 (19q13.33) and NUDT10/11 
(Xp11.22). Finally, Hooker et al. 41 validated 8q24 (p=1×10−4), 11q13.2 (p=0.009), HNF1B/
TCF2 (17q12; p=0.008), KLK2/3 (19q13.33; p=0.04), and NUDT11 (Xp11.22; p=0.05) in 

454 cases and 301 controls. The validated loci were not consistent across these studies, 

perhaps due to relatively small sample sizes in each study. Chang et al.42 studied a sample of 

nearly 8,000 men of African descent in the US and UK. This report only involved those loci 

that had been previously reported in non-African descent populations. They reported that the 

majority of the loci identified as prostate cancer susceptibility loci in White or Asian 

populations were not replicated in AA men. Only JAZF1, MSMB, NUDT10/11 and a locus 

on 11q13 were validated as having effects similar to those in non-African descent 

populations. The remainder of the associations in AA men exhibited smaller effects than 

those reported in non-AA populations. Some of the AA associations were even in the 

opposite direction of the non-AA reports, and in many cases the 95% confidence intervals 

for AA men did not overlap the non-AA estimates. Using a GWAS approach, Haiman et al. 

also did not replicate most of the previously reported loci identified in European or Asian 

descent populations 35, 44. Using over 9,500 AA prostate cancer cases and controls, Han et 

al. 37 reported that of established 82 GWAS hits, only 68 (83%) were directionally consistent 

with the original report, and 37% were significant at p<0.05. Similarly, the effect size of 

many loci is also smaller for the same locus in African descent populations compared to the 

original report of these loci in European or Asian descent populations (Figure 2).
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In addition to a lack of replication for many loci, it has also been observed that AA exhibited 

smaller effects than those reported in non-AA populations. Some of the AA associations 

were even in the opposite direction to those of the non-AA reports, and in many cases the 

95% confidence intervals for AA men did not overlap the non-AA estimates. Chang et al. 42 

also reported that the magnitude of the odds ratio effect was smaller in AA men compared 

with the original reports in European or Asian descent populations (Figure 2).

A number of hypotheses have been proposed to explain the difficulty in replication and 

systematic differences in magnitudes of genetic effects by race and ethnicity. First, the 

underlying genomic susceptibility, and thus biology, for prostate cancer may differ 

fundamentally across racial or ethnic groups. This explanation is unlikely to be the case, as it 

implies that the biological basis for prostate cancer differs by race or ethnicity. However, this 

hypothesis cannot be ruled out based on available data.

A more likely explanation is that the risk alleles in European/Asian descent individuals are 

not the same as in African descent individuals. It is likely that the risk alleles and the 

underlying population structure of prostate cancer susceptibility loci differ by ethnicity, race, 

or geography, and that these differences are likely to influence the ability to detect genetic 

associations 45. This hypothesis is supported by well-described differences in the genomic 

architecture of the genome by race and ethnicity. Linkage disequilibrium and haplotype 

diversity differ substantially by race and ethnicity 45, 46, as do allele frequencies at many loci 

across the genome. The capture of genomic variability is incomplete, and it is likely that 

many African-specific alleles have yet to be detected that may provide a better capture of the 

African genome. Thus, it is not hard to imagine that prostate cancer risk alleles and the 

frequencies of these alleles vary substantially across populations to affect the ability to 

detect associations in a GWAS setting. To address this hypothesis, additional studies using 

non-Caucasian populations will be required that employ genotyping panels that adequately 

capture African genomic variability. While generally unreported in the GWAS literature, 

similar arguments can be made regarding genomics of other populations that are 

genomically divergent from Caucasians, including Native Americans, middle eastern groups, 

and aboriginal populations in the Arctic, Oceania, and elsewhere.

Furthermore, it is likely that the underlying etiology of prostate cancer is not only influenced 

by genes but also by exposures and gene by environment interactions. The different 

magnitudes of effect observed across race, ethnicity and geography (e.g., Figure 2) could be 

explained by the influence of contextual factors that influence prostate cancer susceptibility 

through gene-environment interactions that may vary by population. The number of 

confirmed environmental factors or exposures that influence prostate cancer risk and 

outcome are limited 47, but it is still possible that underlying genetic susceptibility may 

influence the effect of exposures that are not detectable on their own. To the degree that the 

frequencies of both the exposures and the susceptibility genotypes vary by race or ethnicity 

(which they are likely to do), it is possible that differences in etiology or severity of prostate 

cancer could be explained by complex interactions of these factors. There have been 

published examples of gene-environment interactions in prostate cancer, including novel and 

biological plausible interactions (e.g., 48, 49). However, most of these have not been validated 

in independent sets or across populations, and the large post-GWAS evaluations of GWAS 
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loci have not shown convincing interaction results 50. No major or replicated interaction 

studies have been undertaken across racially or ethnically diverse groups to be able to test 

the hypothesis that differences in gene-environment interactions could explain differences in 

prostate cancer etiology or severity.

Unlike many prostate cancer susceptibility loci for which variation and lack of replication 

has been observed, genetic variation on chromosome 8q24 has been widely and consistently 

associated with prostate and numerous other cancers across many populations 51. Multiple 

independent regions conferring prostate cancer susceptibility have been identified at this 

locus 27, 28, 52, although no gene has been designated to be responsible for this cancer risk. 

Instead, regulation of the downstream gene MYC or regulation by lncRNAs has been 

reported 53-55. Disease-associated variation at 8q24 has been confirmed in multiple 

populations. Indeed, the 8q24 locus was associated with prostate cancer in early admixture 

mapping studies 56 that identify susceptibility loci by exploiting different disease risks and 

genotype distributions by race. Ethnic specific mutations and haplotypes have been reported 

in African and European descent populations 57, 58. The associations at 8q24 have been 

confirmed not only in African American, but also in two African populations 58. Thus, the 

genetic contribution to prostate cancer risk at this locus can be considered a master regulator 

of cancer at multiple sites as well as across populations.

Tumor Biomarkers

In addition to the strong evidence for inherited genomic factors in CaP etiology, somatic 

alterations in prostate tumors may also play a role in CaP etiology. The biomarkers 

identified to date may improve screening for CaP (e.g., as an alternative or supplement to 

PSA testing) and might inform treatment choices and prognosis. A number of prostate tumor 

biomarkers have been identified that may define heterogeneity of CaP etiology 59, 60, have 

clinical implications for surveillance and treatment (reviewed in 61), or correlate with 

aggressive phenotypes62-69. Among these are the TMPRSS2:ERG gene fusion/

translocation70, Ki-67 expression64, biomarkers involved in androgen metabolism65, 71 and 

genomic classifiers that use a whole-transcriptome microarray assays to analyze gene 

activity in prostate cancer specimens72. In general, the majority of the studies of these 

biomarkers has been in European- or Asian-descent populations, are there are limited data 

that evaluate whether these markers have similar distributions or confer similar effects on 

outcomes in African descent populations. A few papers have begun to report differences in 

biomarkers between AA and Caucasian men, including AMCAR, ERG, SPINK1, NXK3.1, 

GOLM1, AR, Ki67, and SRD5A2 73, 74.

TMPRSS2:ERG translocations have been reported as having a different frequency by race. 

Magi-Galluzzi et al. 75 reported that the frequency of TMPRSS2:ERG translocations was 

highest in Japanese (71%) and Caucasians (62%) and much lower in AA (20%). Yamoah et 

al. 73 also reported significant differences in ERG expression between Caucasian and AA 

CaP cases. While the prognostic value of TMPRSS2:ERG translocations and ERG 

expression is not clear, it does not seem to correlate with clinical outcome in most studies76. 

However, the underlying marker distribution may identify tumor heterogeneity that informs 

CaP etiology and disparities. For example, it is becoming clear that the relationship of 
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potential CaP risk factors differs by TMPRSS2:ERG translocation status 59, 60, 77. While not 

formally evaluating a racially diverse group, Pettersson et al. 78 reported that the relationship 

of obesity and lethal CaP varied by TMPRSS2:ERG translocation status. Since obesity has 

been associated with poorer CaP outcomes in some studies, and AA and Hispanic men tend 

to have greater rates of obesity than other racial/ethnic groups, this biomarker may prove 

valuable in understanding poor outcomes in some men.

Challenges and Needs

The observation of highly variable prostate cancer rates by race, ethnicity and geography has 

interesting biological, clinical, and public health implications. However, there are relatively 

little data that explain these disparities. There have been few consistent associations of 

exposures or environmental factors with prostate cancer etiology across populations. 

Prostate cancer has the highest heritability of any major cancer7, 79, and many genetic 

susceptibility loci have been identified, primarily in men of European and Asian descent. 

However, most GWAS-identified loci have not been replicated in African descent 

populations35, 42, 44, 80. There is a pressing need to identify African-specific alleles and 

thereby elucidate the etiology of prostate cancer in AA and Afro-Caribbean men, who have 

the highest prostate cancer mortality rates in the world.

A number of benefits will derive from an improved elucidation of prostate cancer genetics 

across populations. Improved understanding of population genetics by multi-ethnic studies 

of prostate cancer and other diseases can inform our understanding of genetics in general. 

Population genomic features strongly influence the ability to detect and interpret genetic 

associations, and may provide benefits and challenges to disease gene detection81. Diversity 

in population genomic structure and differences in allele frequency and linkage 

disequilibrium mean that a single approach to all association studies may not be 

successful 45, 81. The lack of replication across race, ethnicity, and geography is not only a 

feature of prostate cancer43, but of many GWAS studies of disease and non-disease traits82, 

and can be explained by a variety of factors including limited capture of ethnic-specific 

alleles, limited consideration of population-specific linkage disequilibrium, and inadequate 

knowledge of population substructure. These explanations are consistent with the 

observation that most GWAS studies to date have been undertaken using SNP panels based 

on the European or Asian genome, with limited representation of the African or other 

minority population genomes83. A more complete representation of the human genome may 

improve our ability to identify susceptibility loci, particularly in Africa where haplotype 

diversity in SSA is large and levels of linkage disequilibrium are relatively low. Localization 

and fine mapping of susceptibility alleles and improved evaluation of population structure in 

African descent populations to avoid biases due to population stratification will be facilitated 

by studies of representative populations from around the world 45.

Second, by understanding evolutionary and population genetics relationships across races, 

ethnicities, and geographies, we may be better able to understand why risk allele frequencies 

(and thus population risk differences) vary across populations. Basic knowledge about 

population genetics in ancestral populations may also improve the understanding of admixed 

populations, including African Americans and Hispanics/Latinos.
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Figure 1. 
Global Prostate Cancer Incidence and Mortality by World Region
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Figure 2. 
Odds Ratio (OR) Effects Estimated in Caucasian, Asian, and AAGWAS Studies.
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Table 1

Reported Prostate Cancer GWAS (July 8, 2016). Includes associations reported at p<10−8 and validated in at 

least one independent sample.

Locus Mapped Gene(s) Most Significantly Associated SNP(s) - Risk Allele

1p36.22 PEX14 rs636291-A

1q21.3 KCNN3 rs1218582-G, rs17599629-G, rs17599629-G

1q32.1 LOC105371702 - SLC41A1, MDM4 rs1775148-C, rs4245739-A

2p11.2 GGCX - VAMP8 rs10187424-A

2p15 EHBP1 rs721048-A, rs2430386-T

2p21 THADA rs1465618-?

2p24.1 C2orf43 rs13385191-G

2p25.1 LOC105373426 - NOL10, GRHL1 rs9287719-C, rs11902236-A, rs9287719-C

2q31.1 ITGA6 rs12621278-?

2q37.3 MLPH rs2292884-G

2q37.3 FARP2 rs3771570-A

2q37.3 LOC105373955 - LOC105373957 rs7584330-C

3p11.2 LINC00506 rs17181170-?, rs9284813-?

3p12.1 LOC285232 - LINC00506 rs17023900-G, rs2660753-T, rs17023900-G

3q13.2 SIDT1 rs7611694-A

3q21.3 EEFSEC rs10934853-A

3q23 ZBTB38 rs6763931-T

3q26.2 PRKCI rs71277158-T

3q26.2 LOC105374210 rs10936632-A

4q13.3 LOC105377273, AFM rs10009409-T, rs10009409-T, rs1894292-G

4q22.3 PDLIM5 rs12500426-?, rs17021918-?

4q24 LOC643675 - TET2 rs7679673-C, rs7679673-?

5p12 FGF10 rs2121875-G

5p15.33 TERT rs7725218-G, rs12653946-T, rs2242652-G

5q35.2 LOC105377732 rs6869841-A

6p21.1 FOXP4 rs1983891-T

6p21.32 NOTCH4 - LOC101929163 rs3096702-A

6p21.32 BTNL2 - HLA-DRA rs115306967-G

6p21.33 CCHCR1 rs130067-G

6p22.1 TRIM31, TRIM31-AS1 rs115457135-A

6p24.2 NEDD9 rs4713266-C, rs4713266-C

6q14.1 MYO6 rs9443189-G

6q21 ARMC2 rs2273669-G

6q22.1 RFX6 rs339331-T

6q25.2 RGS17 rs1933488-A

6q25.3 SLC22A1 - SLC22A2 rs651164-?, rs9364554-T, rs651164-G, rs7758229-T
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Locus Mapped Gene(s) Most Significantly Associated SNP(s) - Risk Allele

7p12.3 TNS3 rs56232506-A, rs56232506-A

7p15.3 LINC01162 rs12155172-A

7q21.3 LMTK2 rs6465657-?, rs6465657-C

8p21.2 SLC25A37 - NKX3-1 rs10503733-T

8p21.2 EBF2 rs11135910-A, rs1512268-?, rs1512268-?

8q24.21 PRNCR1 - LOC105375752, CCAT2, CASC8, CASC21, 
PCAT2

rs12682344-G, rs6983267-G, rs10505477-A, rs16901979-A, 
rs445114-T, rs6983267-G, rs1016343-T, rs13254738-C, rs6983267-
G, rs16901979-A, rs1456315-?, rs6983267-G, rs6983267-G, 
rs6983561-C, rs16901979-A, rs1447295-A, rs10505483-T, 
rs16902094-G, rs6983267-G, rs4242384-C, rs4242384-C, 
rs1447295-A, rs1447295-A, rs4242382-A, rs1447295-A, 
rs4242384-?, rs7837688-?, rs1456315-?, rs188140481-A, rs4242382-
A

9p21.3 CDKN2B-AS1 rs17694493-G

9q31.2 RAD23B - LINC01509 rs817826-C

10q11.22 MSMB - LOC105378288 rs10993994-?, rs76934034-T, rs76934034-T, rs10993994-T, 
rs10993994-T, rs3123078-?, rs10993994-T, s10993994-T

10q24.32 LOC105378460, TRIM8 rs3850699-A

10q26.12 LINC01153 - LOC105378523 rs11199874-?

11p15.5 MIR4686 - ASCL2 rs7126629-C, rs7127900-?

11q13.3 LOC105369366 - LOC105369367 rs7130881-G, rs10896449-G, rs11228565-A, rs7931342-G, 
rs7130881-?, rs7929962-T

11q22.2 MMP7 - MMP20 rs11568818-A

11q23.2 HTR3B rs11214775-G, rs11214775-G

12q13.11 LOC105369750, TUBA1C - LOC101927267, KRT78 - 
RPL7P41

rs80130819-A, rs80130819-A, rs10875943-C, rs902774-A

12q24.21 LOC105369996 - TBX5 rs10774740-G, rs1270884-A

13q22.1 RNU6-66P - LINC00393 rs9600079-T

14q22.1 FERMT2, LOC105370500 rs8008270-G

14q23.1 SIX1 - SIX4 rs7153648-C

14q24.1 RAD51B, LOC100996664, LOC105370544 rs7141529-G

14q24.2 LOC101928075 rs8014671-G

15q21.1 LOC105370802 - LOC105370803 rs4775302-?

16q22.2 PHLPP2 rs12051443-A

17p13.3 VPS53 - FAM57A rs684232-G

17q12 HNF1B rs4430796-A, rs4430796-A, rs7501939-C, rs7501939-?, 
rs7501939-?, rs8064454-C

17q21.32 FLJ40194 - MIR6129 rs11650494-A

17q21.33 ZNF652 rs7210100-?

17q24.3 CASC17 rs1859962-G, rs1859962-G, rs4793529-T, rs1859962-?, rs17765344-
A

18q23 SALL3 - ATP9B rs7241993-G

19q13.2 PCAT19, DPF1 - PPP1R14A rs11672691-G, rs8102476-C, rs11672691 -G

19q13.33 KLK3 rs2735839-G, rs17632542-T

19q13.42 MIR4752 - LILRA5 rs103294-C
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Locus Mapped Gene(s) Most Significantly Associated SNP(s) - Risk Allele

20q13.13 ADNP rs12480328-T

20q13.33 LOC105372710, ZGPAT rs2427345-G, rs6062509-A

21q22.3 TMPRSS2 - LOC105372809 rs1041449-G

22q11.21 TBX1 rs2238776-G

22q13.2 RPS25P10 - BIK rs5759167-G, rs5759167-?

Xp11.22 NUDT11 - LINC01496, XAGE3, CXorf67 rs5945619-C, rs2807031-C, rs1327301-?, rs2807031-C, rs5945572-A

Xp22.2 SHROOM2 rs2405942-A

Xq12 BMI1P1 - OPHN1 rs5919432-A

Xq13.1 NLGN3 - GJB1, TEX11 - SLC7A3 rs4844289-G, rs4844289-G, rs6625711-A
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