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ABSTRACT

Homologous recombination (HR) is a conserved process that maintains genome stability and cell survival
by repairing DNA double-strand breaks (DSBs). The RAD51-related family of proteins is involved in repair
of DSBs; consequently, deregulation of RAD51 causes chromosomal rearrangements and stimulates
tumorigenesis. RAD51C has been identified as a potential tumor suppressor and a breast and ovarian
cancer susceptibility gene. Recent studies have also implicated estrogen as a DNA-damaging agent that
causes DSBs. We found that in ERa-positive breast cancer cells, estrogen transcriptionally regulates
RAD51C expression in ERe-dependent mechanism. Moreover, estrogen induces RAD51C assembly into
nuclear foci at DSBs, which is a precursor to RAD51 complex recruitment to the nucleus. Additionally,
disruption of ER« signaling by either anti-estrogens or siRNA prevented estrogen induced upregulation of
RAD51C. We have also found an association of a worse clinical outcome between RAD51C expression and
ERa status of tumors. These findings provide insight into the mechanism of genomic instability in ERa-
positive breast cancer and suggest that individuals with mutations in RAD51C that are exposed to
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estrogen would be more susceptible to accumulation of DNA damage, leading to cancer progression.

Introduction

Homologous recombination (HR) is a conserved process that
maintains genome stability and cell survival by repairing DNA
double-strand breaks (DSBs). DSBs arise from V(D)] recombi-
nation, meiosis, class switch recombination, exposure to reac-
tive oxygen species, ionizing radiation (IR), ultraviolet light or
chemotherapeutic agents as well as DNA replication. Unre-
paired DSBs represent the most detrimental form of DNA
damage and lead to accumulation of chromosome aberrations
that may lead to immunodeficiency, neurodegeneration and
cancer susceptibility. The importance of proper HR to DSB
repair is further supported by findings that impaired HR is
associated with genetic diseases such as ataxia telangiectasia,
Nijmegen breakage syndrome, Fanconi anemia (FA) and
Bloom’s syndrome."* Importantly, mutations in HR-related
genes are associated with tumorigenesis and cause accumula-
tion of unrepaired DSBs leading to increased genomic instabil-
ity and cancer. Breast cancer is the most common cancer
affecting women, and ~5% of cases are due to inherited muta-
tions in BRCAI and BRCA2 genes, encoding for tumor sup-
pressors that are involved in HR and DSB repair. Heterozygous
mutation of BRCAI or BRCA2 increases the risk of developing
breast cancer by 80% and ovarian cancer by 40%.>"°

RAD51 is a small monomeric protein that assembles into
long helical polymers on single strand DNA at the break site
during HR and is important for DSB repair.” Deregulation of
RADS51 in human cells causes chromosome rearrangements
and stimulates tumorigenesis.® RAD51 paralogs is a family of

proteins that help RAD51 recruitment to the DNA break sites
and include RAD51B, RAD51C, RAD51D, XRCC2 and
XRCC3.”" These paralogs share 20-30% of identity at the
amino acid level and can assemble into 2 distinct complexes:
RAD51B/RAD51C/RAD51D/XRCC2 complex and RAD51C/
XRCC3 complex, with RAD51C being the only member that is
part of both complexes.*'*'> Mutation of Rad51 paralogs in
mice causes early embryonic lethality and accumulation of
unrepaired DNA damage,'®'” highlighting their function in
preserving genomic integrity. Abrogation of their function in
Chinese hamster ovary (CHO) cells or chicken DT40 B-lym-
phocytes sensitizes cells to ionizing radiation (IR) and DNA
damaging agents such as mitomycin C, cisplatin and campto-
thecin.'"®?®  Additionally, RAD51-deficient cells exhibit
increased chromosomal aberrations, abnormal centromere
number, reduced frequency of DSB repair and reduced sister
chromatid exchanges. Knockdown of RAD51 expression was
able to inhibit cancer cell migration as well as tumor growth
and metastasis,”” highlighting the role of RAD51 in triple nega-
tive breast cancers (TNBC). Specifically, in TNBC, it has been
shown that co-inhibition of RAD51 together with p38 reduced
cell proliferation and may be a novel clinical strategy.*®
RAD51C, which has a role in HR and RAD51 recruitment to
DSBs, has been recently identified as a potential tumor suppres-
sor’” and a breast and ovarian cancer susceptibility gene.’**
RADS51C appears to have a uniquely important role in breast
cancer. RAD51C is localized to the chromosomal region 17923,
an amplicon present in high copy number in breast cancer.””>”
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An additional link between RAD51C and breast cancer stems
from direct interaction of BRCA2 with RAD51 complex, which
directs BRCA2 to the sites of DNA damage.’>*” BRCA1 local-
izes with RADS51 into nuclei foci,®® further implicating RAD51
paralogs in both DSB repair and breast cancer.

Upon DNA damage caused by IR, RAD51C accumulates
into nuclear foci and co-localizes with RAD51. Moreover,
RADS5I1C is thought to regulate the translocation of RAD51
from the cytoplasm to the nucleus via the nuclear localization
signal.>>** Rad5Ic deletion in mouse embryonic fibroblasts
(MEFs) also results in reduction in sister chromatid exchanges
and failure to proliferate, indicating that RAD51C is required
for inter-sister chromatid recombination repair in mice.*' Fur-
thermore, RAD51C-mutated breast and ovarian cancers have
similar histopathology to that of BRCA2-defective cancers indi-
cating the involvement of RAD51C in recombinational repair.*’
Additionally, recent clinical studies linked germline mutation
in RAD51C with development of FA-like disorder,** further
underscoring the crucial role of RAD51C in DSB repair.

In addition to its role in DSB repair, RAD51C also acts as a
mediator of checkpoint signaling. In response to DNA damage,
RADS51C facilitates phosphorylation of checkpoint kinase 2
(CHK2) by ataxia-telangiectasia mutated (ATM) and delays
cell cycle progression.”> CHK2 is a cancer susceptibility gene
mutations in which have been identified in familial breast and
prostate cancers***’ that relays DNA damage signaling and
regulates cell cycle progression, DNA repair and progression to
senescence or apoptosis.*® Additionally, in HR-mediated DSB
repair, CHK2 phosphorylates BRCA1* further connecting the
proper regulation of DSB repair and checkpoint signaling in
cancer.

Recent studies implicated estrogen as a DNA-damaging
agent that causes DSBs. It was found that treatment of breast
cancer cells with estrogen induced DSBs and caused co-
localization with RADS51,>" suggesting that defects in DSB
repair could contribute to ERa-positive breast cancer patho-
genesis. RAD51C is localized at the chromosomal region 17923,
which appears to be a hotspot for estrogen-driven gene expres-
sion.”’ Importantly, expression of several genes within this
amplicon have been shown to be regulated by estrogen, includ-
ing RPS6KBI1, PPM1D and MIR21 - all of which have onco-
genic roles in breast cancer.””>* Based on these findings, we
hypothesized that estrogen may regulate RAD51C expression
and DSB repair. Indeed, we found that in ERa-positive breast
cancer cells, estrogen transcriptionally regulates RAD51C
expression in ERa-dependent mechanism. Moreover, estrogen
induces RAD51C assembly into nuclear foci at DSBs, which is
a precursor to RAD51 recruitment to the nucleus. Finally, we
found a prognostic correlation between ERa-positive breast
cancer and RAD51C expression, further establishing the clini-
cal significance of these findings.

Results

Estrogen induces RAD51C expression in ERa-positive but
not ERu-negative breast cancer cells

To confirm that estrogen induces DNA damage, ERa-positive
and ERa-negative breast cancer cells were treated with estrogen
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for 30 minutes, which was sufficient to induce DNA damage
response signaling as analyzed by phosphorylation of ATM on
S1981 and Chk2 on T68 (Fig. 1A). Although phosphorylation
of ATM on S1981 was preferentially induced in ERa-positive
breast cancer cells, phosphorylation of Chk2 on T68 was acti-
vated irrespective of the ERo status of the cell, indicating that
this process does not require estrogen receptor signaling. Estro-
gen effect was specific to activation of DNA-damage response
pathway and not general cytoplasmic kinase signaling as levels
of phospho-ERK remained unchanged. Previous work has
shown that estrogen induces localization of RAD5I to the sites
of DNA damage, and RAD51C regulates nuclear translocation
of RAD51.***" Because RAD5IC is localized to the 17q23
region, which contains estrogen regulated genes, we wanted to
test whether estrogen can induce RAD51C expression in ERar-
dependent manner. As shown in Fig. 1B and quantified in
Fig. 1C, estrogen treatment caused upregulation of RAD51C
expression in the ERa-positive MCF7, T47D, and ZR-75-1
breast cancer cells. As expected, expression of TFF1, a known
estrogenically-regulated gene is induced solely in ERa-positive
MCEF7 and ZR 75-1 cells and not ERa-negative cells (Fig. 1B).
T47D cells express TFF1 at much lower levels reflecting hetero-
geneity among ER-positive cell lines. Most importantly, the
effect of estrogen on RAD51C expression appeared dependent
on the presence ERe, as in ERa-negative MDA-MB-231, —436,
and —468 cells, RAD51C levels were not affected by estrogen
treatment (Fig. 1B).

Estrogen induces RAD51C focus formation in
ERa-dependent manner

Since estrogen has previously been shown to induce DNA dou-
ble-strand breaks, and we observed that estrogen regulates
RAD5IC protein expression, we hypothesized that estrogen
can also induce nuclear RAD51C focus formation in ERe-
dependent manner. Using immunofluorescence, we observed
that estrogen induces yH2A.X foci in the nucleus of T47D
breast cancer cells, a marker of DNA double-strand breaks, as
previously shown.”® Importantly, similar to estrogen’s induc-
tion of yH2A X foci formation, RAD51C foci were also induced
by estrogen treatment (Fig. 2A). This finding was further
observed in another ERa-positive breast cancer cell line, MCF7
(Fig. 2B). To test for the requirement of ERx in estrogen-
induced RAD51C focus formation, MDA-MB-231 cells, an
ERa-negative breast cancer cell line was used. As expected,
MDA-MB-231 cells did not show induction of yH2A.X or
RADS51C foci upon estrogen treatment (Fig. 2C), indicating
that RAD51C localization to the DNA double-strand breaks
requires ERa.

Estrogen directly regulates RAD51C expression via ERx

To confirm that the regulation of RAD51C expression is medi-
ated by ERa, we downregulated ERo expression using a combi-
nation of 2 siRNA against ERe (Supplementary Fig. 1) and
treated the cells with estrogen for 24 hr. RT-qPCR analysis of
MCF7 cells showed upregulation of mRNA for RAD51C
(Fig. 3A) and TFF1 (Fig. 3B) in the presence of estrogen, while
cells transfected with siRNA against ERo showed reduced
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Figure 1. ERx regulates RAD51C expression in an estrogen dependent manner. (A) MDA-MB-231, —468, —436, MCF7, T47D and ZR 75-1 cells were grown in phenol red-
free media with 10% charcoal-stripped FBS for 3 d and either serum starved or treated with estrogen for 30 min as indicated. Lysates were generated®” and the indicated
proteins were detected by immunoblot. (B) MDA-MB-231, —468, —436, MCF7, T47D and ZR 75-1 cells were grown in phenol red-free media with 10% charcoal-stripped
FBS for 3 d and either serum starved or treated with 10nM estrogen for 24 hr as indicated. Lysates were generated as described in “Materials and Methods” and the indi-
cated proteins were detected by immunoblot. (C) Quantification of RAD51C protein levels normalized to actin from (B) was performed using Odyssey Image Studio

Version 4.0 and graphed using Excel.

upregulation of RAD51C when stimulated with estrogen. This
effect on RAD51C was further observed on the level of protein
in MCF7, ZR-75-1 cells and T47D cells, indicating that
RAD51C expression is regulated by estrogen resulting in
increased protein product, while ERe knockdown reduced
RADS51C protein induction (Fig. 3C).

To confirm that estrogen regulates RAD51C on the tran-
scriptional level, MCF7 cells were transfected with a construct
whereby expression of renilla luciferase is driven by the proxi-
mal RAD51C promoter. A construct encoding for firefly lucifer-
ase under the control of 3 estrogen response elements (EREs)
was used as an internal control for ER-mediated transcription.
As shown in Fig. 3D, estrogen stimulation significantly
increased the expression of luciferase controlled by the
RADS51C promoter. Additionally we observed that downregula-
tion of ERa expression using siRNA significantly reduced
expression of luciferase controlled by the RAD5IC promoter
and the addition of estrogen was not able to counteract this

effect (Fig. 3E), indicating that estrogen transcriptionally regu-
lates RAD51C via ERa.

To further confirm the role of ERe mediated regulation of
RAD51C, MCF7 and MDA-MB-231 cells were treated with
estrogen in conjunction with either tamoxifen, a selective estro-
gen receptor modulator, or fulvestrant, a selective estrogen
receptor degrader, to disrupt the action of estrogen. Treatment
of MCF7 cells with either tamoxifen (Fig. 3F) or fulvestrant
(Fig. 3G) was able to block estrogen mediated upregulation of
RADS51C. Furthermore, this effect was dependent on ERe, as
RADS51C levels remained unchanged in MDA-MB-231 cells.
Induction of TFF1 expression served as control.

To validate that ERa is necessary for estrogen induced
RADS5I1C focus formation, the expression of ER was downre-
gulated in MCF?7 cells using siRNA, and cells were stimulated
with estrogen for 24 hr. Compared to cells transfected with
scrambled siRNA that showed RAD51C and yH2A X focus for-
mation upon treatment with estrogen, MCF7 cell transfected
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Figure 2. Estrogen induces RAD51C foci assembly. (A) T47D cells were serum-starved or stimulated with estrogen for 24 hr as indicated. Immunofluorescence was per-
formed as described in “Materials and Methods.” Scale bar represents 50 pm. (B) MCF7 cells were treated and processed as described in (A). (C) MDA-MB-231 cells were

treated and processed as described in (A).

with siRNA against ERe did not exhibit formation of either
RAD51C or yH2A X foci upon estrogen treatment (Fig. 4A).
This finding was also confirmed in another ERa-positive cell
line, T47D (Fig. 4B).

RADS51C expression is prognostic of poor clinical outcome
in ERa-positive breast cancer

Owing to the fact that RAD51C is a breast cancer susceptibility
gene, we wanted to investigate the effect of estrogen in cells
transfected with siRNA against RAD51C (Supplementary
Fig. 2). As expected, estrogen treatment upregulated RAD51C
levels in ERa-positive and not ERx-negative breast cancer cells
(Fig. 5A) and this effect was diminished in cells transfected with
siRNA against RAD51C. Interestingly, yH2A X levels were ele-
vated in cells with reduced levels of RAD51C, indicating that
these cells experience DNA damage. To explore the clinical sig-
nificance between RAD51C expression and ER« status of breast
tumors, we used the Gene expression-based Outcome for Breast
cancer Online (GOBO) database to examine the association
between the RAD51C expression in ERa-positive breast tumors
and patient outcome. The GSA-Tumor analysis of RAD51C
expression revealed a worse clinical outcome in ER-positive
tumors with regard to Distant Metastasis Free Survival (DMSF)
endpoint, as shown in Figure 5B. The poor prognostic value of
RAD51C was further confirmed using Relapse-Free Survival
(RFS) endpoint when tumors where stratified based on the
luminal A and B (ERw-positive like) breast cancer molecular
subtype™ (Figs. 5C and 5D, respectively).

Discussion

Breast cancer is a heterogeneous disease with involvement of
different cellular mechanisms and signaling pathways.>® Identi-
fication of the molecular targets that are altered is a crucial
challenge for our understanding of breast cancer pathogenesis

and facilitating the design of tailored treatments that are effec-
tive at stopping breast cancer progression and preventing can-
cer recurrence. ERor status of breast cancer is an important
marker for selecting patients for treatment with endocrine ther-
apy such as selective estrogen receptor modulators (e.g- tamox-
ifen), selective estrogen receptor degraders (e.g. fulvestrant) or
aromatase inhibitors (such as letrozole). However, only
35-70% of patients respond to endocrine therapy and resis-
tance develops in most cases, in part due to activation of growth
factor signaling pathways.”” Another pathway that is often
attenuated in breast cancer is the DSB repair with main focus
on germline loss of function of tumor suppressors BRCAI and
BRCA2 leading to hereditary breast and ovarian cancer
progression. Mutations in DSB repair genes lead to accumula-
tion of DSBs, genome instability and tumorigenesis.

RAD5IC is a recently identified high penetrance cancer
susceptibility gene,’** and germline mutations in RAD5IC
predispose to breast and ovarian cancer with high similarity to
patients carrying BRCA1 and BRCA2 mutations. In the current
work we identified a novel mechanism of estrogen dependent
DSB repair, whereby estrogen regulates RAD51C via ERx on a
transcriptional level, demonstrating a direct link between ER«
signaling and HR pathways. A recent study describing Rad51c-
and Trp53-double-mutant mice showed that these mice have
an accelerated production of mammary carcinomas.”® Similar
to our results, these tumors exhibited high levels of genomic
instability and DNA damage and most interestingly, the tumors
retained expression of ERa, which is similar to the luminal-like
phenotype described in RAD5IC mutant breast cancers.”
Therefore, the estrogen-dependent DNA damage and repair
mechanism we described here could be responsible for the phe-
notype observed in vivo. Paradoxically, estrogen appears to
induce DNA damage, either by direct oxidative damage or
indirectly, by promoting progression into S-phase, while simul-
taneously activating the expression of DNA damage repair
genes, such as RADS5IC, which may be a homeostatic
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Figure 3. ERw transcriptionally regulates RAD51C expression in estrogen-dependent manner. (A) MCF7 cells were transfected with scambled siRNA or siRNA against ERor
and treated with estrogen for 48 hr, as indicated. RT-qPCR was performed as described in “Materials and Methods" and data was plotted using Excel. *“p < 0.001; NS,
non-statistically significant; n = 3. (B) MCF7 cells were treated as described in (A), RT-qPCR was performed as described in “Materials and Methods” and data was plotted
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for 24 hr, as indicated. Lysates were generated as described in “Materials and Methods" and the indicated proteins were detected by immunblot. (D) MCF7 cells were
transfected, stimulated with estrogen for 24 hr as indicated and Luciferase reporter assay was performed as described in “Materials and Methods.” Data was plotted using
Excel. **p < 0.001. (E) MCF7 cells were transfected, stimulated with estrogen for 24 hr as indicated and Luciferase reporter assay was performed as described in “Materials
and Methods.” Data was plotted using Excel. ““p < 0.001; n = 3. (F) MDA-MB-231 and MCF7 cells were either serum starved, treated with estrogen for 24 hr or pre-treated
with estrogen for 30 min following treatment with tamoxifen for 24 hr. Lysates were generated as described in “Materials and Methods” and indicated proteins were
detected by immunoblot. (G) MDA-MB-231 and MCF7 cells were either serum starved, treated with estrogen for 24 hr or pre-treated with estrogen for 30 min following
treatment with fulvestrant for 24 hr. Lysates were generated as described in “Materials and Methods” and indicated proteins were detected by immunoblot.
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mechanism that prevents accumulation of estrogen-induced
DNA damage. This finding adds a potential new link to the
relationship between lifetime estrogen exposure and breast
malignancy. Clinically, these findings may be extremely signifi-
cant because ERa-positive and estrogen dependent breast can-
cer tumors would incur estrogen-induced DNA damage, thus
increased expression of RAD51C could be indicative of
increased genomic instability and worse disease outcome.
Moreover, individuals with inactivating mutations in RAD51C
would be more susceptible to accumulation of unrepaired
estrogen-induced DNA damage, increased genomic instability
and cancer progression, similar to deficiencies in BRCA1/2 and
RAD51.%°%? Estrogen is sometimes used clinically for treatment
of breast cancer because of its apoptosis-inducing capacity.® It
would be interesting to determine whether in this setting, high-
dose estrogen may contribute to synthetic lethality in combina-
tion with DNA damaging agents such as cisplatin and PARP
inhibitors.***> Thus RAD51C may serve as a prognostic marker
for disease severity in ER-positive breast cancer, as well as a
marker for sensitivity to DNA damaging chemotherapeutics.

Materials and methods
Cell culture and treatment

MDA-MB-231, MDA-MB-436, MDA-MB-468, MCF7, ZR 75-
1 and T47D cells were cultured in a humidified incubator with
5% CO, at 37°C in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS). For experiments,
cells were grown in phenol red-free media with 10% charcoal-
stripped FBS for 3 d. Where indicated, cells were starved in
serum-free media for 24 hr and stimulated with 10nM estrogen
(in ethanol), 100 nM 4-hydroxy-tamoxifen (in ethanol), or
100 nM fulvestrant (in DMSO).

siRNA transfection: siRNAs against ERe (HSC.RNAIL
N000125.12.5 and HSC.RNAILN000125.12.6), RAD51C (HSC.

RNAILN058216.12.1 and HSC.RNAILN058216.12.2) and scram-
bled controls were ordered from Integrated DNA technologies.
25 pmol of siRNA was transfected using Lipofectamine® RNAi-
MAX Transfection Reagent (Invitrogen) according to manufac-
turer’s protocol. Cells were lysed 48 h post-transfection.

Constructs: Firefly luciferase-3ERE reporter plasmid was
previously described.® Renilla luciferease-RAD51C promoter
was purchased from SwitchGear Genomics.

Immunofiuorescence

Cells were plated on 18mm Poly-L-Lysine coated cover slips
(Fisher Scientific). Following treatment, cells were fixed in 4%
parafalmaldehyde and permeabilized in 0.2% Triton-X. After
blocking and incubation with primary (RAD51C from Abcam,
ab72063 and ERa from Santa Cruz Biotechnology, sc-8005)
and secondary antibodies (Alexa Fluor 55 donkey anti-rabbit
IgG, A31572 and Alexa Fluor 488 donkey anti-mouse IgG,
A21202; all from Invitrogen), coverslips were mounted using
DAPI-Fluoromount G mounting media (Southern Biotech,
0100-20). Images were collected using EVOS FL Auto micro-
scope (Invitrogen) under 60X magnification.

Cell lysis

Cells were lysed in ice-cold buffer containing 10 mM KPO,,
1 mM EDTA, 10 mM MgCl, 50 mM pg-glycerophosphate,
5 mM EGTA, 0.5% Nonidet P-40 [NP-40], 0.1% Brij 35, 1 mM
sodium orthovanadate, 40 pg/ml phenylmethylsulfonyl fluo-
ride, 10 pg/ml leupeptin, 5 pug/ml pepstatin, 10 pg/ml aproti-
nin. Lysates were cleared of insoluble material by centrifugation
at 15,000¢ for 10 min at 4°C. Protein concentration in cell
extracts was measured by Bradford reagent (BioRAD) accord-
ing to the manufacturer’s protocol using Eppendorf BioPho-
tometer (Eppendorf). Samples were equalized for protein
concentration and denatured using LDS Sample buffer and
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Figure 5. GSA-Tumor analysis of RAD51C shows worse clinical prognosis for ERa-positive tumors. (A) MDA-MB-231, MCF7 and T47D cells were transfected with scrambled
SiRNA or siRNA against RAD51C and treated with estrogen for 48 hr, as indicated. Lysates were generated as described in “Materials and Methods” and the indicated pro-
teins were detected by immunblot. (B) Kaplan-Meier analysis using DMFS of ERa-positive tumors separated into 3 categories with respect to RAD51C expression.
(B) Kaplan-Meier analysis using RFS of Luminal A tumors separated into 3 categories with respect to RAD57C expression. (C) Kaplan-Meier analysis using RFS of Luminal A

tumors separated into 3 categories with respect to RAD51C expression.

Reducing agent (Invitrogen) at 70°C for 10 min. Samples were
resolved using Bis-Tris Plus gels (Invitrogen) and transferred
onto nitrocellulose membrane (GE Healthcare). Membranes
were probed with the following primary antibodies: RAD51C
(sc56214 Santa Cruz Biotechnology), p-ATM S1981 (5883 Cell
Signaling Technologies), p-Chk2 T 68 (2197 Cell Signaling

Technologies) p-ERK (4695 Cell Signaling), yH2AX (05-
636 Millipore), ERo (sc543 Santa Cruz Biotechnology), actin
(sc1615 Santa Cruz Biotechnology), and TFF1 (12419S Cell Sig-
naling Technologies).

Signal detection and quantification was accomplished using
IRDye-conjugated anti-rabbit (LI-COR, 827-08365), anti-



mouse (LI-COR, 926-68070) or anti-goat (LI-COR, 926-68074)
secondary antibodies using Odyssey infrared detection instru-
ment (LI-COR). All immunoblots were performed at least
thrice to ensure reproducibility.

Luciferase reporter assay

MCEF?7 cells were transiently transfected with a Rad51c-promoter
Renilla luciferase construct (SwitchGear Genomics) and a reporter
plasmid containing 3 estrogen response elements (ERE) control-
ling expression of firefly luciferase, as previously described.*®
siRNA against ERa was co-transfected, as indicated in figure
legends. Luciferase expression following cell treatment with estro-
gen was assayed using a dual luciferase kit and GloMax® 20/20
Luminometer (Promega). Assays were performed in triplicates
and results were analyzed and plotted using Excel.

Quantitative RT-PCR

RNA was isolated using RNeasy® Mini Kit (Qiagen) and 1 ug
of RNA was reverse transcribed into cDNA using iScript™
cDNA Synthesis Kit (BioRAD) and C1000 thermal cycler (Bio-
RAD). For qPCR, cDNA was amplified with iQ™ SYBR®
Green Supermix (BioRAD) in CFX96™Real-Time PCR Detec-
tion System (BioRAD, Hercules, CA) with CFX Manager analy-
sis on-board software. TFF1 F: 5 ATC GAC GTC CCT CCA
GAA GAG 3’5 TFF1 R: 5 CTC TGG GAC TAA TCA CCG
TGC TG 3’;18s F: 5 TTC GAA CGT CTG CCC TAT CAA 3';
18s R: 5" ATG GTA GGC ACG GCG ACT A 3’; Rad51c F: 5
GGA TTT GGT GAG TTT CCC GC 3; Rad51c R: 5 TCT
TTG CTA AGC TCG GAG GG 3/

Statistical analysis

Data are presented as mean =+ S .D. and n = 3. Statistical signif-
icance was determined by paired Student’s t-test using Micro-
soft Excel.

GOBO analysis

Gene expression-based Outcome for Breast cancer Online data-
base was used to identify prognostic validation of RAD5IC
expression and ERa status of breast tumors collected from
pooled breast cancer data sets http://co.bmc.lu.se/gobo/. The
Gene Set Analysis (GSA) of tumors were further subdivided
based on RADS5IC expression with gray representing low
expressing, red representing intermediate expressing and blue
representing high expressing.
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