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Toll-like receptor (TLR) signal transduction is a central component of the innate immune response to
pathogenic challenge. Although recent studies have begun to elucidate differences in acquired immunity in
tissues of the human female reproductive tract, there is a relative paucity of work regarding innate defense
mechanisms. We investigated TLR mRNA and protein expression in tissues of the human female reproductive
tract. Constitutive mRNA expression of TLRs 1 to 6 was observed in fallopian tubes, uterine endometrium,
cervix, and ectocervix. Furthermore, transcripts of the signaling adapter MyD88 and the accessory molecule
CD14 were also detected in all tissues assayed. Quantitative analysis of TLR2 mRNA levels revealed highest
expression of this molecule in fallopian tube and cervical tissues, followed by endometrium and ectocervix. In
contrast to TLR2, TLR4 expression declined progressively along the tract, with highest expression in the upper
tissues (fallopian tubes and endometrium), followed by cervix and ectocervix. In addition to mRNA, protein
expression of TLR2 and TLR4 was also documented in these tissues. These data suggest that TLRs are
differentially expressed in distinct compartments of the female reproductive tract and may provide insight

regarding the regulation of inflammation and immunity within the tract.

The human female reproductive tract is immunologically
unique in that it must tolerate allogeneic sperm and permit
implantation and fetal development while simultaneously de-
tecting and responding to a broad diversity of sexually trans-
mitted pathogens. To accommodate these disparate functions,
the female reproductive tract relies upon both innate and ac-
quired immune defense mechanisms. Thus, the epithelial cells,
macrophages, lymphocytes, and dendritic cells present within
the female genital tract possess unique features which permit
them to respond to a distinct microbiotic milieu (13). To me-
diate these responses, the innate immune system has evolved
to recognize distinct products of microbial metabolism present
on a wide variety of microorganisms. These conserved prod-
ucts, termed pathogen-associated molecular patterns, are rec-
ognized by a repertoire of invariant pattern recognition recep-
tors (8, 13).

Many functions of innate immunity are transduced through
pattern recognition receptors; recent studies impute a critical
role to one particular group of pattern recognition receptors,
the evolutionarily conserved mammalian Toll-like receptor
(TLR) family of proteins (14). These type I transmembrane
receptors are characterized by a leucine-rich extracellular do-
main and a conserved intracellular activation domain, which is
homologous to the interleukin-1 receptor and has thus been
designated the Toll/interleukin-1 receptor domain (3). Binding
of an activated Toll/interleukin-1 receptor domain to the
adapter protein MyD88 initiates a signaling cascade, leading to
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NF-kB activation and the subsequent production of proinflam-
matory and immunoregulatory cytokines, chemokines, and co-
stimulatory molecules (3).

Of the 10 cloned mammalian TLRs, TLR2 and TLR4 are
the best characterized with respect to innate responses to bac-
teria. TLR4, in association with accessory molecules MD-2 and
CD14, is the signal transduction receptor for gram-negative
bacterial lipopolysaccharide and heat shock proteins (16, 18,
19, 20, 24, 32). A broader range of microbial products activate
immune responses through engagement of TLR2, including
peptidoglycan from gram-positive bacteria (15), bacterial li-
popeptides (15), and zymosan (17).

Given the microbial diversity of the human female repro-
ductive tract and the significant role that TLRs play in medi-
ating innate immune recognition, we investigated Toll-like re-
ceptor expression in the fallopian tube, uterus, cervix, and
ectocervix. Constitutive expression of TLRs 1 to 6 as well as the
accessory molecule CD14 and the molecular adapter MyD88
was observed throughout the female reproductive tract. With
real-time reverse transcription-PCR, we demonstrated distinct
patterns of TLR2 and TLR4 mRNA expression in these tis-
sues. TLR2 and TLR4 proteins were also detected in each of
these tissues, indicating efficient translation of these tran-
scripts. These findings definitively establish TLR expression
within the human female genital tract and implicate TLR-
mediated immune surveillance as an important component of
defense in the female reproductive tract.

MATERIALS AND METHODS

Reproductive tract tissues. Human tissues were obtained immediately follow-
ing surgery from patients from whom informed consent was obtained. Donors
ranged in age from 26 to 81 years and were treated for a diversity of gynecologic
maladies. All tissues used in these studies were distal to sites of pathology and
were determined to be unaffected with disease at the gross anatomical level.
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TABLE 1. PCR primers used for amplification of pattern recognition receptors

Primer Forward sequence (5'-3") Reverse sequence (5'-3")

TLR1 ATTTCATATAGTGGGCACGATTC AAAGAGATT GTGATGGGCAAAGT
TLR2 GGCCAGCAAATTACCTGTGTG AGGCGGACATCCTGAACCT

TLR3 CCTGGTTTGTTAATTGGATTAACGA TGAGGTGGAGTGTTGCAAAGG
TLR4 CAGAGTTTCCTGCAATGGATCA GCTTATCTGAAGGTGTTGCACAT
TLRS TGCCTTGAAGCCTTCAGTTATG CCAACCACCACCATGATGAG

TLR6 GAAGAAGAACAACCCTTTAGGATAGC AGGCAAACAAAATGGAAGCTT
MyD88 GAGCGTTTCGATGCCTTCAT CGGATCATCTCCTGCACAAA

MD2 ATTCCAAGGAGAGATTTAAAGCAATT CAGATCCTCGGCAAATAACTTCTT
CD14 CGCTCCGAGATGCATGTG TTGGCTGGCAGTCCTTTAGG

Approval to use human tissues was obtained from the Human Experimentation
Committee in accordance with the human experimentation guidelines of the U.S.
Department of Health and Human Services.

RNA isolation and reverse transcription-PCR. Total RNA was isolated from
tissue by sequential extraction with Trizol reagent (Invitrogen) followed by pu-
rification with RNeasy mini columns (Qiagen). RNA integrity was confirmed by
agarose gel electrophoresis, and RNA was quantified by spectrophotometric
analysis. Prior to amplification, all RNA samples were treated with RNase-free
DNase I (Qiagen) to preclude genomic DNA contamination. With 500 ng of
RNA as the template for each reaction, first-strand cDNA was synthesized with
random primers and SuperScript II Moloney murine leukemia virus reverse
transcriptase (Invitrogen). PCR analysis was performed with Tag DNA polymer-
ase for 35 cycles in a PCR Express Gradient thermocycler (Hybaid) with the
primer pairs delineated in Table 1. Cycling conditions were as follows: 2 min of
initial denaturation at 95°C, followed by 35 cycles, each of which consisted of 30 s
at 94°C, 30 s at 57°C, and 45 s at 72°C, followed by a final extension at 72°C for
5 min. Reactions were amplified in the absence of reverse transcriptase as
negative controls. A nontemplate control reaction was also included to ensure
lack of DNA contamination; 10 pl of PCR product was electrophoresed on a
1.5% agarose gel with 0.5% ethidium bromide and photographed under UV
light.

TagMan PCR. For quantification of TLR2 and TLR4 expression in tissues of
the female reproductive tract, TagMan PCR analysis was employed; 0.5 nl per
well of cDNA was transferred into i-Cycler 96-well plates (Bio-Rad), and Taq-
Man Master Mix (Applied Biosystems) was added in accordance with the man-
ufacturer’s instructions. The primer pairs used for amplification of TLR2 were
(5'-3") GGC CAG CAA ATT ACC TGT GTG and AGG CGG ACA TCC TGA
ACCT, and those for TLR4 were (5'-3") CAG AGT TTC CTG CAA TGG ATC
A and GCT TAT CTG AAG GTG TTG CAC AT.

TagMan MGB probes (labeled with fluorescent reporter dye 6FAM) were
used for analysis of TLR2 (TCC ATC CCA TGT GCG TGG CC) and TLR4
(CGT TCA ACT TCC ACC AAG AGC TGC CT). Input cDNA was normalized
with a validated predeveloped assay reagent B-actin primer probe pair (Applied
Biosystems) as an internal control. Amplification was performed on an iCycler
with an optical unit (Bio-Rad) that permits real-time monitoring of increased
PCR product concentration. Threshold cycle number was determined with the
Opticon software and levels of TLR mRNA expression were normalized to
B-actin levels with the formula 2 — ~(B'"RO where Rt is the mean threshold cycle
for the reference gene (B-actin) and Et is the mean threshold cycle for the
experimental gene. Relative fluorescence units (RFU) were assigned to these
values, and these data were used to generate the expression profiles delineated
in the text. The thermal profile for TagMan PCR consisted of 2 min at 50°C and
10 min at 95°C, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
Amplicon accumulation was measured during the extension phase. All reactions
were performed in duplicate. Data were analyzed with the iCycler analysis
software, version 2.3. (Bio-Rad).

Immunoprecipitation and immunoblotting. Cell lysates were prepared by me-
chanical disruption of snap-frozen tissue in T-PER lysis reagent (25 mM Bicine,
150 mM NaCl, pH 7.6) (Pierce) with a mortar and pestle. Samples were centri-
fuged at 10,000 rpm for 5 min to pellet cell debris, and supernatants were
collected, aliquoted, and stored at —80°C. Protein concentrations were deter-
mined by the BCA protein assay (Pierce). TLR2 was immunoprecipitated from
1 mg of each protein lysate with a rabbit polyclonal anti-TLR2 antibody (H-175)
(Santa Cruz Biotechnology). Immunoprecipitation of TLR4 was performed with
a mouse monoclonal anti-TLR4 antibody (HTA 125) (Santa Cruz Biotechnol-
ogy). Immune complexes were captured with protein A/G-Sepharose beads
(Pierce) for 2 h at 4°C, and the beads were washed four times with 100 mM NaCl.

To ensure the specificity of protein-antibody interaction, lysates were incu-
bated with beads in the absence of antibody as well as with an irrelevant P3
immunoglobulin G1 isotype control (Caltag). Proteins were resolved by sodium
dodecyl sulfate (SDS)-10% polyacrylamide gel electrophoresis (PAGE) and
electrotransferred to nitrocellulose membrane in Tris-glycine buffer, with 20%
methanol. Immunoblots were washed with 1X phosphate-buffered saline-0.05%
Tween 20 and blocked in 5% milk for 1 h at room temperature. Membranes were
then probed with goat polyclonal antibody N-17 (Santa Cruz Biotechnology) for
detection of TLR2, followed by donkey anti-goat horseradish peroxidase-conju-
gated secondary antibody (Santa Cruz Biotechnology). TLR4 was detected by
probing immunoprecipitates with rabbit polyclonal anti-TLR4 antibody H-80
(Santa Cruz Biotechnology), followed by goat anti-rabbit horseradish peroxi-
dase-conjugated secondary antibody (Bio-Rad). Reactive antigens were visual-
ized with Supersignal chemiluminescence substrate (Pierce).

Statistical Analysis. Data are represented as mean * standard deviation.
Comparisons among tissue types were made with paired tissue samples derived
from the same patient. The sample size for each comparison is indicated in the
upper right quadrant of each figure. For each paired graphical representation,
the RFU value of the tissue type represented in the first column was set to 1
(divided by itself), and the values of the second column are represented as a
fraction of the first-column values. Statistical analysis was performed on the RFU
values of each pair of columns with a paired ¢ test with two-tailed P values.
Statistical significance was achieved at P =< 0.05.

RESULTS

Tissues of the human female reproductive tract express
TLR family members 1 to 6 as well as adaptor molecule
MyD88 and accessory molecules CD14 and MD2. Although
previous work has described the distribution of TLRs 2 and 4
in the mouse genital tract (4, 6), a comprehensive analysis of
TLR mRNA expression in human tissues of the female repro-
ductive tract has not been reported. Given the fundamental
role attributed to TLRs in mediating innate immunity and the
broad scope of microbial challenges encountered by the female
reproductive tract, initial studies examined the TLR mRNA
expression profiles of the fallopian tube, uterine endometrium,
cervix, and ectocervix. Total RNA was extracted from homog-
enized whole tissue and analyzed for TLR expression by re-
verse transcription-PCR. As presented in Fig. 1, mRNA ex-
pression of TLRs 1 to 6 was detected in all four tissue types.

In addition to ligand engagement, recruitment of the adap-
tor molecule MyDSS is required for most TLR-mediated signal
transduction (25, 26). Moreover, biochemical and genetic evi-
dence indicates that complex formation with the bacterial co-
receptor CD14 is necessary for maximal activation of TLR2
and TLR4 signaling (10, 32) and suggests a similar require-
ment for MD-2 association (for MyD88-dependent TLR4 sig-
naling) (24). Significantly, all tissues analyzed demonstrated
mRNA expression of these molecules (Fig. 1).
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FIG. 1. mRNA expression of TLRs, MyD88, MD-2, and CD14 in
tissues of the female reproductive tract. Total RNA was extracted from
fallopian tube, endometrial, cervical and ectocervical tissues, reverse
transcribed, and amplified with the primers described in Table 1 for
expression of pattern recognition receptors. For each tissue, the data
shown are representative of gene expression observed in 10 different
patient samples.

mRNA expression levels of TLR2 and TLR4 in human fe-
male reproductive tract tissues. Bacterial infection within the
female genital tract can have potentially devastating conse-
quences, including chronic inflammation and infertility (11,
23). Innate immunity mediated by TLR2 and TLR4 signaling
may provide a means of detecting and responding to these
pathogens. As our preliminary studies confirmed mRNA ex-
pression of TLR2 and TLR4 in female reproductive tract tis-
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sue, we next quantified transcript levels of these receptors with
TagMan PCR. To determine if quantitative differences in
mRNA expression levels were evident in different regions of
the female reproductive tract, tissues derived from the same
patient were compared in pairs, and statistical analysis per-
formed. TLR mRNA expression levels were normalized to
B-actin; we validated utilization of this gene by analyzing rel-
ative expression among tissues of the human female reproduc-
tive tract. The data shown in Fig. 2 (in which B-actin mRNA
expression of each tissue type is represented by threshold cy-
cle) indicated minimal variability in B-actin mRNA levels.
Figure 3 shows TagMan real-time quantitative PCR analysis
of TLR2 expression in tissues of the human female reproduc-
tive tract. Striking and significant differences were observed
with respect to TLR2 mRNA levels in some of the tissues
examined. In particular, TLR2 expression was significantly
lower in endometrium than in either fallopian tube or cervix
(Fig. 3A and 3B). While the mean for endometrial TLR2
expression was also lower than that of ectocervix (Fig. 3C), this
was not statistically significant. There was also no significant
difference between fallopian tube and cervical TLR2 expres-
sion (Fig. 3D), but the disparity in mRNA levels between
cervix and ectocervix—as well as between fallopian tube and
ectocervix—was significant (Fig. 3E and F). Although normal-
ization was essential for the above comparison of composite
data for TLR2 expression in multiple samples from different
tissues (Fig. 3), these differences are perhaps better appreci-
ated by examination of RFU values without normalization, as
presented for a representative patient sample (see Fig. SA).

CN=4

FT EM

(29 ECX

Tissue Type

FIG. 2. Validation of B-actin as a normalization control. Total RNA was extracted from each female reproductive tract tissue, reverse
transcribed, and analyzed by TagMan PCR with validated B-actin primers and probe (as described in the text). Comparisons were made with tissue
samples derived from the same patient to maintain internal consistency; therefore, four individual patients from whom fallopian tube (FT),
endometrium (EM), cervix (CX), and ectocervix (ECX) samples were obtained are represented in this study. All reactions were performed in

triplicate.
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FIG. 3. TLR2 mRNA is most highly expressed in fallopian tubes and cervix. Total RNA was isolated from the fallopian tube (FT), endometrium
(EM), cervix (CX), and ectocervix (ECX) as described in the text, and reverse transcription was performed with random hexamers. Comparisons
among tissue types were made with paired tissue samples derived from the same patients. The sample size for each comparison is indicated in the
upper right quadrant of each figure. Real-time PCR analysis of relative TLR2 mRNA expression was performed in duplicate with TagMan TLR2-
and B-actin-specific primers and probes. Samples incubated in the absence of reverse transcriptase were analyzed as well to control for genomic

DNA contamination.

To determine whether or not TLR4 transcript levels mir-
rored those observed with TLR2, real-time quantitative PCR
analysis was also performed on these tissues with TLR4-spe-
cific primers. Intriguingly, a distinct expression profile was ob-
served. In contrast to TLR2, mean TLR4 mRNA levels in
endometrium tended to be higher than for other tissues and
were significantly different when comparing endometrium to
cervix and ectocervix (Fig. 4B and C). Moreover, there was a
progressive decline in TLR4 expression moving down the re-
productive tract from endometrium to cervix to ectocervix
(Fig. 4B, C, and E). In fact, expression of TLR4 in ectocervix
was lower than that in any other tissue (Fig. 4 C, E and F). In
contrast to TLR2 expression, there was no significant differ-
ence between fallopian tube and endometrial TLR4 mRNA
levels (Fig. 4A). Representative data from a single patient are
shown in Fig. 5B.

Expression of TLR2 and TLR4 protein in tissues of the
female reproductive tract. Consistent with their roles in im-
mune surveillance, we detected expression of TLR2 and TLR4
transcripts in tissues of the upper and lower female reproduc-
tive tract. To confirm proper posttranscriptional processing
and expression of these molecules, TLR2 and TLR4 were
immunoprecipitated from a random sampling of fallopian
tube, endometrium, and cervix and examined by immunoblot
analysis. As demonstrated in Fig. 6, TLR2 and TLR4 proteins
were expressed, to variable extents, in all three tissue types. In
each immunoblot, a specific band was detected that corre-
sponded to the reported full-length moieties of TLR2 and
TLRA4. The specificity of each antigen-antibody interaction was
confirmed by simultaneous immunoprecipitation with a P3

control antibody, followed by Western blot analysis for TLR2
and TLR4. Neither TLR2 nor TLR4 was nonspecifically im-
munoprecipitated by the P3 antibody (data not shown).

DISCUSSION

Recent studies have suggested that upper and lower tissues
of the female reproductive tract are phenotypically compart-
mentalized with respect to acquired immunity. For example,
functional studies with a model of Chlamydia trachomatis in-
fection in mice indicated preferential recruitment of CD4™ T
lymphocytes to upper regions of the genital tract during infec-
tion (9). In addition, Yeaman et al. demonstrated the existence
of unique CD8"-T-cell-rich lymphoid aggregates in human
endometrium (33). In contrast, relatively little is known about
innate immune responses within the human female reproduc-
tive tract. Our findings are the first to characterize TLR ex-
pression in nontumorigenic complex tissues of the human fe-
male genital tract. We observed constitutive in vivo expression
of TLRs 1 to 6, MyD88, and the accessory molecules CD14 and
MD-2 in fallopian tube, endometrium, cervix, and ectocervix.
Real-time quantitative PCR demonstrated variable expression
of TLR2 and TLR4 among tissues of the upper and lower tract.
These differences likely occur through a variety of mechanisms
and may reflect adaptation of the innate immune response to
the distinct microbial milieu encountered by each tissue.

In this regard, it is imperative to consider the unique micro-
environment of each female reproductive tract compartment.
The nonsterile lower tissues of the tract, the vagina and ecto-
cervix, harbor a variety of commensal bacteria which maintain
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FIG. 4. TLR4 mRNA expression declines along tissues of the female reproductive tract. cDNA was synthesized by reverse transcription from
total RNA, and relative TLR4 mRNA levels were assessed by real-time PCR analysis with normalization to B-actin controls. Each reaction was
performed in duplicate. Comparisons among tissue types were made with paired tissue samples of the fallopian tube (FT), endometrium (EM),
cervix (CX), and ectocervix (ECX) derived from the same patients. The sample size for each comparison is indicated in the upper right quadrant

of each panel.

low vaginal pH (reviewed in reference 21). In addition to
sexually transmitted pathogenic challenges, these tissues are
subject to secondary contamination as a result of their prox-
imity to rectal flora. The cervix, while not exposed to the same
breadth of microbiota as the vagina and ectocervix, is consid-
ered an immunologically dynamic site; cervical mucus provides
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an impediment to sperm and bacterial infiltration of the uterus
(5). The most common cervical pathogens are the gram-nega-
tive bacteria Neisseria gonorrhoeae and Chlamydia trachomatis
(21). The uppermost section of the female reproductive tract
consists of the fallopian tube and endometrium. Although in-
fection of these sites is uncommon, ascending pathogens (par-
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FIG. 5. Representative analysis of TLR2 and TLR4 expression profiles. (A) Total RNA was extracted from fallopian tube (FT), endometrium
(EM), cervix (CX), and ectocervix (ECX) samples of patient 2532 and reverse transcribed with random hexamers. TLR2 levels were quantified
by real-time analysis with Tagman TLR2 primers and probes as in Fig. 3. (B) TLR4 mRNA levels were quantified in fallopian tube (FT),
endometrium (EM), cervix (CX), and ectocervix (ECX) samples derived from patient 2560 by real-time Tagman PCR as described for Fig. 4.
Reactions were standardized against B-actin and are expressed in relative fluorescence units (RFU). Values shown are the means of duplicate PCR

runs, which never varied by more than 3%.
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FIG. 6. Detection of TLR2 and TLR4 proteins in upper and lower tissues of the female reproductive tract. Whole-cell lysates were generated
from total tissue of the fallopian tube (FT), endometrium (EM), cervix (CX), and ectocervix (ECX) and quantified with the BCA kit. One
milligram of each of these lysates was immunoprecipitated with either (A) anti-TLR2 polyclonal antibody (H-175) or (B) mouse monoclonal
anti-TLR4 antibody (HTA 125), and subsequently probed with (A) goat polyclonal antibody N-17 for detection of TLR2 or (B) rabbit polyclonal
anti-TLR4 antibody H-80. Data shown are representative of three separate immunoprecipitations from three different tissues.

ticularly N. gonorrhoeae and C. trachomatis) may breach the
mucosal barrier of the cervix, resulting in adverse reproductive
consequences, including the development of pelvic inflamma-
tory disease, tubal factor infertility, and ectopic pregnancy (2,
12, 27, 31).

Given the roles imputed to TLR2 and TLR4 in the regula-
tion of innate immunity and response to bacterial challenge,
we examined quantitative expression of these pattern recogni-
tion receptors in tissues of the female genital tract. Our find-
ings indicate that TLR2 is most highly expressed in fallopian
tubes and cervix, with lower levels present in endometrium and
ectocervix. TLR2 is activated by a broad spectrum of patho-
gen-associated molecular patterns, including peptidoglycan
from gram-positive bacteria, bacterial lipoproteins, mycobac-
terial cell wall lipoarabinomannan, and yeast cell walls (15, 17,
25). This diversity of ligands may account for the importance of
its elevated expression in fallopian tube and cervical tissue; less
apparent is the reduced TLR2 expression observed in the en-
dometrium. It is possible that this expression pattern is related
to the role of the endometrium in the maintenance of an
environment hospitable to fetal implantation. Thus, TLR2 ex-
pression may be maintained at a low level in the healthy uterus
but be upregulated in response to pathogenic challenge as a
defense mechanism that can be mobilized to protect the fetus
from infection during pregnancy and labor. In this model,
TLR4 levels may be sufficiently high to preclude infection of
endometrium by organisms that are commonly encountered.
TLR2 expression, while constitutively low, would be inducible
postinfection. In fact, studies conducted by Watari et al. have
shown that TLR2 expression is augmented by tumor necrosis
factor alpha (29). Thus, TLR4 engagement, which results in
the production of tumor necrosis factor alpha, would precipi-
tate a more vigorous inflammatory response subsequent to
increased expression of TLR2.

Intriguingly, TLR4 mRNA was most highly expressed in
fallopian tube and endometrium, tissues most likely to be chal-
lenged by gram-negative N. gonorrhoeae and C. trachomatis
(21). Increased innate surveillance at these sites (manifested by

increased TLR4 expression) may provide a means of ensuring
sterile conditions while conferring protection from microbial
challenge. The tissues of the lower tract, the cervix and ecto-
cervix, which maintain a first line of defense for the female
reproductive tract, are exposed to a much broader variety of
infectious agents. The decreased expression of TLR4 associ-
ated with cervix and ectocervix is no doubt reflective of the
complex microbiota associated with these tissues. Clearly, it is
essential that these tissues develop a mechanism for selectively
responding to pathogens while avoiding chronic inflammation
due to immune responses to commensal bacteria. Limiting
TLR4 levels may provide a means of regulating sensitivity to
bacterial components in the lower tract.

Previous work conducted with primary human vaginal, en-
docervical, and ectocervical epithelial cells detected mRNA
expression of TLRs 1, 2, 3, 5, and 6 but failed to observe
expression of TLR4 and MD-2 (7). Although these cells were
unresponsive to protein-free preparations of lipopolysaccha-
ride from Escherichia coli as well as lipooligosaccharide from
N. gonorrhoeae, they did mount inflammatory responses to
whole gram-negative bacteria and bacterial lysates (7). While
this study differs from ours in that we evaluated TLR expres-
sion in total tissue lysate as opposed to a single cell type, these
data are significant in light of our discovery that while TLR4
expression is low in cervical tissue, TLR2 mRNA levels are
relatively high (comparable to those observed in fallopian
tube). It is possible that under conditions of low TLR4 expres-
sion, TLR2 is activated, either because of redundant or alter-
native ligand recognition. This model is supported by a recent
report from Darville et al., in which recognition of C. tracho-
matis was shown to be mediated by TLR2 in TLR4 knockout
mice (4). In addition, TLR4-deficient gingival epithelial cells
respond to gram-negative bacteria via TLR2 ligands (1).

Recruitment of the adaptor protein MyD88 is critical for
most TLR-mediated signal transduction and activation of
NF-kB and mitogen-activated protein kinase (25). Although
MyDS88-independent signaling does occur, MyDS8S8 is required
for lipopolysaccharide-induced tumor necrosis factor alpha
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TABLE 2. Summary of patient population

Patient Age

Menstrual stage o, 1) Diagnosis
Postmenopausal 2497 48 Endometrial hyperplasia
2561 58 Endometrial hyperplasia
2549 65 Prolapse
2574 50 Fibroids
2490 54 Prolapse
2515 54 Menorrhagia
2583 81 Prolapse
2500 58 Prolapse
Proliferative 2560 48 Fibroids
2506 26 Pelvic pain
2567 42 Pelvic mass
2536 30 Pelvic pain
2535 45 Dysmenorrhea
2522 28 Cervical cancer
2527 38 Pelvic pain
2551 50 Menorrhagia
Secretory 2531 41 Menorrhagia
2521 34 Menorrhagia
2577 44 Fibroids
2502 48 Prolapse
2544 37 Dysmenorrhea
2542 35 Dysmenorrhea
2573 41 Dysmenorrhea
2539 38 Secretory
Unknown 2579 47 Fibroids
2511 38 Prolapse
2564 51 Endometrial hyperplasia
2532 58 Ovarian mass

production (30). Our studies demonstrate ubiquitous expres-
sion of MyD88 throughout the female reproductive tract,
which is consistent with its role as an intracellular adaptor for
multiple and varied receptors. Furthermore, CD14 and MD-2
are necessary for fully efficient microbial recognition by TLR2
and TLR4; we detected constitutive expression of both these
transcripts in fallopian tube, endometrium, cervix, and ecto-
cervix. Thus, the tissues of the female reproductive tract pos-
sess the full complement of adaptor and accessory molecules
required for optimal TLR2- and TLR4-mediated signal trans-
duction.

In addition to mRNA expression, we also demonstrated the
presence of TLR2 and TLR4 protein in human fallopian tube,
endometrium, and cervix. It is notable that detection of these
receptors required an initial immunoprecipitation step prior
to immunoblotting, indicating low constitutive expression of
these proteins within the female reproductive tract. These data
are not surprising, as surface expression of TLRs in monocytes
has been shown to be limited to a few thousand molecules per
cell (28). These relatively low TLR protein expression levels
imply that these receptors function as extremely efficient signal
transducers.

With a murine model, Renshaw et al. demonstrated an in-
verse correlation between macrophage TLR expression and
aging (22). Similarly, we analyzed TLR2 and TLR4 mRNA
expression levels in tissues from 28 donors, ranging in age from
26 to 81 years (summarized in Table 2). In contrast to obser-
vations in mice, there was not a statistically significant differ-
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ence in TLR mRNA expression levels with respect to age for
our samples. There was similarly no significant correlation
between receptor expression and menstrual stage. These find-
ings may be due to higher inherent TLR expression variability
among human subjects than in inbred mice and suggest that
evaluation of a much larger population will be necessary to
reveal potential expression differences that might exist in re-
lation to age or hormonal status. It is also important to note
that our experiments were conducted with heterogeneous cell
populations and thus do not exclude the possibility that TLR
expression might differ with age and/or hormonal status in
distinct cell types.

In conclusion, we have demonstrated that TLRs 1 to 6 are
constitutively expressed in the human female reproductive
tract. The pattern recognition receptors TLR2 and TLR4 show
quantitatively distinct mRNA expression profiles among tis-
sues of the female genital tract, and transcripts of these mes-
sages are expressed as proteins within the fallopian tubes,
endometrium, and cervix. This study is the first to comprehen-
sively examine in vivo expression of TLRs 1 to 6 within the
human female reproductive tract. An enhanced understanding
of innate immune mechanisms within the female reproductive
tract and their role in bacterial recognition may provide insight
into the pathogenesis of sexually transmitted diseases and the
deleterious sequelae associated with genital tract inflamma-
tion.
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