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IMMUNOLOGY, AUTOIMMUNITY, AND GRAVES’ OPHTHALMOPATHY

Thyrotropin and CD40L Stimulate Interleukin-12
Expression in Fibrocytes:
Implications for Pathogenesis
of Thyroid-Associated Ophthalmopathy
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Background: Increased numbers of bone marrow—derived progenitor cells, known as fibrocytes, populate the
peripheral circulation, orbit, and thyroid of patients with Graves’ disease (GD). These cells have been implicated in
the development of thyroid-associated ophthalmopathy. They can differentiate into myofibroblasts or adipocytes,
produce inflammatory cytokines, and remodel tissue. This study sought to determine whether thyrotropin (TSH) and
CDA40 ligand (CD40L), implicated in the pathogenesis of GD, induce interleukin-12 (IL-12) in human fibrocytes.
Materials and Methods: 11.-12 protein concentrations and mRNA levels were measured by Luminex and real-time
polymerase chain reaction, respectively. Flow cytometry assessed intracellular IL-12 concentrations. Vector containing
IL-12p40 promoter was transfected into cultured fibrocytes, and promoter activity was monitored using luciferase assay.
Results: TSH and CD40L stimulated intracellular IL-12 protein accumulation in peripheral blood fibrocytes. Inhibiting
Akt and nuclear factor-«B (NF-xB) activity diminished IL-12 expression in fibrocytes, while TSH did not induce
promoter activity. TSH-mediated IL-12 production required de novo synthesized proteins and augmented IL-12 mRNA
stability. IL-12 production mediated by CD40L required tumor necrosis factor receptor—associated factor 6.
Conclusion: TSH and CD40L induce IL-12 expression in fibrocytes, and Akt and NF-xB mediate this activity. Given
the importance of IL-12 in immune function, its production by fibrocytes may promote an inflammatory immune
response and tissue remodeling in thyroid-associated ophthalmopathy.
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Introduction

GRAVES’ DISEASE (GD) is a systemic autoimmune disease
involving the thyroid gland, skin, and orbit (1). Thyro-
tropin (TSH) binds the TSH receptor (TSHR) expressed on
thyroid epithelial cells, stimulating the production of thyroid
hormone (2). Activating autoantibodies targeting the TSHR
and infiltrating lymphocytes cause thyroid gland dysfunction
by driving overproduction of thyroid hormone and potentiat-
ing inflammation. Despite progress in understanding the en-
docrine manifestations of GD, the pathogenesis of thyroid-
associated ophthalmopathy (TAO) and the role of the TSHR
remain largely unknown (3). Orbital tissues from patients with
TAO express several putative autoantigens, including the
TSHR (4), which may mediate immune activation.

Fibrocytes, bone marrow—derived progenitor cells, migrate to
inflamed tissue and have a characteristic phenotype expressing
markers of myeloid cells (CD45), hematopoietic cells (CD34),
and fibroblasts (type 1 collagen) (5-7). Fibrocytes display re-
markable functional plasticity, antigen presentation, and cyto-
kine and chemokine secretion, and can differentiate into thyroid
epithelium, myofibroblasts, or fat cells (2,6,7). Frequencies of
circulating TSHR™ and CD40" fibrocytes are greater in patients
with GD than they are in healthy controls (8). It is hypothesized
that these fibrocytes selectively infiltrate TAO tissue, since fi-
broblasts with the analogous phenotype are identified in orbital
tissues in TAO but not in healthy tissue (8). Recent studies have
characterized the phenotype of early progenitors of fibrocytes
in the peripheral blood, which may facilitate insight into their
contribution to TAO (9,10).
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TSHR and CD40 activation of fibroblasts and fibrocytes
have been implicated in the pathogenesis of TAO. The TSHR
is expressed at a markedly higher level on fibrocytes than on
fibroblasts (8). Furthermore, stimulating fibrocytes with TSH
or an activating autoantibody to the TSHR, such as M22,
results in the production of several proinflammatory cyto-
kines (11).

CD40, a transmembrane receptor of the tumor necrosis
factor (TNF) receptor superfamily, is expressed on various
cell types (12-16). Aberrant signaling through the CD40
pathways has been implicated in the pathogenesis of several
autoimmune diseases, including GD (17-19). Fibrocytes
from patients with TAO have higher levels of CD40 than do
those from healthy donors (20).

Interleukin-12 (IL-12) is a heterodimeric protein com-
posed of 35 and 40kDa subunits forming IL-12 p70 (p35
and p40) (21). IL-12 expression, which is regulated by
CD40-CD40L binding during interactions between T lym-
phocytes and antigen-presenting cells (22,23), has been
directly and indirectly implicated in the pathogenesis of GD
(24-27). Thyroid tissue from patients with GD express
abundant IL-12p40 mRNA, and their serum IL-12 concen-
trations are significantly higher than those are in healthy
controls (28,29). The relative overabundance of IL-12 ap-
pears to be related to GD severity. However, the site of the
increased IL-12 production is unknown (29,30). This study
sought to determine whether fibrocytes activated by TSH
and CD40L express IL.-12 and to describe the mechanisms
of activation.

Methods
Patient samples

Patients with GD (n="7) were recruited from the Kellogg
Eye Center at the University of Michigan. Informed consent
was obtained in compliance with policies of the Institutional
Review Board of the University of Michigan Health System.
Research methods followed the tenets of the Declaration
of Helsinki. Leukocyte reduction filters provided by the
American Red Cross were the source of fibrocytes of healthy
controls.

Fibrocyte preparation and treatments

Fibrocytes were assayed directly from peripheral blood
mononuclear cells (PBMCs) or after in vitro differentiation
(8,31). PBMCs were isolated using Ficoll-Paque Plus (GE
Healthcare Bio-Sciences, Pittsburgh, PA; catalog no. 17-
1440-03). They were then incubated in Gibco™ Dulbecco’s
modified Eagle’s medium with 10% fetal bovine serum (FBS)
and Gibco™ 1% penicillin-streptomycin mixture (Pen Strep)
until differentiation. Culture purity was >90% fibrocytes, as
determined by flow cytometry.

Peripheral blood fibrocytes were identified within 24 h
of acquisition among PBMCs according to their expression
of CD45, CD34, and type I collagen (Coll) (11,20). CD45-
PerCP, CD34-APC, isotype control-FITC, isotype con-
trolPerCP, and isotype controlAPC were used to assay
phenotypes (catalog nos. 347464, 560940, 555748, 340762,
and 555751, respectively; BD Biosciences, San Jose, CA),
and collagen type I FITC (catalog no. FCMAB412F; EMD
Millipore, Temecula, CA).
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Fibrocyte treatments

Cultured and peripheral blood fibrocytes were treated
with bovine TSH (5 mIU/mL) from Calbiochem—EMD
Biosciences (La Jolla, CA), CD40L (100 ng/mL soluble,
recombinant human, MegaCD40L) from Enzo Life Sci-
ences (Farmingdale, NY), and TSHR stimulating auto-
antibody (M22, 10 ng/mL) from Kronus, Inc. (Star, ID). In
some experiments, cells were pretreated with 500 nM of
Akt inhibitor IV (AKTi, Calbiochem—EMD Biosciences) or
5 pg/mL of carbobenzoxy-Leu-Leuleucinal (MG132) from
Cayman Chemical (Ann Arbor, MI). Inhibitors were added
1 h before TSH or CD40L stimulation.

A TNF receptor—associated factor 2 (TRAF2) inhibitor
peptide (DRQIKIWFQNRRMKWKKNTAAPVQETLHGC
QPVTQ) (32) was synthesized by New England Peptide
(Gardner, MA). A TRAF6 inhibitor and a control pep-
tide were purchased from Imgenex (San Diego, CA). For
studies assessing response to these peptides, cells were
treated with peptides (50 uM) and added 24 h and 1 h be-
fore stimulation.

5,6-dichlorobenzimidazole (DRB) from Cayman Chemi-
cal or cycloheximide (Sigma, St. Louis, MO) was added at a
final concentration of 50 uM or 10 pug/mL, respectively, to
cultured fibrocytes.

IL-12 protein production

Extracellular IL-12 concentration was measured using
Luminex analysis (Invitrogen IL-12 Human Singleplex
Bead Kit; Life Technologies, Grand Island, NY; catalog no.
LHCO121). Intracellular IL-12 was tested with two anti-
bodies: one specific to p40 monomers and p70 heterodimers
(IL-12p40/p70-PE; BD Biosciences; catalog no. 559329),
and the other specific for p70 heterodimers (IL-12p70-PE;
BD Biosciences; catalog no. 559325. PBMCs were stimu-
lated with nothing (control), TSH, or CD40L, and treated
with GolgiStop (BD Biosciences; catalog no. 554724) after
6 h of stimulation. After 18 h in culture, cells were collected
and treated first with the surface markers of fibrocytes. For
the intracellular IL-12 detection, fibrocytes were permeabi-
lized and fixed in Cytofix/Cytoperm solution (BD Biosciences;
catalog no. 554722) At least 10° events were collected. Mean
fluorescent intensity (MFI) was calculated as a ratio of geo-
metric mean fluorescence of the sample to the geometric mean
fluorescence of the isotype.

IL-12 mRNA production

IL-12p40 subunit mRNA was quantified by real-time
polymerase chain reaction (PCR). Total RNA was isolated by
using Aurum Total RNA Mini Kit (Bio-Rad Laboratories,
Hercules, CA) and reverse transcribed with QuantiTect Re-
verse Transcription Kit (Qiagen, Germantown, MD). Quan-
titative PCR was performed by using a SYBR Green kit from
Bio-Rad, with 5’-ACA AAG GAG GCG AGG TTC TAA-3’
and 5’-CCC TTG GGG GTC AGA AGA G-3’ as the forward
and reverse primers, respectively, for IL-12. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as the
housekeeping gene, with forward, 5’-TTG CCA TCA ATG
ACC CCT T-3’, and reverse, 5-CGC CCC ACT TGA TTT
TGG A-3’, primers.
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Study of II-12 promoter activity

A promoter region fragment (1544 bp spanning from —138 to
+161) of IL-12p40 cloned into pGL3 basic vector was pur-
chased from GeneCopoeia (Rockville, MD). The promoterless
pGL3 vector was used as a control. Vectors were transfected
into cultured fibrocytes using Human CD34+ Nucleofection Kit
from Lonza (Walkersville, MD) according to the procedure
described by Raychaudhuri et al. (33) The luciferase assay re-
agents were from Promega (Madison, WI; catalog no. E1980).

Statistical analysis

Each experiment was performed in triplicate. Unless oth-
erwise stated, data are reported as means and standard devi-
ations, and were analyzed with analysis of variance. All
experiments were performed at least three times.

Results
TSH and CD40L increase IL-12 production

IL-12 production in peripheral blood fibrocytes was stud-
ied by using two antibodies: one specific for IL-12p40/p70,
and the other specific for IL-12 p70. TSH induced significant
intracellular accumulation of IL-12p40/p70 after 18 h (1.54-
fold increase in MFI; Fig. 1A). CD40L provoked a 1.25-fold
increase in IL-12p40/p70 production (Fig. 1A). Peripheral
blood fibrocytes also expressed significantly increased IL-
12p70 in response to TSH and CD40L (2.43-fold and 2.33-
fold increases, respectively; Fig. 1A).

Cultured fibrocytes produced negligible amounts of IL-
12p40/p70 (10 pg/mL) without stimulation, but concentrations
were increased by TSH and CD40L after 24h (1271+248
pg/mL, p<0.001, and 2106227 pg/mL, p<0.0001, respec-
tively; Fig. 1B).

IL-12p40 mRNA was induced by CD40L (1197-fold in-
crease; p <0.0001 vs. control) and TSH (1051-fold increase;
p<0.0001 vs. control; Fig. 2A). Thus, TSH and CD40 appear
to act at the pre-translational level. IL-12p40 mRNA was
similarly stimulated with TSH, M22, and CD40L in fi-
brocytes from healthy controls or from patients with GD, as
previously observed in the case of other cytokines (Fig. 2B).

TSH and CD40L induce IL-12 production
through Akt and NF-xB

This study sought to determine if Akt and NF-xB are
involved in TSH- and CD40-mediated IL-12 signaling in fi-
brocytes. AKTi and MG132 were added to TSH- and CD40L-
stimulated fibrocytes to inhibit these respective pathways.

Fibrocytes, which are undifferentiated, were identified in
whole blood using multiparameter flow cytometry. The ad-
dition of AKTi and MG132 to peripheral blood fibrocytes
markedly reduced IL-12p40/p70 and IL-12p70 after CD40L
and TSH stimulation, as shown in Figure 3A and Table 1.

Fibrocytes were also isolated, and these cells were differen-
tiated in culture, as described in the Methods. Analogously,
AKTi reduced CD40L and TSH mediated expression of IL-
12p40/p70 (Fig. 3B; from 2100£220 pg/mL to 453 £ 89 pg/mL
for CD40+AKTi, p<0.0001; and from 1340+411g/mL to
4791192 pg/mL for TSH + AKTi, p<0.001). MG132 also re-
duced IL-12 production by CD40L (p<0.0001) and TSH
(p<0.0001) to the concentration of unstimulated cells (Fig. 3B).
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FIG. 1. Thyrotropin (TSH) and CD40L induced
interleukin-12 (IL-12) production in circulating fibrocytes
(A) and in cultured fibrocytes (B). (A) Freshly isolated pe-
ripheral blood mononuclear cells (PBMCs) were stimulated
for 18 h. Flow cytometry showed that TSH and CD40L in-
duced IL-12p40/p70 (the combined p40 monomer and p70
heterodimer) in circulating fibrocytes, resulting in MFI values
that were 1.54- and 1.25-fold higher, respectively, than in
untreated cells. The MFIs of IL-12 p70 (heterodimer) were
2.43- and 2.33-fold higher after TSH or CD40L was added
(right panels). (B) The fibrocytes in cultures were treated with
TSH and CD40L for 48 h. The time course of extracellular IL-
12p40/p70 concentrations shows that TSH (A ) and CD40L
() stimulated IL-12 production, whereas unstimulated cells
(O) produced negligible amounts. Peak production was
reached at 24 h (p<0.0001 for TSH and CD40L).

Next, this study sought to determine the effect of Akt and
NF-xB in CD40- and TSH-mediated IL-12 mRNA induction
(Fig. 4). AKTi significantly reduced CD40L- and TSH-
stimulated IL-12p40 mRNA by 65% (p<0.05) and 70%
(p<0.01), respectively (Fig. 4A). MG132 also inhibited this
induction by CD40L or TSH to basal levels (p <0.001; Fig. 4B).
These data show that fibrocyte production of IL-12 provoked by
CD40L and TSH is dependent upon Akt and NF-xB.

CD40-mediated IL-12 production
is dependent on TRAF6

This study determined whether canonical signaling
pathways, including TRAF6 or TRAF2, are involved in
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FIG. 2. TSH and CD40L induced IL-12 at the pre-translational level. Steady-state IL-12p40 mRNA expression stimulated
with TSH (A ) or CD40L (M) was followed by real-time polymerase chain reaction (PCR) in cultured fibrocytes for 24 h
(A). IL-12p40 mRNA production increased responding to TSH, M22, and CD40L stimulation in fibrocytes from healthy
controls (B, left panel) and from patients with GD (B, right panel).

CD40-mediated IL-12 induction (Fig. 5). Cultured fibrocytes
were pre-incubated with control peptide, TRAF6, or TRAF2
inhibitor peptide for 24 h before CD40L stimulation. In the
presence of control peptide, adding CD40L increased the IL-
12p40 mRNA level by 22-fold (p <0.0001). Adding TRAF6
inhibitory peptide attenuated the effect of CD40L stimulation
(50% inhibition; p <0.001). The inhibitory peptide to TRAF2
had no effect.

TSH stabilizes IL-12p40 mRNA but requires
de novo protein synthesis

To determine the mechanism of mRNA stimulation by
TSH, cultured fibrocytes were transfected with IL-12p40
promoter containing pGL3 vector. Transfected cells were
stimulated with either nothing or TSH for 2 h. Promoter ac-
tivity was marked, even without adding TSH (Fig. 6A). TSH
did not enhance promoter activity. The experiment was re-
peated, and cells were incubated with TSH for 4 and 8h.
Promoter activity did not differ between untreated and TSH-
treated cells (data not shown).

Since TSH can stabilize IL-6 mRNA in fibrocytes (33),
this study determined whether TSH also affects IL-12p40
mRNA stability using the RNA polymerase Il inhibitor, 5,6-

dichlorobenzimidazole (DRB). Steady-state IL-12 mRNA
levels were assayed in the presence of DRB for 12 h, with or
without TSH (Fig. 6B). Without TSH, IL-12p40 mRNA
level fell 50% after 12 h, whereas in its presence, mRNA
levels decayed by 25%. CD40OL did not affect IL-12p40
mRNA stability (Fig. 6B).

Next, this study evaluated whether de novo protein synthesis
was necessary for IL-12 mRNA induction by TSH and CD40L.
TSH-mediated IL-12 expression decreased after adding cyclo-
heximide (from 640-fold to 236-fold; p<0.01; Fig. 6C). In
contrast, cycloheximide had no effect on CD40L-mediated IL-
12 expression (Fig. 6C). Thus, maximal induction of IL-12p40
mRNA by TSH requires de novo protein synthesis.

Discussion

GD is a systemic autoimmune disorder targeting the thy-
roid gland, skin, and orbital connective tissues. Although it is
widely accepted that thyroid-stimulating immunoglobulins
(TSIs) are responsible for the hyperthyroidism associated
with GD, several other potential autoantigens and co-
stimulatory molecules, such as the insulin-like growth factor
1 receptor (IGF-1R), CD40, and thyroglobulin, may also be
involved in the pathogenesis of TAO (2,11,34,35).
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FIG. 3.

IL-12 protein production was stimulated by TSH or CD40L induced through the Akt-NF-xB pathway in cir-

culating (A) and cultured (B) fibrocytes. Intracellular IL-12p40/p70 (the combined monomer and heterodimer) and IL-
12p70 (the heterodimer) were measured by flow cytometry in circulating fibrocytes 18 h after TSH or CD40L was added.
Extracellular IL-12p40/p70 concentration was measured by Luminex technology in cultured fibrocytes after 24h of
stimulation. Akt inhibitor (AKTi) and NF-xB inhibitor (MG132) were added to cells 1 h before stimulation. The stimulatory
effect of TSH or CD40L was markedly diminished by adding AKTi or MG132.

TaBLE 1. AKT AND NF-xB ARE INVOLVED IN TSHR
AND CD40 SIGNALING FOR IL-12 PRODUCTION
IN CIRCULATING FIBROCYTES

IL-12 p40/p70 (MFI) IL-12 p70 (MFI)

Control 3.56 1.59
TSH 5.09 3.87
TSH+ AKTi 2.81 2.37
TSH+MG132 1.99 1.74
CD40L 4.11 3.71
CD40L + AKTi 2.69 2.16
CD40L +MG132 2.06 1.69

Intracellular IL-12 p40/p70 (combined monomer and heterodimer)
and IL-12 p70 (heterodimer) were measured by flow cytometry 18 h
after TSH or CD40L was added. Akt inhibitor (AKTi) and NF-xB
inhibitor (MG132) were added to cells 1 h before stimulation. TSH or
CDA40L stimulation was markedly reduced by adding AKTi or MG132.

TSHR, thyrotropin receptor; IL-12, interleukin-12; MFI, mean
fluorescent intensity; TSH, thyrotropin.

The immune mechanisms, which lead to orbital involve-
ment, are unknown. Skewed cytokine production promoting
immune cell activation has been proposed as a factor in GD
and TAO. The understanding of cytokines networks (Thl,
Th2, Th17, etc.) and their interplay and temporal relation to
disease have become more detailed in the last several years.
Several authors have described how these cytokine net-
works can function antagonistically. Thus, the balance be-
tween these subpopulations may determine the outcome of
autoimmune diseases (36). Thl cytokines, such as IFN-y and
TNF-o, are preferentially induced in primary cultures of
thymocytes from patients with GD (37,38). The Th1 cytokine
response predominated by IFN-y has been found to domi-
nate in the active state of GD, whereas the Th2 cytokine
response (IL-4) is thought to dominate in the non-active state
of GD (38,39). Serum levels of IL17 indicative of a Th17
response were elevated in GD patients but not in TAO pa-
tients compared with control donors (38). These studies are
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FIG. 4. TSH and CD40L induced IL-12p40 mRNA ex-
pression through Akt (A) and NF-«xB (B) signaling in cul-
tured fibrocytes. Akt inhibitor (AKTi) and NF-xB inhibitor
(MG132) were added 1 h before TSH or CD40L stimulation.
RNA was isolated after 6 h of induction. AKTi and MG132
blocked IL-12p40 mRNA expression induced by TSH
(p<0.01 and p<0.001, respectively) or CD40L (p<0.01
and p<0.0001, respectively).

likely incomplete in regards to the relation of cytokine net-
work, but they do highlight the fact that shifts in cytokine
production can alter disease state.

IL-12 induces the Thl cytokine IFN-y in T and NK cells,
enhancing the generation and cytotoxic activity of T lym-
phocytes, promoting Th1 cell differentiation with specific T-
cell-mediated immune response (40,41). Furthermore, Thl
responses are involved in host defense against infectious
agents as a consequence of IL-12 actions on T-cell priming
(42). IL-12 is involved in initiating autoimmunity in several
murine models (43), and it is believed to provide critical co-
stimulation of the Th1 paradigm (44,45). IL-12™" mice have
a markedly deficient Thl response and are thus resistant to
certain forms of autoimmunity (46). This response suggests
that IL-12 is critical in the pathogenesis of Thl-mediated
autoimmune diseases.

IL-12 also has been implicated in human autoimmune
disease (47-50), and a significant increase in serum IL-12

1773
30+ P<0.01
P<0.0001 T 1
= 1
g c
S
X w 204
£ 3
Qg
2 g5
Sz 104
=&
e
O
)
&

FIG. 5. CD40 signaling of IL-12 production proceeded
through TRAF6 in fibrocytes. Two doses of 50 uM control
peptide or TRAF6 or TRAF?2 inhibitor peptide were added to
cells 24 h and 1 h before CD40L stimulation. Six hours after
CDA40L stimulation, RNA was isolated, and IL-12p40 mRNA
levels were measured by real-time PCR. TRAF6 inhibitor
peptide significantly inhibited the action of CD40L, whereas
the TRAF2 peptide had no effect.

level was observed in patients with GD (51,52). CD40-
CDA40L signaling of dendritic cells is considered a major
source of IL-12 (21). Now it is demonstrated that TSHR
signaling promotes IL-12 production in fibrocytes. It can be
speculated that circulating fibrocytes may markedly con-
tribute to serum IL-12 levels due to increased fibrocyte fre-
quency in GD (8).

Fibrocytes express high levels of autoantigens (TSHR and
IGF-1R), together with human leucocyte antigen D-related
(HLA-DR), suggesting that these cells may present auto-
antigens and possibly initiate an antigen-specific immune
response (53). The frequency of circulating TSHR+ fi-
brocytes is increased in patients with GD, and TSH induces
the production of IL-6, IL-8, monocyte chemoattractant
protein 1 (MCP-1), and TNF-o (11). Orbital fibroblasts from
patients with GD express high levels of CD40, and in re-
sponse to CD40L, these cells produce hyaluronan and cyto-
kines, such as IL-6, IL-8, and prostaglandin E2 (PGE2) (54).
Moreover, an increased frequency of CD40+ fibrocytes has
been observed in the blood and orbital tissues of patients with
GD compared with controls, and the CD40—-CD40L signal-
ing pathway in these cells can induce production of IL-6, IL-
8, MCP-1, and TNF-o (20). This study reports that TSH
and CD40L can induce the production of IL-12 in cultured
and circulating fibrocytes and that their effects may occur at a
pre-translational level. TSHR- and CD40-mediated fibrocyte
responses may therefore be important in the development
of GD.

The function of Akt and NF-xB in the CD40-mediated
signaling pathway of IL-6 production in cultured fibrocytes
has been previously described (20). The present study found
that Akt and NF-xB are involved in TSH- and CD40L-
mediated signaling of IL-12 production in cultured and cir-
culating fibrocytes. It was determined that TRAF6, but not
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FIG. 6. TSH did not induce IL-12 promoter activity (A). The vector containing the promoter was transfected into
fibrocytes and cells were incubated with TSH for 2h. TSH stabilized IL-12p40 mRNA (B, left panel), whereas CD40L did
not affect mRNA stability (B, right panel). IL-12 mRNA production was stimulated for 12h with TSH. Cells were then
washed and treated with 50 uM of DRB alone, DRB and TSH, or DRB and CD40L (time zero). Degradation of existing
mRNA was slower in the presence of TSH and DRB (@) than in the presence of DRB alone (O), whereas mRNA
degradation proceeded at similar rate in the absence ([]) and presence () of CD40L. TSH stimulation of IL-12p40 mRNA
depended on de novo protein production (C, left panel). Adding cycloheximide (10 ug/mL) 1h before TSH stimulation
significantly lowered the TSH-induced IL-12p40 mRNA expression. Adding cycloheximide did not affect CD40L stimu-
lation of IL-12p40 mRNA (C, right panel), indicating that CD40L does not depend on de novo protein synthesis.

TRAF2, is necessary for IL-12 production as in CD40L-
induced dendritic cells (55). Stimulating IL-6 and IL-8 re-
quired neither TRAF6 nor TRAF2 by CD40L in cultured
fibrocytes (Mester and Douglas, unpublished data).

The IL-12 p40 promoter contains several regulatory ele-
ments, including one for NF-xkB (56-58). Although TSH
induces NF-xB activity (33) and NF-xB inhibitor reduces IL-
12 protein IL-12 p40 mRNA production, TSH did not stim-
ulate IL-12 p40 promoter activity. TSH may act directly or
indirectly through a de novo synthesized protein on the IL-12
p40 enhancer region, thus priming IL-12 promoter induction.

The function of an enhancer region in stimulation by IFN-y
has been described (59). The mRNA stabilizing effect of TSH
may also increase IL-12 p40 mRNA production, a finding
also observed with other transcripts (33,60).

The IL-12 pathway remains an attractive potential target
for interventions inhibiting downstream immune responses.
Acetyl salicylic acid, HIV-1 Vpr, and parthenolide can de-
crease IL-12 production and Th1 development by inhibiting
NF-xB activation (61-63). Treating autoimmune diseases
with IL-12 antagonists may diminish the Thl response,
thereby decreasing the inflammatory response (64).
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Treatments for multiple sclerosis and rheumatoid arthritis
by blocking IL-12 production have recently received wide-
spread attention (65). In one study, the binding of recombi-
nant IL-12p40 homodimer to the IL-12 receptor served as an
antagonist for IL-12-mediated signaling (66), a finding that
may be useful in treating some autoimmune and systemic
inflammatory diseases. Thus, blocking IL-12 or interrupting
the signaling pathways of TSHR- and CD40-mediated IL-12
production could provide new therapies for patients with GD.

In the treatment of TAO, there are several potential tar-
gets for novel treatments, including the putative antigen and
signaling cascades (IGFR and TSHR), cellular constituents
such as B cells (rituximab treatment), and cytokine networks.
The heterogeneity seen in GD may be due to alterations in
cytokine predominance or the contribution of all of these
components to varying degrees. Unlike in other autoim-
mune diseases, a singular target may not be appropriate for all
patients. A protocol for TAO is envisaged where treatment is
personalized based upon predictive testing. Among potential
cytokines, IL-12 is often responsible for downstream acti-
vation of other cytokines. Therefore, it may be a useful target.
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