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Abstract

The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in 

a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of 

large-scale population genomic data and its mathematical dependence on the underlying 

population demography is well understood, thus enabling the development of efficient inference 

algorithms. However, it has been recently shown that very different population demographies can 

actually generate the same SFS for arbitrarily large sample sizes. Although in principle this 

nonidentifiability issue poses a thorny challenge to statistical inference, the population size 

functions involved in the counterexamples are arguably not so biologically realistic. Here, we 

revisit this problem and examine the identifiability of demographic models under the restriction 

that the population sizes are piecewise-defined where each piece belongs to some family of 

biologically-motivated functions. Under this assumption, we prove that the expected SFS of a 

sample uniquely determines the underlying demographic model, provided that the sample is 

sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the 

bound depends on the number of pieces in the demographic model and also on the type of 

population size function in each piece. In the cases of piecewise-constant, piecewise-exponential 

and piecewise-generalized-exponential models, which are often assumed in population genomic 

inferences, we provide explicit formulas for the bounds as simple functions of the number of 

pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is 

ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of 

Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous 

functions.
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1. Introduction

Given a sample of homologous genomic sequences from a large population, an important 

inference problem with a wide variety of important applications is to determine the 

underlying demography of the population. The population demography can be used to 

calibrate null models of neutral genome evolution in order to find regions under selection [2, 

25, 45]; to stratify samples in genome-wide association studies [3, 28, 33, 37]; to date 

historical population splits, migrations, admixture and introgression events [10, 18, 24, 26, 

40, 43]; and so on. Recently, several large-sample genome- and exome-sequencing datasets 

have become available [1, 4, 6, 31, 44], shedding new light on patterns of genetic variation 

that were not previously observable in smaller datasets. Such large-sample studies offer an 

exciting opportunity to infer demography in unprecedented detail.

One widely-used measure of genetic variation in a set of homologous genome sequences is 

the sample frequency spectrum (SFS). For a sample of size n, the SFS counts the proportion 

of dimorphic (i.e., with exactly two distinct observed alleles) sites as a function of the 

frequency ( , where 1 ≤ b ≤ n − 1) of the mutant allele in the sample. The SFS is useful for 

several reasons. First, the SFS is a succinct summary of a large sample of genomic 

sequences, where the information in n sequences of arbitrary length can be summarized by 

just n−1 numbers. This makes the SFS both mathematically and algorithmically tractable. In 

particular, since the SFS ignores linkage information between sites, one can avoid 

challenging mathematical and computational issues associated with rigorously modeling 

genetic recombination. Furthermore, the statistical properties of the SFS and their 

dependence on the population demographic history are well understood under the coalescent 

and the diffusion models of neutral evolution [7, 11, 12, 19, 35, 46]. This dependence of the 

SFS on demography, along with the assumption of free recombination between sites, has 

been exploited in several efficient methods for inferring historical population demography 

[5, 13, 27, 29]. Second, the SFS can effectively capture the impact of recent demography on 

genetic variation. Recent large-sample studies [4, 6, 31, 44] have consistently shown that 

there is an excess of rare polymorphisms compared to the predictions of previously inferred 

demographic models, which might be explained by recent rapid population expansion [16]. 

Because the leading entries of the SFS count the rare variants in the sample, one might be 

able to use this information to infer demographic events in the recent past at a much finer 

resolution than possible using smaller samples. Third, the SFS also provides a simple way of 

visualizing the goodness of fit of a demographic model to data, since one can easily compare 

the SFS observed in the data with the SFS predicted by the fitted demographic model.

While the SFS has algorithmic advantages for demographic inference, it is believed to suffer 

from a statistical shortcoming. Specifically, Myers, Fefferman and Patterson [30] recently 

showed that even with perfect knowledge of the population frequency spectrum [i.e., the 

proportion of polymorphic sites with population-wide allele frequency in (x, x + dx) for all x 
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∈ (0, 1)], the historical population size function η(t) as a function of time is not identifiable. 

Using Müntz–Szász theory, they showed that for any population size function η(t), one can 

construct arbitrarily many smooth functions F(t) such that both η(t) and η(t) + αF(t) 
generate the same population frequency spectrum for suitably chosen values of α. They also 

constructed explicit examples of such functions η(t) and F(t). While this nonidentifiability 

could pose serious challenges to demographic inference from frequency spectrum data, the 

population size functions involved in their example are arguably unrealistic for biological 

populations. In particular, their explicit example involves a population size function which 

oscillates at an increasingly higher frequency as the time parameter approaches the present. 

Real biological population sizes can be expected to vary over time in a mathematically more 

well-behaved fashion. In particular, populations can be expected to evolve in discrete units 

of time, which, when approximated by a continuous-time model, restricts the frequency of 

oscillations in the population size function to be less than the number of generations of 

reproduction per unit time. Furthermore, since a population size model being inferred must 

have a finite representation for obvious algorithmic reasons, most previous demographic 

inference analyses have focused on inferring population size models that are piecewise-

defined over a restricted class of functions, such as piecewise-constant and piecewise-

exponential models [10, 17, 24, 26, 31, 41, 44]. Motivated by the large number of rare 

variants observed in several large-sample sequencing studies, recent works [38, 39] have 

also focused on more general population growth models which allow for the population to 

grow at a faster than exponential rate. Each piece in such piecewise models has two 

parameters that control the rate and acceleration of population growth. Since these models 

contain the family of piecewise-constant and piecewise-exponential population size 

functions, we refer to them as piecewise-generalized-exponential models in the remainder of 

this paper.

In this paper, we revisit the question of demographic model identifiability under the 

assumption that the population size is a piecewise-defined function of time where each piece 

comes from a family of biologically-motivated functions, such as the family of constant or 

exponential functions. We also re-examine the assumption that one has access to the 

population-wide patterns of polymorphism. In real applications, we do not expect to know 

the allele frequency spectrum for an entire population but rather only the SFS for a randomly 

drawn finite sample of individuals. Here, we investigate whether one can learn piecewise-

defined population size functions given perfect knowledge of the expected SFS for a 

sufficiently large sample of size n. Unlike in the case of arbitrary continuous population size 

functions considered by Myers, Fefferman and Patterson, the answer to this question is 

affirmative. More precisely, we obtain bounds on the sample size n that are sufficient to 

distinguish population size functions among piecewise demographic models with K pieces, 

where each piece comes from some family of functions (see Theorems 6 and 11). Our bound 

on the sample size can be expressed as an affine function of the number K of pieces, where 

the slope of the function is a measure of the complexity of the family to which each piece 

belongs. In the cases of piecewise-constant, piecewise-exponential and piecewise-

generalized-exponential models, which are often assumed in population genetic analyses, the 

slope of this affine function can be calculated explicitly, as shown in Corollaries 7–9. We 

also obtain analogous results for the “folded” SFS (see Theorem 12), a variant of the SFS 
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which circumvents the ambiguity in the identity of the ancestral allele type by grouping the 

polymorphic sites in a sample according to the sample minor allele frequency.

There are two main technical elements underlying our proofs of the identifiability results 

mentioned above. The first step is to show that the expected SFS of a sample of size n is in 

bijection with the Laplace transform of a time-rescaled version of the population size 

function evaluated at a particular sequence of n − 1 points. This reduces the problem of 

identifiability from the SFS to that of identifiability from the values of the Laplace transform 

at a fixed set of points. The second step relies on a generalization of Descartes’ rule of signs 

for polynomials to the Laplace transform of general piecewise-continuous functions. This 

technique yields an upper bound on the number of roots of the Laplace transform of a 

function by the number of sign changes of the function. We think that this proof technique 

based on sign changes might be of independent interest for proving statistical identifiability 

results in other settings. We also provide an alternate proof of identifiability for piecewise-

constant population models, where the aforementioned second step is replaced by a linear 

algebraic argument that has a constructive flavor. We include this alternate proof in the hope 

that it could be used to develop an algebraic inference algorithm for piecewise-constant 

models.

The remainder of this paper is organized as follows. In Section 2, we introduce the model 

and notation, and describe our main results. We also discuss the counterexample of Myers, 

Fefferman and Patterson in light of our findings. The proofs of our results are provided in 

Section 3, and we conclude with a discussion in Section 4.

2. Main results

Here, we summarize our identifiability results. All proofs are deferred to Section 3.

2.1. Model and notation

We consider a population evolving according to Kingman’s coalescent [21–23] with the 

infinite-sites model of mutation [20] and selective neutrality. Under this model, the genome 

is assumed to be infinite and every mutation occurs at a different site in the genome that has 

never experienced a mutation before. This model is applicable in the regime where the 

mutation rate is very low, and hence the probability of multiple mutations at a given site is 

vanishingly small. Any polymorphic site in a sample of sequences is dimorphic under this 

model. The population size is assumed to change deterministically with time and is 

described by a function η : ℝ≥0 → ℝ+, such that the instantaneous coalescence rate between 

any pair of lineages at time t is 1/η(t).

Let  denote the time (in coalescent units) while there are k ancestral lineages for a 

sample of size n obtained at time 0. Defining Rη(t) as
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the expected time  to the first coalescence event for a sample of size m is given by

(1)

Following the notation of Myers, Fefferman and Patterson, define a time-rescaled version η̃ 

of the population size function η as

(2)

where τ ∈ ℝ≥0. The function η̃(τ) reparameterizes the population size as a function of the 

cumulative rate of coalescence τ = Rη(t). For a given population size function η̃ 

parameterized by the total coalescence rate τ, there corresponds a unique population size 

function η parameterized by time t. Specifically, , for all t ∈ ℝ≥0, where 

Sη̃(t) is an invertible function given by

Applying integration by parts to (1) and using the condition that , we have

(3)

Furthermore, since Rη is monotonically increasing and continuous from ℝ≥0 to ℝ≥0, it is a 

bijection over ℝ≥0. For notational convenience, for any interval I ⊆ ℝ≥0, we define Rη(I) to 

be the interval

By making the substitution τ = Rη(t) in (3) and using (2), we have the following expression 

for :

(4)
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Equation (4) states that the time to the first coalescence event for a sample of size m is given 

by the Laplace transform of the time-rescaled population size function η̃ evaluated at the 

point . For a sample of size n, let ξn,b denote the probability that a dimorphic site has 

b mutant alleles and n − b ancestral alleles. We refer to (ξn,1, … , ξn,n−1) as the expected 

sample frequency spectrum (SFS).

2.2. Determining the expected times to the first coalescence from the SFS

The following lemma shows that the expected SFS for a sample of size n tightly constrains 

the expected time to the first coalescence event for all sample sizes 2, … , n:

Lemma 1—Under an arbitrary variable population size model {η(t), t ≥ 0}, suppose ξn,1, 

… , ξn,n−1 are known and define  for 2 ≤ m ≤ n. Then, up to a common positive 

multiplicative constant, the quantities c2, … , cn can be determined uniquely from ξn,1, … , 

ξn,n−1.

This implies that the problem of identifying the population size function η(t) from ξn,1, … , 
ξn,n−1 can be reduced, up to a multiplicative constant, to the problem of identifying η(t) 
from c2, … , cn.

2.3. Piecewise population size models and sign change complexities

To state our main result in full generality, we first need a few definitions.

Definition 1—(ℱ, family of continuous population size functions). A family ℱ of 

continuous population size functions is a set of positive continuous functions f : ℝ≥0 → ℝ+ 

of a particular type parameterized by a collection of variables.

We use ℱc to denote the family of constant population size functions; that is, functions of 

the form f(t) = ν for all t, where ν ∈ ℝ+ is the only parameter of the family. Further, we use 

ℱe to denote the family of exponential population size functions of the form f(t) = ν exp(βt), 
where ν ∈ ℝ+ and β ∈ ℝ are the parameters of the family. In human genetics, there has 

been recent interest [38, 39] in modeling superexponential growth in the effective population 

size via models that generalize exponential growth by incorporating an additional 

acceleration parameter γ. Such population size functions f satisfy the differential equation 

df/dt = βf (t)γ with initial condition f(0) = ν, where β ∈ ℝ, γ ∈ ℝ≥0, and ν ∈ ℝ+. When 0 ≤ 

γ <1 (resp., γ >1), this represents superexponential (resp., subexponential) population 

growth/decline, while γ = 1 corresponds to exponential population growth/decline. We let 

ℱg denote the family of such generalized-exponential population size functions.

Definition 2—[ℳK(ℱ), piecewise models over ℱ with at most K pieces]. Given a family 

ℱ of continuous population size functions, a population size function η(t) defined over ℝ≥0 

is said to be piecewise over ℱ with at most K pieces if there exists an integer p, where 1 ≤ p 
≤ K − 1, and a sequence of p time points 0 < t1 < ··· < tp < ∞ such that for each 1 ≤ i ≤ p + 1, 

there exists a positive continuous function fi ∈ ℱ such that η(t) = fi (t − ti−1) for all t ∈ [ti−1, 
ti). For convention, we define t0 = 0 and tp+1 =∞. Note that η may not be continuous at the 
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change points t1, … , tp. We use ℳK(ℱ) to denote the space of such piecewise population 

size models with at most K pieces, each of which belongs to function family ℱ. Illustrated 

in Figure 1 is an example of piecewise-exponential population size function η ∈ ℳK(ℱ) 

where K ≥ 5 and ℱ = ℱe.

Definition 3—[σ(f), number of sign changes of a function]. For a function g (not 

necessarily continuous) defined over some interval (a, b), we say that t ∈ (a, b) is a sign 

change point of g if there exist some ε > 0, t′ ≥ t, and an interval (t′, t′ + ε) ⊆ (a, b) such 

that:

1. (t − ε, t) ⊆ (a, b),

2. g(z) = 0 for z ∈ (t, t′),

3. g(x)g(y) < 0 for all x ∈ (t − ε, t) and y ∈ (t′, t′ + ε).

We define the number σ(g) of sign changes of g as the number of such sign change points in 

its domain (a, b). See Figure 2 for an illustration.

Note that the above definition of the number of sign changes counts the number of times the 

function g changes value from positive to negative (and vice versa) while ignoring intervals 

where it is identically zero. While the above definition is not restricted to piecewise 

continuous functions, we will restrict our attention to such functions for the remainder of 

this paper.

Definition 4—[ (ℱ) and (ℳK(ℱ)), sign change complexities]. For a family ℱ of 

continuous population size functions, we define the sign change complexity (ℱ) as

(5)

where f̃j are the time-rescaled versions of fj as defined in (2), and Dom(f̃j) = Rfj (ℝ≥0) is the 

domain of f̃j. Similarly, for the space ℳK(ℱ) of piecewise population size models with at 

most K pieces over some function family ℱ, we define the sign change complexity 

(ℳK(ℱ)) as

where, again, η̃
j are related to ηj as given in (2).
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The following lemma gives a bound on the sign change complexity of a model with at most 

K pieces in terms of the underlying family of population size functions for each piece.

Lemma 2—The sign change complexity of the space ℳK(ℱ) of piecewise models with at 

most K pieces in a function family ℱ is bounded by the sign change complexity of ℱ as

Note that the bound in Lemma 2 is tight for the family ℱc of constant population sizes, for 

which (ℱc) = 0 and (ℳK(ℱc)) = 2K −2.

2.4. Identifiability results

Our main results on identifiability will be proved using a generalization of Descartes’ rule of 

signs for polynomials.

Theorem 3 (Descartes’ rule of signs for polynomials)—Consider a degree-n 

polynomial p(x) = a0 + a1x + ··· + anxn with real-valued coefficients ai. The number of 

positive real roots (counted with multiplicity) of p is at most the number of sign changes 

between consecutive nonzero terms in the sequence a0, a1, …, an.

The following theorem generalizes the above classic result to relate the number of sign 

changes of a piecewise-continuous function f to the number of roots of its Laplace 

transform.

Theorem 4 (Generalized Descartes’ rule of signs)—Let f :ℝ≥0 → ℝ be a 

piecewise-continuous function which is not identically zero and with a finite number σ(f) of 

sign changes. Then the function G(x) defined by

(6)

has at most σ(f) roots in ℝ (counted with multiplicity).

The statement of Theorem 4 and the proof provided in Section 3 are adapted from Jameson 

[15], Lemma 4.5, for our setting. Using Theorem 4, we prove in Section 3 the following 

identifiability theorem for population size function families with finite sign change 

complexity.

Theorem 5—For a sample of size n, let c = (c2, … , cn), where , for 2 ≤ m ≤ n, 

defined in (3). If (ℱ) <∞ and n ≥ (ℱ) + 2, then no two distinct models η1,η2 ∈ ℱ can 

produce the same (c2, … , cn). In other words, for n ≥ (ℱ) + 2, the map c :  is 

injective.
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Note that the sample size bound in Theorem 5 applies to an arbitrary function family ℱ 
which need not have any special structure. Using Lemma 2 for bounding the sign change 

complexity of piecewise-defined function families ℳK(ℱ) in terms of the sign change 

complexity of the underlying function family ℱ, we immediately obtain the following 

theorem.

Theorem 6—For a sample of size n, let c = (c2, … , cn), where , for 2 ≤ m ≤ n, 

defined in (3). If (ℱ) < ∞ and n ≥ 2K + (2K − 1) (ℱ), then the map c : 

is injective.

Using Theorem 6, it is simple to derive identifiability results for piecewise-defined 

population size models over several function families ℱ that are of biological interest. In 

particular, we have the following result for the case of piecewise-constant models.

Corollary 7 [Identifiability of piecewise-constant population size models in 

ℳK(ℱc)]—The map c :  is injective if the sample size n ≥ 2K.

The bound in Corollary 7 on the sample size sufficient for identifying piecewise-constant 

population models is actually tight, since ℳK(ℱc) has 2K − 1 parameters in ℝ+ and there is 

no continuous injective function from  to ℝn−1 if n < 2K. (This fact can be proved in 

multiple ways, such as by the Borsuk–Ulam theorem or the Constant Rank theorem.) An 

alternate proof of Corollary 7 that does not rely on Theorem 6 is also provided in Section 3. 

This alternate proof is based on an argument from linear algebra, and it might be possible to 

adapt this approach to develop an algebraic algorithm for inferring the parameters of a 

piecewise-constant population function from the set of expected first coalescence times cm.

Another class of models often assumed in population genetic analyses are piecewise-

exponential functions, for which we have the following result.

Corollary 8 [Identifiability of piecewise-exponential population size models in 

ℳK(ℱe)]—The map c :  is injective if the sample size n ≥ 4K −1.

For the generalized-exponential growth models considered by Reppell, Boehnke and Zöllner 

[39], we have the following result.

Corollary 9 [Identifiability of piecewise-generalized-exponential population 

size models in ℳK(ℱg)]—The map c :  is injective if the sample size n 
≥ 6K −2.

For the identifiability of piecewise population size models from the SFS data, we first note 

the following lemma.

Lemma 10—Consider a piecewise population size function η ∈ ℳK(ℱ). Consider a sample 

of size n ≥ 2K + (2K − 1) (ℱ) and suppose the function η produces  for 2 ≤ m ≤ 

n. Then, for every fixed κ ∈ ℝ+, there exists a unique piecewise population size function ζ ∈ 
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ℳK(ℱ) with  for 2 ≤ m ≤ n. Furthermore, this population size function ζ is 

given by ζ(t) = κη(t/κ).

Given two models η, ζ ∈ ℳK, we say that η and ζ are equivalent, and write η ~ ζ, if they are 

related by a rescaling of change points and population sizes as described in Lemma 10. Let 

[η] denote the equivalence class of population size functions that contain η, and let 

ℳK(ℱ)/~ = {[η]]η ∈ ℳK(ℱ)} be the set of equivalence classes for the equivalence relation 

~. Then, combining Lemma 1, Theorem 6 and Lemma 10, we obtain the following theorem.

Theorem 11—If (ℱ) <∞ and n ≥ 2K + (2K − 1) (ℱ), then, for each expected SFS 

(ξn,1, … , ξn,n−1), there exists a unique equivalence class [η] of models in ℳK(ℱ)/~ 

consistent with (ξn,1, … , ξn,n−1).

2.5. Extension to the folded frequency spectrum

To generate the SFS from genomic sequence data, one needs to know the identities of the 

ancestral and mutant alleles at each site. To avoid this problem, a commonly employed 

strategy in population genetic inference involves “folding” the SFS. More precisely, for a 

sample of size n, the ith entry of the folded SFS χ = (χn,1, … , χ ⌊n/2⌋) is defined by

where 1 ≤ i ≤ ⌊n/2⌋. In particular, χn,i is the proportion of polymorphic sites that have i 
copies of the minor allele. For any sample size n, since χ is a vector of approximately half 

the dimension as ξ, we might expect to require roughly twice as many samples to recover 

the demographic model from χ compared to ξ. This is indeed the case. Given the folded 

SFS χ, the following theorem establishes a sufficiency condition on the sample size for 

identifying demographic models in ℳK(ℱ).

Theorem 12—If (ℱ) <∞ and n ≥ 2(2K −1)(1 + (ℱ)), then, for each expected folded 

SFS χ = (χn,1, … , χ⌊n,n/2⌋), there exists a unique equivalence class [η] of models in 

ℳK(ℱ)/~ consistent with χ.

2.6. The counterexample of Myers, Fefferman and Patterson

Myers, Fefferman and Patterson [30] provided an explicit counterexample to the 

identifiability of population size models from the allelic frequency spectrum. In our notation, 

they provided two time-rescaled population size functions η̃
1 and η̃

2 given by

where N is an arbitrary positive constant, and the function F is given by the convolution
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where f0 and f1 are given by

Both functions f1 and F have increasingly frequent oscillations as τ ↓ 0 so that σ(η̃
1 − η̃2) = 

σ(F)=∞. This is why Theorem 5 does not apply to this example. Indeed, by an argument 

using the Laplace transforms of f1 and F, Myers, Fefferman and Patterson showed that the 

function G(x) defined in (6) in terms of F has roots at  for each m ≥ 2.

3. Proofs

We now provide proofs of the results presented earlier.

Proof of Lemma 1—In the coalescent for a sample of size n, let γn,b denote the total 

expected branch length subtending b leaves, for 1 ≤ b ≤ n−1. Then , 

which implies that there exists a positive constant κ such that γn,b = κξn,b for all 1 ≤ b ≤ n
−1. We now prove that c2, … , cn can be determined uniquely from γn,1, … , γn,n−1.

Let . Then, by a result of Griffiths and Tavaré [12],

(7)

for 1 ≤ b ≤ n − 1. The system of equations (7) can be rewritten succinctly as a linear system

where γ = (γn,1, … , γn,n−1), ϕ = (ϕn,2, … , ϕn,n), and M = (mbk) with 

, for 1 ≤ b ≤ n − 1 and 2 ≤ k ≤ n. The matrix M is upper-left 

triangular since  if k > n − b + 1, and the anti-diagonal entries are 
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. Hence, det(M) ≠ 0 and M is therefore invertible. Thus, given γ, we can 

determine ϕ uniquely as M−1γ.

Let . Then, defining ψn,n+1 := 0, observe that ψn,k = ϕn,k + ψn,k+1 for 2 ≤ 

k ≤ n. This implies that ψn,2, … , ψn,n can be determined uniquely from ϕn,2, … , ϕn,n. 

Polanski, Bobrowski and Kimmel [35] showed that ψn,k can be written as

(8)

where akm, for k ≤ m ≤ n, are given by

and , shown in (3). Again, the system of equations (8) can be written as a 

triangular linear system

where ψ = (ψn,2, … , ψn,n), c = (c2, … , cn), and A = (akm), for 2 ≤ k, m ≤ n. Note that A is 

an upper triangular matrix since akm := 0 if m < k. Since A has nonzero entries on its 

diagonal, A−1 exists, and c can be determined uniquely as A−1ψ.

Proof of Lemma 2—Given a pair of piecewise population size functions η1, η2 ∈ ℳK 

(ℱ), let η̃
1 and η̃

2 be their respective time-rescaled versions, defined by (2). Let 

, where 0 ≤ p1 ≤ K − 1 (resp., , where 0 ≤ p2 ≤ K 

− 1) be the change points of the pieces of η1 (resp., η2). We define  and 

. The change points of η̃
1 are given by , where 1 ≤ i ≤ p1, while the 

change points of η̃
2 are given by , where 1 ≤ i ≤ p2. Let 0 < τ1 < ··· < τp < ∞ be the 

union of the change points of η̃
1 and η̃2, where 0 ≤ p ≤ p1 + p2. For convention, let τ0 = 0 

and τp+1 = ∞.

Consider the piece (τi, τi+1) for 0 ≤ i ≤ p. Let , where 0 ≤ k ≤ p1, and 

, where 0 ≤ l ≤ p2, be the pieces of the original population size functions η1 
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and η2, respectively, such that (τi, τi+1) ⊆ Rη1(I1) and (τi, τi+1) ⊆ Rη2(I2). Since η1 ∈ 

ℳK(ℱ), there exists a function f1 ∈ ℱ such that for all t ∈ I1. Then, for all 

τ ∈ Rη1(I1),

(9)

Similarly, there exists some function f2 ∈ ℱ such that, for all τ ∈ Rη2(I2),

(10)

Using (9) and (10), we see that the number of sign change points of η̃
1 − η̃2 in the piece (τi, 

τi+1) is at most the number of sign change points of  for τ 
∈ (τi, τi+1). Hence, by (5), it follows that within each piece (τi, τi+1) for 0 ≤ i ≤ p, η̃

1 − η2̃ 

has at most  (ℱ) sign change points. Also, the point τi+1 itself could be a sign change 

point in the interval between the last sign change point in piece (τi, τi+1) and the first sign 

change point in piece (τi+1, τi+2) where 0 ≤ i ≤ p − 1. These are all the possible sign change 

points of η̃
1 − η̃

2. Hence,

(11)

Since (11) holds for all η1, η2 ∈ ℳK (ℱ), the lemma follows.

Proof of Theorem 4—The proof is by induction on the number of sign changes of f. If f 
has zero sign changes, then without loss of generality, f(t) ≥ 0 for t ∈ (0, ∞) and f(t) > 0 for 

some interval (a, b) ⊆ (0, ∞). Hence, G(x) > 0 for all x, and the base case holds. Suppose f 
has m + 1 sign change points t0,..., tm, where m ≥ 0. Note that G(x) and F(x) = et0x G(x) 

have the same real-valued roots (with multiplicity) since et0x > 0 for all x ∈ ℝ. F′ (x) is 

given by

where the interchange of the differential and integral operators in the second equality is 

justified by the Leibniz integral rule because f is piecewise continuous over ℝ≥0, and both 

Bhaskar and Song Page 13

Ann Stat. Author manuscript; available in PMC 2016 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f(t)e−(t−t0)x and  are jointly continuous over (pi, pi+1) × (−∞, ∞) for each 

piece (pi, pi+1) over which f is continuous. Note that the set of sign change points of (t0 − 

t)f(t) is {t1,..., tm}. Hence, (t0 − t)f(t) has only m sign changes. By the induction hypothesis, 

F′ has at most m real-valued roots. By Rolle’s theorem, the number of real-valued roots of F 
is at most one more than the number of real-valued roots of F′. Hence, F has at most m + 1 

real-valued roots, implying that G has at most m + 1 real-valued roots.

Proof of Theorem 5—Suppose there exist two distinct population size functions η1, η2 ∈ 
ℱ that produce exactly the same cm for all 2 ≤ m ≤ n. From (4), we have that

(12)

for 2 ≤ m ≤ n. If we define the function G(x) as

then from (12), we see that  is a root of G(x) for 2 ≤ m ≤ n, and hence, G has at least n 
− 1 roots. Applying Theorem 4 to the piecewise continuous function η̃

1 − η̃2, we see that G 
can have at most σ (η̃

1 − η̃2) roots. Taking the supremum over all population size functions 

η1 and η2 in ℱ, we see that G can have at most (ℱ) roots. Hence, if n − 1 >  (ℱ), we get 

a contradiction. This implies that if n ≥ (ℱ) + 2, no two distinct population size functions 

in ℱ can produce the same (c2,..., cn).

Proof of Corollary 7—As remarked after Lemma 2, for the constant population size 

function family ℱc,  (ℱc) = 0. Hence, by Theorem 6, if n ≥ 2K, the map c: 

 is injective.

An alternate proof of Corollary 7 based on linear algebra—Let n ≥ 2K, and 

suppose there exist two distinct models η(1), η(2) ∈ ℳK(ℱc) that produce exactly the same 

cm for all 2 ≤ m ≤ n. Let η̃(1) and η̃(2) denote the time-rescaled versions of η(1) and η(2), 

respectively, as in (2). Since η(j) is piecewise constant with at most K pieces, η̃(j) is also 

piecewise constant with the same number of pieces as η(j), and η(1) ≠ η(2) implies η̃(1) ≠ 

η̃(2). Therefore, Δ̃ := η̃(1) − η̃(2) is a piecewise-constant function over [0, ∞) with p pieces, 

where 1 ≤ p ≤ 2K − 1, and Δ̃ is not identically zero. Let τ1 < ··· < τp−1 denote the change 

points of Δ ̃, and define τ0 = 0 and τp = ∞. Suppose Δ̃(τ) = δi ∈ ℝ for all τ ∈ [τi−1, τi), 

where 1 ≤ i ≤ p. Since η̃(1) and η̃(2) produce the same for cm all 2 ≤ m ≤ n, we know that Δ̃ 

satisfies
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(13)

for all 2 ≤ m ≤ n. Substituting the definition of Δ ̃ into (13) and multiplying by , we 

obtain

(14)

for 2 ≤ m ≤ n. This defines a linear system Aδ = 0, where δ = (δ1,..., δp) and A = (ami) is an 

(n − 1) × p matrix with  for 2 ≤ m ≤ n and 1 ≤ i ≤ p.

Let B = (bmi) be the (n − 1) × p matrix formed from A such that the ith column of B is the 

sum of columns i, i + 1,..., p of A. Defining αi = e−ti−1, note that  for 2 ≤ m ≤ 

n and 1 ≤ i ≤ p. Now, consider the p × p submatrix C of B consisting of the first p rows of B. 

Since α1 > α2 > ···> αp > 0, note that C is a generalized Vandermonde matrix, which implies 

det(C) ≠ 0 [8], Chapter XIII, Section 8. Hence, rank(B) = p. The rank of A is invariant under 

elementary column operations and, therefore, rank(A) = rank(B) = p. Therefore, the kernel 

of A is trivial, and the only solution to (14) is δ1 = δ2 = ··· = δp = 0, which contradicts our 

assumption that Δ̃ = η̃(1) − η̃(2) ≡ 0.

Proof of Corollary 8—Let f1, f2 ∈ ℱe be given by

where t ∈ ℝ≥0, ν1, ν2 ∈ ℝ+ and β1, β2 ∈ ℝ. Then, for i = 1, 2, the time-rescaled function fĩ 

is given by

(15)

for . From (15), it can be seen that f̃1 and f̃2 are 

continuous in their domains. Furthermore, for any given a ∈ ℝ≥0, there is at most one τ, 
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where τ ∈ Dom(f1̃) and τ − a ∈ Dom(f̃2), such that g(τ) := f̃1(τ) − f̃2(τ − a) = 0, implying σ 
(g) ≤ 1. By the definition of sign change complexity in (5), it then follows that  (ℱe) ≤ 1 

for the exponential population family ℱe. Hence, applying Theorem 6, we conclude that n ≥ 

4K − 1 suffices for the map c:  to be injective.

Proof of Corollary 9—Let f1, f2 ∈ ℱg be generalized-exponential functions which satisfy 

the following differential equations and initial conditions:

where νi ∈ ℝ+, βi ∈ ℝ and γi ∈ ℝ≥0. The solutions for fi are given by

It can be shown that the time-rescaled population size functions f̃i are given by

(16)

In order to obtain an upper bound on  (ℱg), we consider the following three cases 

depending on the functional form of f̃1 and f̃2 in (16):

• Case 1: f̃1(τ) = ν1 exp(β1τ) and f̃2(τ) = ν2 exp(β2τ). Since f̃1 and f̃2 are 

continuous functions of τ, the number of sign changes of g(τ) := f̃1(τ) − 

f̃2(τ − a) is at most the number of roots of g(τ). Taking the logarithm of 

f̃1(τ) and f̃2(τ − a), it is easy to see that g(τ) has at most one root for any a 
∈ ℝ≥0. Hence, σ(g) ≤ 1.

• Case 2: f̃1 and f̃2 have different functional forms. Suppose f̃1(τ) = ν1 

exp(β1τ) and . For any a1, a2 ∈ ℝ≥0 such that τ 
− ai ∈ Dom(f̃i), the number of sign changes of g(τ) := f̃1(τ − a1) − f̃2(t − 

a2) is at most the number of roots of g(τ). By raising f̃1(t − a1) and f̃2(t − 

a2) to the power of −γ2, we see that the number of roots of g(τ) is the 

number of solutions to

(17)

Bhaskar and Song Page 16

Ann Stat. Author manuscript; available in PMC 2016 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where μ1 = ν1 exp(γ2β1a1) and . Equation (17) 

represents the intersection of an exponential function with a line and has at 

most 2 solutions for τ. Hence, σ(g) ≤ 2.

•
Case 3:  for i = 1, 2. Let g(τ) := f̃1 (τ ) − f̃2(τ − 

a) where a ∈ ℝ≥0 such that τ − a ∈ Dom(f̃2). Since g is a continuous 

function, the number of sign changes of g(τ) in ℝ≥0 is bounded by the 

number of distinct positive roots of g(τ). The number of distinct positive 

roots of g is the number of distinct positive solutions τ to

which is also the number of distinct positive solutions to

(18)

Let . Since f̃1 is a time-rescaled population 

size function, x > 0 when τ ∈ ℝ≥0. Since βi ≠ 0 and γi > 0, (18) can be 

rewritten as

where  and . Letting h(x) := xγ2/γ1 + 

Ax + B, the number of distinct positive solutions for τ in (18) is at most 

the number of distinct positive roots for the generalized polynomial h. For 

any real-valued function g(x) possessing infinitely many derivatives and 

any interval I ⊆ ℝ, let Z(g, I) the number of zeroes of g contained in I, 
counted with multiplicity. By a consequence of Rolle’s theorem [15], 

Proposition 2.1, Z(g, I) ≤ Z(g′, I) + 1. Observing that 

 has at most one root in ℝ+, Z(h, ℝ+) ≤ Z(h′, ℝ+) 

+ 1 ≤ 2. Hence, the number of distinct positive solutions τ to (18) is at 

most 2, and σ(g) ≤ 2.

From the definition of sign change complexity in (5) and the bound on σ(g) in the three 

cases above, it follows that  (ℱg) ≤ 2 for the generalized-exponential population family 

ℱg. Hence, applying Theorem 6, we conclude that n ≥ 6K − 2 suffices for the map c: 

 to be injective.

Proof of Lemma 10—For the population size function ζ(t) defined by ζ(t) = κη(t/κ), note 

that Rζ(t) is given by
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 is then given by

Since n ≥ 2K + (2K − 1) (ℱ), by Theorem 6, ζ is the unique population size function in 

ℳK(ℱ) with  for 2 ≤ m ≤ n.

To prove Theorem 12, we first need a lemma that characterizes a certain symmetry property 

of the invertible matrix that relates the genealogical quantities γ and c introduced in the 

proof of Lemma 1.

Lemma 13—For a sample of size n, let W be the (n − 1) × (n − 1) invertible matrix such 

that , where γn,b is the total expected branch length subtending b leaves 

and  . Then, for every b and m, where 1 ≤ b ≤ n − 1 and 2 ≤ m ≤ n, we have the 

following identities:

Proof: From the proof of Lemma 1, it can be seen that the matrix W is the product of 3 

matrices whose entries are explicitly given combinatorial expressions. However, using 

Zeilberger’s algorithm [34], Polanski and Kimmel [36], equations (13)–(15), also derived 

the following recurrence relation for the entries of W:

(19)

where f(n, m) and g(n, m) are rational functions of n and m given by
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It will be easy to prove our lemma by induction on m using (19). The base cases are easy to 

check:

Using (19), we see that if m is odd,

where the last equality follows from the induction hypothesis which implies Wb,m + Wn−b,m 

= 0 and Wb,m+1 − Wn−b,m+1 = 0. Similarly, if m is even,

where again the last equality follows from the induction hypothesis.

Proof of Theorem 12—For a sample of size n in the coalescent, let γn,b be the total 

expected branch length subtending b leaves, for 1 ≤ b ≤ n − 1. Then there exists a positive 

constant κ such that

(20)

for all 1 ≤ d ≤ ⌊n/2⌋. Let . The relationship between f = (fn,1,..., fn, ⌊n/2⌋) and 

γ = (γn,1,..., γn,n−1) can be described by the linear equation

where Z is an ⌊n/2⌋ × (n − 1) matrix with entries given by

for 1 ≤ d ≤ ⌊n/2⌋ and 1 ≤ j ≤ n − 1. Hence, dim(ker(Z)) = ⌊ (n − 1)/2⌋.
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From Lemma 1, we know that γ; and c = (c2,..., cn) are related as γ = Wc, where W = 

(Wb,m) is an (n − 1) × (n − 1) invertible matrix, where 1 ≤ b ≤ n − 1 and 2 ≤ m ≤ n. Hence,

(21)

where Y := ZW. Since Yb,m = Wb,m + Wn−b,m, we know from Lemma 13 that Yb,m = 0 for 

all odd values of m. Therefore, every other column of the matrix Y is zero. This implies that 

span({e3, e5,..., en−𝟙{n even}}) ⊆ ker(Y), where ei is an (n − 1)-dimensional unit vector 

defined as ei = (ei,2,..., ei,n), with ei,i = 1 and ei,j = 0 for i ≠ j. Note that n − 𝟙{n even} = 2⌊ (n 
− 1)/2⌋ + 1 and dim(span({e3, e5,..., e2⌊ (n−1)/2⌋+1})) = ⌊ (n − 1)/2⌋. Now, since W is 

invertible, dim(ker(Y)) = dim(ker(ZW)) = dim(ker(Z)) = ⌊ (n − 1)/2⌋. Therefore,

(22)

Suppose there exist two distinct models η1, η2 ∈ ℳK (ℱ) that produce the same folded SFS 

f. Let c(1) and c(2) be the vector of genealogical quantities for models η1 and η2, 

respectively, where  and , 2 ≤ m ≤ n. From (21), we know that c(1) 

−c(2) ∈ ker(Y). Using (22),  can be written as

(23)

for some αl ∈ ℝ. Since eij = 0 for i ≠ j, (23) implies that  for all even values of 

m, where 2 ≤ m ≤ n. Now applying a similar argument as in the proof of Theorem 6 to 

 for even values of m, we conclude that if ⌈(n − 1)/2⌉ > (2K − 2) + (2K − 1) (ℱ), 

then no two distinct models η1, η2 ∈ ℳK (ℱ) can produce the same f. This implies that a 

sample size n ≥ 2(2K − 1)(1 +  (ℱ)) suffices for identifying the population size function in 

ℳK (ℱ) from the folded SFS f, and the conclusion of the theorem follows from (20) and 

Lemma 10.

4. Discussion

In human genetics, several large-sample datasets have recently become available, with 

sample sizes on the order of several thousands to tens of thousands of individuals [1, 4, 6, 

31, 44]. The patterns of polymorphism observed in these datasets deviate significantly from 

that expected under a constant population size, and there has been much interest in inferring 

recent and ancient human demographic changes that might explain these deviations [10, 24, 

26]. Clearly, model identifiability is an important prerequisite for such statistical inference 

problems. In this paper, we have obtained mathematically rigorous identifiability results for 

demographic inference by showing that piecewise-defined population size functions over a 
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wide class of function families are completely determined by the SFS, provided that the 

sample is sufficiently large. Furthermore, we have provided explicit bounds on the sample 

sizes that are sufficient for identifying such piecewise population size functions. These 

bounds depend on the number of pieces and the functional type of each piece. For 

piecewise-constant population size models, which have been extensively applied in 

demographic inference studies, our bounds are tight. We have also given analogous results 

for identifiability from the folded SFS, a variant of the SFS that is oblivious to the identities 

of the ancestral and mutant alleles.

Recent large-sample sequencing studies have consistently found a substantially higher 

fraction of rare variants compared to the predictions of the coalescent with a constant 

population size, even in regions of the genome that are believed to have evolved neutrally 

[9]. Keinan and Clark [16] suggested that recent rapid expansion of the population has given 

rise to variants which are private to single individuals in the population, and that this 

signature of population expansion is particularly apparent now due to the larger sample sizes 

involved in sequencing studies. We illustrate this point with a specific example. The blue 

plot in Figure 3 shows the expected SFS for a sample of size n = 19 under the piecewise-

exponential population size history with 5 epochs recently inferred by Tennessen et al. [44] 

and illustrated in Figure 1. (Note that n = 19 is the sample size bound given by Corollary 8 

for identifying piecewise-exponential models with up to 5 pieces.) The red plot in Figure 3 

shows the expected SFS for the same sample size under a constant population size model. 

For this small sample size, the two expected frequency spectra are very similar despite the 

large difference in demographic models, indicating the difficulty of accurately recovering 

the details of recent exponential population growth using small-sample data. In contrast, for 

a much larger sample of size n = 2702, which corresponds to the actual sample size for 

Tennessen et al.’s data, the expected frequency spectra under the two demographic models 

mentioned above are considerably more different; see the green and purple plots in Figure 3.

On the other hand, our identifiability results show that perfect data (i.e., the exact expected 

SFS) from even a small sample size of n = 4K − 1 are sufficient to uniquely identify a 

piecewise-exponential model with K pieces. This gap between theoretical identifiability and 

practical inference needs to be better addressed through robustness results that can account 

for the finite genome length, which limits the resolution to which the expected SFS of a 

random sample can be estimated. Our identifiability results apply in the limit that the 

genome length is infinite, which allows one to estimate the entries of the expected SFS 

exactly. On the other hand, a finite length genome does not permit exact estimation of the 

expected SFS, which can make it difficult in practice to resolve the details of ancient 

demographic events even if the sample size is large. This is because population size changes 

sufficiently far back in the past are likely to have only a marginal effect on the SFS since the 

individuals in the sample are highly likely to have found a common ancestor by such ancient 

times.

Our work suggests several interesting avenues for future research. An important problem is 

to understand the sensitivity of the SFS to perturbations in the demographic parameters. A 

related problem is quantifying the extent to which errors in estimating the expected SFS 

from a finite amount of data affect the parameter estimates in inferred demographic models.
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It would also be interesting to consider the possibility of developing an algebraic algorithm 

for demographic inference that closely mimics the linear algebraic proof of Corollary 7 

provided in Section 3. For example, using a sample of size K + 1, one could consider 

inferring a piecewise-constant model with K pieces, with one piece for each of the most 

recent K − 1 generations and another piece for the population size further back in time. 

(Here, we are considering a restricted class of piecewise-constant population size functions 

with fixed change points, so the minimum sample size needed for distinguishing such 

models using the SFS is K + 1 rather than 2K.) Such an algebraic algorithm could provide a 

more principled way of inferring demographic parameters, compared to existing inference 

methods that rely on optimization procedures which lack theoretical guarantees for functions 

with multiple local optima.

In our work, we focused on the identifiability of demography from the expected SFS data. 

However, if one were to use the complete sequence data or other summary statistics such as 

the length distribution of shared haplotype tracts, it might be possible to uniquely identify 

the demography using even smaller sample sizes than that needed when using only the SFS. 

Indeed, several demographic inference methods have been developed to infer historical 

population size changes from such data using anywhere from a pair of genomic sequences 

[14, 24, 32] to tens of such sequences [42], and it is important to theoretically characterize 

the power and limitations of both the data and the inference methods.
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Fig. 1. 
A piecewise-exponential population size function η ∈ ℳK(ℱe), where K ≥ 5. Note that the 

y-axis is in a log scale. This piecewise-exponential function depicts the historical population 

size changes of a European population that was estimated from the SFS of a sample of 1351 

(diploid) individuals of European ancestry [44].
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Fig. 2. 
Illustration of the sign changes of a function. For the domain shown, σ(g) = 3 and the sign 

change points of g are denoted t1, t2, and t3.
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Fig. 3. 
The leading entries of the expected SFS ξn for a piecewise-exponential population size 

model inferred b Tennessen et al. [44]. This demographic model, shown (up to scaling) in 

Figure 1, was fitted using the observed SFS from a sample of 1351 (diploid) individuals of 

European ancestry [44]. The blue plot is the expected SFS for n = 19, which matches the 

sample size bound in Corollary 8 for identifying piecewise-exponential models with up to 5 

pieces, while the green plot is the first 18 entries of the expected SFS for n = 2702 (1351 

diploids). The red and purple plots are the expected SFS for n = 19 and n = 2702, 

respectively, for a constant population size function.
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 (ℱ) sign change points. Also, the point τi+1 itself could be a sign change point in the interval between the last sign change point in piece (τi, τi+1) and the first sign change point in piece (τi+1, τi+2) where 0 ≤ i ≤ p − 1. These are all the possible sign change points of η̃1 − η̃2. Hence,(11)Since (11) holds for all η1, η2 ∈ ℳK (ℱ), the lemma follows.Proof of Theorem 4—The proof is by induction on the number of sign changes of f. If f has zero sign changes, then without loss of generality, f(t) ≥ 0 for t ∈ (0, ∞) and f(t) > 0 for some interval (a, b) ⊆ (0, ∞). Hence, G(x) > 0 for all x, and the base case holds. Suppose f has m + 1 sign change points t0,..., tm, where m ≥ 0. Note that G(x) and F(x) = et0x G(x) have the same real-valued roots (with multiplicity) since et0x > 0 for all x ∈ ℝ. F′ (x) is given bywhere the interchange of the differential and integral operators in the second equality is justified by the Leibniz integral rule because f is piecewise continuous over ℝ≥0, and both f(t)e−(t−t0)x and  are jointly continuous over (pi, pi+1) × (−∞, ∞) for each piece (pi, pi+1) over which f is continuous. Note that the set of sign change points of (t0 − t)f(t) is {t1,..., tm}. Hence, (t0 − t)f(t) has only m sign changes. By the induction hypothesis, F′ has at most m real-valued roots. By Rolle’s theorem, the number of real-valued roots of F is at most one more than the number of real-valued roots of F′. Hence, F has at most m + 1 real-valued roots, implying that G has at most m + 1 real-valued roots.Proof of Theorem 5—Suppose there exist two distinct population size functions η1, η2 ∈ ℱ that produce exactly the same cm for all 2 ≤ m ≤ n. From (4), we have that(12)for 2 ≤ m ≤ n. If we define the function G(x) asthen from (12), we see that  is a root of G(x) for 2 ≤ m ≤ n, and hence, G has at least n − 1 roots. Applying Theorem 4 to the piecewise continuous function η̃1 − η̃2, we see that G can have at most σ (η̃1 − η̃2) roots. Taking the supremum over all population size functions η1 and η2 in ℱ, we see that G can have at most 
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(ℱ) roots. Hence, if n − 1 > 
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 (ℱ), we get a contradiction. This implies that if n ≥ 
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(ℱ) + 2, no two distinct population size functions in ℱ can produce the same (c2,..., cn).Proof of Corollary 7—As remarked after Lemma 2, for the constant population size function family ℱc, 
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 (ℱc) = 0. Hence, by Theorem 6, if n ≥ 2K, the map c:  is injective.An alternate proof of Corollary 7 based on linear algebra—Let n ≥ 2K, and suppose there exist two distinct models η(1), η(2) ∈ ℳK(ℱc) that produce exactly the same cm for all 2 ≤ m ≤ n. Let η̃(1) and η̃(2) denote the time-rescaled versions of η(1) and η(2), respectively, as in (2). Since η(j) is piecewise constant with at most K pieces, η̃(j) is also piecewise constant with the same number of pieces as η(j), and η(1) ≠ η(2) implies η̃(1) ≠ η̃(2). Therefore, Δ̃ := η̃(1) − η̃(2) is a piecewise-constant function over [0, ∞) with p pieces, where 1 ≤ p ≤ 2K − 1, and Δ̃ is not identically zero. Let τ1 < ··· < τp−1 denote the change points of Δ̃, and define τ0 = 0 and τp = ∞. Suppose Δ̃(τ) = δi ∈ ℝ for all τ ∈ [τi−1, τi), where 1 ≤ i ≤ p. Since η̃(1) and η̃(2) produce the same for cm all 2 ≤ m ≤ n, we know that Δ̃ satisfies(13)for all 2 ≤ m ≤ n. Substituting the definition of Δ̃ into (13) and multiplying by , we obtain(14)for 2 ≤ m ≤ n. This defines a linear system Aδ = 0, where δ = (δ1,..., δp) and A = (ami) is an (n − 1) × p matrix with  for 2 ≤ m ≤ n and 1 ≤ i ≤ p.Let B = (bmi) be the (n − 1) × p matrix formed from A such that the ith column of B is the sum of columns i, i + 1,..., p of A. Defining αi = e−ti−1, note that  for 2 ≤ m ≤ n and 1 ≤ i ≤ p. Now, consider the p × p submatrix C of B consisting of the first p rows of B. Since α1 > α2 > ···> αp > 0, note that C is a generalized Vandermonde matrix, which implies det(C) ≠ 0 [8], Chapter XIII, Section 8. Hence, rank(B) = p. The rank of A is invariant under elementary column operations and, therefore, rank(A) = rank(B) = p. Therefore, the kernel of A is trivial, and the only solution to (14) is δ1 = δ2 = ··· = δp = 0, which contradicts our assumption that Δ̃ = η̃(1) − η̃(2) ≡ 0.Proof of Corollary 8—Let f1, f2 ∈ ℱe be given bywhere t ∈ ℝ≥0, ν1, ν2 ∈ ℝ+ and β1, β2 ∈ ℝ. Then, for i = 1, 2, the time-rescaled function f̃i is given by(15)for . From (15), it can be seen that f̃1 and f̃2 are continuous in their domains. Furthermore, for any given a ∈ ℝ≥0, there is at most one τ, where τ ∈ Dom(f̃1) and τ − a ∈ Dom(f̃2), such that g(τ) := f̃1(τ) − f̃2(τ − a) = 0, implying σ (g) ≤ 1. By the definition of sign change complexity in (5), it then follows that 
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 (ℱe) ≤ 1 for the exponential population family ℱe. Hence, applying Theorem 6, we conclude that n ≥ 4K − 1 suffices for the map c:  to be injective.Proof of Corollary 9—Let f1, f2 ∈ ℱg be generalized-exponential functions which satisfy the following differential equations and initial conditions: 
 where νi ∈ ℝ+, βi ∈ ℝ and γi ∈ ℝ≥0. The solutions for fi are given byIt can be shown that the time-rescaled population size functions f̃i are given by(16)In order to obtain an upper bound on 
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 (ℱg), we consider the following three cases depending on the functional form of f̃1 and f̃2 in (16):•Case 1: f̃1(τ) = ν1 exp(β1τ) and f̃2(τ) = ν2 exp(β2τ). Since f̃1 and f̃2 are continuous functions of τ, the number of sign changes of g(τ) := f̃1(τ) − f̃2(τ − a) is at most the number of roots of g(τ). Taking the logarithm of f̃1(τ) and f̃2(τ − a), it is easy to see that g(τ) has at most one root for any a ∈ ℝ≥0. Hence, σ(g) ≤ 1.•Case 2: f̃1 and f̃2 have different functional forms. Suppose f̃1(τ) = ν1 exp(β1τ) and 
. For any a1, a2 ∈ ℝ≥0 such that τ − ai ∈ Dom(f̃i), the number of sign changes of g(τ) := f̃1(τ − a1) − f̃2(t − a2) is at most the number of roots of g(τ). By raising f̃1(t − a1) and f̃2(t − a2) to the power of −γ2, we see that the number of roots of g(τ) is the number of solutions to
(17)where μ1 = ν1 exp(γ2β1a1) and 
. Equation (17) represents the intersection of an exponential function with a line and has at most 2 solutions for τ. Hence, σ(g) ≤ 2.•Case 3: 
 for i = 1, 2. Let g(τ) := f̃1 (τ ) − f̃2(τ − a) where a ∈ ℝ≥0 such that τ − a ∈ Dom(f̃2). Since g is a continuous function, the number of sign changes of g(τ) in ℝ≥0 is bounded by the number of distinct positive roots of g(τ). The number of distinct positive roots of g is the number of distinct positive solutions τ to
which is also the number of distinct positive solutions to
(18)Let 
. Since f̃1 is a time-rescaled population size function, x > 0 when τ ∈ ℝ≥0. Since βi ≠ 0 and γi > 0, (18) can be rewritten as
where 
 and 
. Letting h(x) := xγ2/γ1 + Ax + B, the number of distinct positive solutions for τ in (18) is at most the number of distinct positive roots for the generalized polynomial h. For any real-valued function g(x) possessing infinitely many derivatives and any interval I ⊆ ℝ, let Z(g, I) the number of zeroes of g contained in I, counted with multiplicity. By a consequence of Rolle’s theorem [15], Proposition 2.1, Z(g, I) ≤ Z(g′, I) + 1. Observing that 
 has at most one root in ℝ+, Z(h, ℝ+) ≤ Z(h′, ℝ+) + 1 ≤ 2. Hence, the number of distinct positive solutions τ to (18) is at most 2, and σ(g) ≤ 2.From the definition of sign change complexity in (5) and the bound on σ(g) in the three cases above, it follows that 
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 (ℱg) ≤ 2 for the generalized-exponential population family ℱg. Hence, applying Theorem 6, we conclude that n ≥ 6K − 2 suffices for the map c: 
 to be injective.Proof of Lemma 10—For the population size function ζ(t) defined by ζ(t) = κη(t/κ), note that Rζ(t) is given by
 is then given bySince n ≥ 2K + (2K − 1)
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(ℱ), by Theorem 6, ζ is the unique population size function in ℳK(ℱ) with 
 for 2 ≤ m ≤ n.To prove Theorem 12, we first need a lemma that characterizes a certain symmetry property of the invertible matrix that relates the genealogical quantities γ and c introduced in the proof of Lemma 1.Lemma 13—For a sample of size n, let W be the (n − 1) × (n − 1) invertible matrix such that 
, where γn,b is the total expected branch length subtending b leaves and 
 . Then, for every b and m, where 1 ≤ b ≤ n − 1 and 2 ≤ m ≤ n, we have the following identities: 
Proof: From the proof of Lemma 1, it can be seen that the matrix W is the product of 3 matrices whose entries are explicitly given combinatorial expressions. However, using Zeilberger’s algorithm [34], Polanski and Kimmel [36], equations (13)–(15), also derived the following recurrence relation for the entries of W: 
(19) where f(n, m) and g(n, m) are rational functions of n and m given byIt will be easy to prove our lemma by induction on m using (19). The base cases are easy to check: 
Using (19), we see that if m is odd,
 where the last equality follows from the induction hypothesis which implies Wb,m + Wn−b,m = 0 and Wb,m+1 − Wn−b,m+1 = 0. Similarly, if m is even,
 where again the last equality follows from the induction hypothesis.Proof of Theorem 12—For a sample of size n in the coalescent, let γn,b be the total expected branch length subtending b leaves, for 1 ≤ b ≤ n − 1. Then there exists a positive constant κ such that
(20) for all 1 ≤ d ≤ ⌊n/2⌋. Let 
. The relationship between f = (fn,1,..., fn, ⌊n/2⌋) and γ = (γn,1,..., γn,n−1) can be described by the linear equation
 where Z is an ⌊n/2⌋ × (n − 1) matrix with entries given by
 for 1 ≤ d ≤ ⌊n/2⌋ and 1 ≤ j ≤ n − 1. Hence, dim(ker(Z)) = ⌊ (n − 1)/2⌋.From Lemma 1, we know that γ; and c = (c2,..., cn) are related as γ = Wc, where W = (Wb,m) is an (n − 1) × (n − 1) invertible matrix, where 1 ≤ b ≤ n − 1 and 2 ≤ m ≤ n. Hence,
(21) where Y := ZW. Since Yb,m = Wb,m + Wn−b,m, we know from Lemma 13 that Yb,m = 0 for all odd values of m. Therefore, every other column of the matrix Y is zero. This implies that span({e3, e5,..., en−𝟙{n
even}}) ⊆ ker(Y), where ei is an (n − 1)-dimensional unit vector defined as ei = (ei,2,..., ei,n), with ei,i = 1 and ei,j = 0 for i ≠ j. Note that n − 𝟙{n even} = 2⌊ (n − 1)/2⌋ + 1 and dim(span({e3, e5,..., e2⌊ (n−1)/2⌋+1})) = ⌊ (n − 1)/2⌋. Now, since W is invertible, dim(ker(Y)) = dim(ker(ZW)) = dim(ker(Z)) = ⌊ (n − 1)/2⌋. Therefore,(22)Suppose there exist two distinct models η1, η2 ∈ ℳK (ℱ) that produce the same folded SFS f. Let c(1) and c(2) be the vector of genealogical quantities for models η1 and η2, respectively, where 
 and 
, 2 ≤ m ≤ n. From (21), we know that c(1) −c(2) ∈ ker(Y). Using (22), 
 can be written as
(23) for some αl ∈ ℝ. Since eij = 0 for i ≠ j, (23) implies that 
 for all even values of m, where 2 ≤ m ≤ n. Now applying a similar argument as in the proof of Theorem 6 to 
 for even values of m, we conclude that if ⌈(n − 1)/2⌉ > (2K − 2) + (2K − 1)
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(ℱ), then no two distinct models η1, η2 ∈ ℳK (ℱ) can produce the same f. This implies that a sample size n ≥ 2(2K − 1)(1 + 
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 (ℱ)) suffices for identifying the population size function in ℳK (ℱ) from the folded SFS f, and the conclusion of the theorem follows from (20) and Lemma 10.
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