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Abstract

Gas chromatography-mass spectrometry (GC/MS) has long been considered one of the premiere 

analytical tools for small molecule analysis. Recently, a number of GC/MS systems equipped with 

high-resolution mass analyzers have been introduced. These systems provide analysts with a new 

dimension of information – accurate mass measurement to the third or fourth decimal place; 

however, existing data processing tools do not capitalize on this information. Beyond that, GC/MS 

spectral reference libraries, which have been curated over the last several decades, contain almost 

exclusively unit resolution MS spectra making integration of accurate mass data dubious. Here we 

present an informatic approach, called High-Resolution Filtering (HRF), which bridges this gap. 

During HRF, high-resolution mass spectra are assigned putative identifications through traditional 

spectral matching at unit resolution. Once candidate identities have been assigned, all unique 

combinations of atoms from these candidate precursors are generated and matched to m/z peaks 

using narrow mass tolerances. The total amount of measured signal that is annotated is used as a 

metric of plausibility for the presumed identification. Here we demonstrate that the HRF approach 

is both feasible and highly specific towards correct identifications.

INTRODUCTION

Gas chromatography-mass spectrometry (GC/MS) is a premiere analytical tool for small 

molecule analysis1–3. Highly reproducible chromatographic separations combined with 

conserved molecular fragmentation lend this technique to both targeted and discovery 

assays, and has become particularly useful in the area of metabolite profiling4,5. Since the 

metabolome is closest to phenotype, metabolic profiling has great potential to propel 

biomedical research and is quickly emerging as a field of interest for both systems biologists 
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and clinical researchers6,7. The ability to rapidly and comprehensively monitor metabolites 

will doubtless facilitate basic research into disease pathogenesis and also provide new 

opportunities for disease diagnosis. Moreover, metabolite screens are highly desirable in the 

clinical setting as they often rank among the least invasive biological assays. As an emergent 

field there is critical need for the development of advanced tools and technologies to enable 

deeper small molecule profiling in shorter time spans.

In traditional discovery experiments, volatile analytes are separated by GC and ionized using 

electron ionization (EI) prior to mass analysis. EI is a “hard” ionization technique and causes 

molecules to fragment in characteristic patterns. Spectra containing fragments from 

individual analytes, which may or may not include an intact molecular ion, are extracted and 

then compared to databases of unit-resolution reference spectra8. Matches with sufficiently 

high spectral similarity are often presumed to be correct identifications. Identifying all of the 

observed spectral features resulting from a GC/MS experiment is a formidable challenge,9,10 

so often the majority of features often remain unidentified. For those compounds where 

putative identifications have been assigned, subsequent validation often necessitates analysis 

of a pure reference standard. This process is laborious, especially when considering that for 

many spectral features there exist a large number of putative identifications. As such, any 

auxiliary information which can be used to discriminate between candidate precursors is 

highly valuable11.

Unit resolution GC/MS instruments have been, and continue to be, the most widespread and 

commonly used mass spectrometers in the world. Given that, the largest publically available 

reference libraries are comprised of spectra exclusively acquired on these systems12,13. In 

the last few years, however, several GC/MS systems possessing mass analyzers capable of 

high-resolution and accurate mass measurement have become commercially available – i.e., 
time-of-flight and, most recently, Orbitrap. Despite these exciting technological advances 

and their potential impact on metabolomic research, data analysis tools have remained 

largely unchanged14–17. We conclude that, if coupled with novel informatic capability, this 

new generation of GC/MS systems offers considerable opportunity to drive small molecule 

discovery. This nascent promise is reminiscent of the revolution that occurred in LC/MS-

based proteomics following the introduction of high-resolution/accurate mass measurement. 

In this case, existing peptide-spectral matching algorithms were easily adapted to achieve a 

concomitant reduction in search space while affording increased precursor/product ion 

matching specificity; unfortunately, leveraging the specificity enabled by accurate mass 

GC/MS data with existing small molecule algorithms is not straightforward. The major EI 

reference databases comprise unit resolution spectra, precluding the ability to directly 

compare measured exact masses against their reference counterparts. An alternative route is 

to generate theoretical EI spectra in silico, though this has proven to be exceptionally 

challenging18–20. Of course, another approach is to generate new accurate mass libraries 

which would ostensibly allow for increased discrimination against spurious matches as 

fragments which are nominally the same but not equivalent within a narrow mass tolerance 

would no longer be matched. This increased specificity in spectral matching would 

hopefully make it easier to identify correct matches. Generating new reference databases is 

an admirable goal but one that will take years, if not decades, to achieve given that current 
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spectral libraries have been compiled over the past fifty years from hundreds of thousands of 

individual analyses.

Here we describe a new approach to harness the existing unit resolution EI mass spectral 

databases while simultaneously exploiting the accurate mass measurement capabilities of 

high-resolution GC/MS systems. In this method accurate mass GC/MS data is searched via 

spectral matching to existing unit resolution EI spectral libraries as normal. Next, EI-MS top 

scoring putative identifications are tested for plausibility based on comparison of the 

experimentally measured accurate mass fragments to combinatorially generated theoretical 

fragments constrained by the atomic composition of the assigned precursor. This method 

avoids the pitfalls of theoretical EI spectral prediction by simply generating and testing all 

possible combinations of atoms, as theoretical fragments, in a precursor. We demonstrate 

that although this method makes minimal approximations it remains highly specific toward 

correct precursor identifications. By enabling discrimination between candidate molecular 

precursors on the basis of both measured fragmentation profiles and accurate mass, this 

method effectively bridges the current technology gap between high-resolution spectral 

acquisition and unit resolution mass spectral libraries.

EXPERIMENTAL SECTION

Materials and Reagents

Unless otherwise specified all standard reference materials were purchased from Sigma-

Aldrich (St. Louis, MO) with the exception of the 37 pesticide reference standards analyzed 

which were contained in the Organonitrogen Pesticide Mix #1 – EPA Method 525.2 and 

purchased from Restek (Bellefonte, PA). Methanol, ethyl acetate, acetone, hexane, 

dichloromethane, and isopropyl alcohol reagents were also purchased from Sigma-Aldrich. 

The N-methyl-N-trimethylsilytrifluoroacetamide with 1% trimethylchlorosilane 

derivatization reagent (MSTFA + 1% TMCS) was purchased from Pierce Biotechnology 

(Rockford, IL). Compressed gases (methane, helium, and nitrogen) were ultrahigh purity 

grade and purchased from Airgas (Madison, WI). 200 mg Clean Screen® Extraction 

Columns were purchased from United Chemical Technologies (Bristol, PA).

Sample Preparation and GC/MS Acquisition

Stock solutions of the reported standards were prepared individually at a concentration of 1 

mg/mL in appropriate solvents. Standards were processed in batches containing ~5-10 

individual analytes. The EPA 525.2 pesticide mixture was diluted from 500 μg/mL to a 

working concentration of 3 ng/μL in acetone prior to mass spectral analysis. For the drug-

spiked urine experiments, stock solutions of all drugs were first prepared at 1 mg/mL in 

methanol. These stock solutions were combined and diluted (again in methanol) to 

appropriate concentrations. For each gradient data point, 100 μL of the drug mixture was 

added to raw urine prior to extraction using the 200 mg Clean Screen extraction columns. 

Acidic and basic drug/metabolite fractions were extracted according to manufacturer 

protocols.21 Yeast metabolites were extracted by first washing cultured cells with buffered 

saline and submerging into a precooled 1.5 mL plastic tube containing 2:2:1 acetonitrile/

methanol/H2O mixture. For all materials (not including the pesticide mixture) 25 μL 
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aliquots were resuspended in 25 μL of pyridine and vortexed. 25 μL of N-methyl-N-

[trimethylsilyl]trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) was 

added and samples were incubated at 60° C for 30 minutes. All samples were analyzed using 

a GC/MS instrument comprising a Trace 1310 GC coupled to a Q Exactive Orbitrap mass 

spectrometer. For the yeast metabolite extracts a linear temperature gradient ranging from 

50 °C to 320 °C was employed spanning a total runtime of 30 minutes. Analytes were 

injected using a 1:10 split at a temperature of 275 °C and ionized using electron ionization 

(EI). The mass spectrometer was operated in full scan mode using a resolution of 30,000 (m/
Δm) relative to 200 m/z. Instrumental parameters and specifications for all other experiments 

are provided in the Supporting Information. All MS experiments utilized Automatic Gain 

Control (AGC)22–24 and all data was acquired in profile mode.

GC/MS Data Processing—All GC/MS data processing was done using in-house 

algorithms designed to facilitate spectral deconvolution, spectral matching against a unit 

resolution reference database, and high-resolution filtering. The details of each algorithmic 

component are described at length in the Supporting Information. Briefly, following mass 

spectral acquisition deconvolved spectra were extracted from raw data files. A pseudo-unit 

resolution copy of each spectrum was made by combining the intensities of peaks falling in 

the same nominal mass range, setting the measured m/z to the nearest integer value, and 

normalizing peak intensities relative to the base peak (set to 999). All 212,961 unit 

resolution reference spectra in the NIST 12 MS/EI Library were exported to a .JDX file 

through the NIST MS Search 2.0 program and converted to a format suitable for matching 

against acquired Q Exactive CG spectra. Extracted spectra were submitted for database 

searching and spectral similarity was measured using the following dot product equation:

Following candidate identification retrieval the high-resolution filtering algorithm was 

employed by first generating all unique atomic combinations from a given precursor using 

the most abundant isotope of each considered atom. Starting with the smallest measured m/z 
peak, peaks were matched to theoretical fragments using a narrow ±10 ppm tolerance 

centered around the m/z value. To account for isotopic clusters a variant of each matched 

theoretical fragment was created containing substituted heavy isotopes was placed back on 

the list of all candidate theoretical fragments. This process was repeated until every 

measured peak in a given spectrum had been considered. The total amount of measured 

signal that could be annotated as calculated by:

was returned in the form of an HRF score.
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RESULTS AND DISCUSSION

The HRF method is founded on one central tenet – all m/z peaks in a pure EI spectrum are 

derived from a single molecular precursor and, therefore, contain a subset of the atoms from 

the molecular precursor. For example, the EI mass spectrum of 3-methyl-3-hexanol 

(C7H16O) exhibits prominent features at m/z values 73, 87, and 10125. Expert annotation of 

this spectrum revealed the chemical identity of these fragments as C4H9O, C5H11O, and 

C6H13O, respectively25. Note each of these formulas is a subset of the molecular precursor, 

supporting our guiding supposition. Without regard for chemical structure feasibility, there 

are 271 unique atomic combinations of the parent molecule C7H16O. First consider the m/z 
peak at 73, only three of these combinations have this nominal mass – C6H, C5H13, and 

C4H9O; however, only one (C4H9O) has an exact mass within ±10 ppm of the correct 

annotation. Such is also the case for the other expertly annotated fragments. Given that we 

can now routinely measure all m/z peaks in an EI mass spectrum with low ppm mass 

accuracy, we implement this annotation strategy on a large scale.

Figure 1 presents an outline of the HRF workflow. The process consists of three main steps: 

deconvolution, spectral matching, and high-resolution filtering. Spectral deconvolution is a 

standard part of processing GC/MS data; however, accurate mass is highly advantageous as 

it reduces, or eliminates, interference between nominally isobaric fragments. Extracted 

spectral features are subsequently grouped based on corresponding elution apex and a 

spectrum containing only fragments arising from a singular precursor is derived from each 

group (Figure 1a-c). Next, by rounding accurate mass m/z peaks to the nearest integer 

value, a pseudo-unit resolution copy of each spectrum is created and then submitted for 

spectral matching against a unit resolution reference database. The intent is to retrieve 

candidate identifications based on spectral similarity. These steps represent a traditional 

workflow for spectral assignment in a discovery-based GC/MS experiment. In the HRF 

method, this workflow is further augmented to leverage accurate mass for discrimination 

between putative identifications.

The HRF method attempts to annotate every measured m/z peak in an EI mass spectrum 

using some combination of atoms from a putative precursor's chemical formula. The amount 

of total ion current that can be successfully annotated can be used as metric of confidence in 

that putative identification. Figure 1 d-f illustrates the HRF strategy using an EI mass 

spectrum of loratadine, a popular over-the-counter antihistamine, collected using a Q 

Exactive GC mass spectrometer. A unit resolution database search, returns a reference 

spectrum of loratadine as a strong candidate match. To evaluate the quality of this putative 

identification we next employ the HRF strategy. With the chemical formula of loratadine 

(C22H23ClN2O2) all non-repeating combinations of atoms (i.e., sub-formulas) are generated 

and ordered by ascending exact mass less an electron (Figure 1d). Note that the theoretical 

fragment search space is restricted by the atomic composition of loratadine. Starting with the 

smallest measured m/z peak, sub-formulas are matched based on exact mass. To 

accommodate isotopic clusters present in spectra, a variant containing an appropriate 

number of heavy isotopes is created for each matched theoretical fragment and placed back 

onto the list of sub-formulas. For example, once the highlighted m/z peak at 245.1200 is 

matched to C18H15N (theoretical m/z: 245.1199) a formula containing a substituted 13C 
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isotope (C17
13CH15N) is added to the list of candidate sub-formulas (Figure 1e). This 

strategy of onthe-fly theoretical isotopic fragment generation enables annotation of non-

monoisotopic fragments without unduly increasing sub-formula search space. Once every 

m/z peak in the spectrum has been considered the total percentage of measured ion current 

that has been annotated is returned in the form of a HRF score. In the example case of 

loratadine we find that 99.2617% of all measured ion current can be annotated using a sub-

formula of its true parent precursor (Figure 1f). Here we demonstrate that the HRF method 

is viable, enables discrimination between putative identifications, is highly robust even in 

times of diminished signal-to-noise, and is uniquely enabled with high-resolution GC/MS. 

Finally, we establish that this approach stands to greatly improve how unknowns are 

identified in discovery-based analyses.

Reference Standard Analysis. To ensure broad utility we benchmarked performance of the 

HRF algorithm as applied to spectra collected from a diverse array of small molecules. For 

this work, a data set of high-resolution Q Exactive GC spectra collected from 105 pure 

reference standards covering many classes of small molecules including metabolites, 

pesticides, pharmaceuticals, drugs of abuse, among others, was constructed. Following 

GC/MS analysis of all reference standards, individual spectra were extracted from raw data 

files using the described deconvolution algorithm. Each extracted spectrum was compared 

against its corresponding NIST reference spectrum and a weighted dot product score was 

calculated to measure spectral similarity. For these 105 spectra, a median spectral match 

score of 81.889, minimum of 42.599, and standard deviation of 9.587 was achieved. 

Following spectral matching, each spectrum was then subjected to our HRF approach using 

the chemical formula of the true parent molecule. Considering all spectra in the data set, we 

report a median HRF score of 99.700, minimum of 93.497, and standard deviation of 1.022 

(Fig. 2a. and Supplementary Table 1). From these data we conclude that performance of 

the HRF method is well-conserved across many different classes of small molecules. Next 

we wondered whether similar results could be obtained from other chemical formulas in the 

reference library. To test specificity, 60,560 HRF scores – all from unique formulas residing 

in the NIST database – were calculated for each of the 105 spectra. Figure 2b presents the 

results of this experiment for the spectrum of trimethylsilyl-derivatized beta-sitosterol 

(C32H58OSi). Note the true parent chemical composition is the smallest formula that can 

produce the maximal HRF score. We were curious as to the scores generated by subset 

formulas (some but not all of the atoms contained within the precursor formula) as well as 

superset formulas (all of the atoms contained by the precursor and then some) which are also 

highlighted. The annotated subsets lack the proper combination of atoms to achieve the same 

score. Not surprisingly, all supersets of C32H58OSi produce similarly high scores. This is 

expected as all subformulas from the true parent will also be included in the subformula sets 

generated by these superset precursors. We note that in some cases very large formulas 

which are not true supersets but share a large percentage of atoms with the correct parent can 

also produce high scores (Supplementary Table 2).

For a global view of the method's specificity we plot the cumulative distributions of HRF 

scores to all 105 spectra along with the average distribution of all cumulative distributions 

(Fig. 2c. and Supplementary Figure 1). Note that this analysis provides a worst-case 
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scenario given all 60,560 formulas considered have an equal chance of being selected as a 

putative parent for an acquired spectrum. In most cases this is not the case, as either spectral 

matching or a priori information held by the analyst allows discrimination against the 

majority of these candidates. Still, these data reveal that on average ~86.9% of considered 

formulas will return a HRF score ≤ 90 and that only 3.560% of candidate formulas will 

produce a score greater than or equal to the median calculated HRF score (99.700). We also 

note that specificity is dependent on the complexity of the analyte in question, for example, 

increases in elemental complexity and atom count will often result in spectra which a 

smaller number of precursors can successfully annotate.

Urine Drug Testing. Most analytical applications demand the identification of low level 

analytes, often present within complex matrices. In these situations spectral quality is eroded 

– manifested by the loss of key diagnostic fragments with diminished signal and increased 

chemical noise – limiting the ability to correctly assign identifications through traditional 

spectral matching. To test the benefits of HRF in such situations we next analyzed a panel of 

drugs at varying concentration in a biological matrix. GC/MS is the ideal platform to test for 

drugs of abuse, pharmaceuticals, sports dopants, and their metabolites in human urine. These 

assays are highly desirable in the clinical setting as they are minimally invasive.

As a proof-of-concept, twelve drugs (amobarbital, Benadryl, caffeine, cotinine, 

glutethimide, ketamine, loratadine, methadone, methaqualone, nicotine, primidone, and 

scopoloamine) were spiked into human urine at eight concentations (10 ng/μL to ~78 pg/μL) 

and extracted prior to GC/MS analysis (Fig. 3a.). Chromatographic resolution was 

insufficient to separate Benadryl and ketamine, and high native levels of caffeine diminished 

the ability to analyze the compound through a range of concentrations. As such, further 

analysis was not carried out and here we report results for nine of the twelve drugs.

The analysis of compounds in a complex background matrix, such as urine, presents two 

considerable challenges – extracting high-quality spectra and assigning confident 

identifications – with the latter being highly dependent on the former. Ideally, extracted 

spectra should retain all fragment m/z peaks stemming from the eluting precursor while 

eliminating all other chemical background, which can be of higher abundance. 

Deconvolution is the core technique for spectral extraction and this process, as we report 

here, is considerably improved by use of the FT-MS systems. Accurate mass measurement 

largely eliminates interferences between nominally isobaric fragments and allows extraction 

of chromatographic profiles using narrow mass tolerances (~ ± 10 ppm). Furthermore, the 

rapid scan rate (> 18 Hz) provides sufficient temporal resolution enabling more precise 

detection of chromatographic apex. Note that spectral deconvolution assumes that all peaks 

are derived from a singular precursor and if two compounds completely overlap the resulting 

EI-MS spectrum will be chimeric which may impede spectral identification. Figure 3b 
highlights spectral deconvolution of glutethimide at high and low concentrations. Note the 

numerous co-eluting interferants in the low concentration chromatogram that are easily 

distinguished. We conclude that spectral deconvolution is a key parameter for successful 

downstream identification and is improved by collection of spectra with high-resolution and 

accurate mass.
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Extraction of high-quality spectra from raw data files is only the first step in assigning 

confident identifications. Mapping these spectra to structure is then commonly done by 

spectral matching against a library, which is most effective when experimental spectra very 

closely resemble those contained in the library. The specificity of this approach, however, is 

reduced as analyte abundance decreases and diagnostic fragments fall below the limit of 

detection. We surmised that the HRF approach could provide an orthogonal metric, allowing 

greater discrimination between putative identifications.

To test this hypothesis we applied the HRF approach to analyze the standard drug 

compounds spiked into the urine matrix across a wide range of concentrations. We required 

that all spectra contain at least 10 m/z peaks, eliminating 5 of 72 data points 

(Supplementary Figure 2). In these instances the compound in question was at a 

sufficiently reduced concentration such that the extracted spectrum was either non-existent 

or of too low quality for any further processing. Extracted spectra were then compared to 

their corresponding NIST reference spectrum to generate both spectral match and HRF 

scores for each (Figure 3c, Supplementary Table 3). As expected, the spectral match score 

decreases with diminishing analyte abundance, primarily due to the loss of low abundance 

peaks at decreased concentrations. HRF performance, however, is remarkably consistent, 

independent of analyte concentration, and remains high (> 92) for all observed spectra. From 

these data we draw two primary conclusions: First, FT-MS mass analyzers provide robust 

mass accuracy measurements, even for signals occurring at low S/N26; and second, unlike 

the conventional spectral matching strategy, the HRF scoring metric is conserved across a 

wide range of analyte concentrations.

While the experiment described above demonstrates strong HRF scoring performance, we 

wondered whether the method would maintain the ability to discriminate between candidate 

precursors, when provided with lower quality spectra. To determine if the HRF scoring 

method had diminished specificity for spectra containing a reduced number of diagnostic 

m/z peaks, i.e., those collected at lower abundance, we calculated HRF scores from 55,290 

unique formulas in the NIST spectral library (0-500 Da) using two EI-MS spectra for each 

drug analyzed (one from the most concentrated data point, the other from the least). These 

high and low concentration spectra present a striking spectral quality difference as the low 

abundance spectra contain only about 25% of the m/z peaks found in the higher quality 

analog (23 v. 96, on average). Figure 3d presents the cumulative distributions of these 

calculated HRF scores for either high (blue) or low (red) concentration spectra 

(Supplementary Figure 3). The average distribution for each set of spectra is also displayed 

and no difference is readily observed. It is apparent that, whether analyzing low or high 

quality spectra, HRF specificity is maintained. The fundamental driving force for this 

indifference to spectral quality, as compared to traditional spectral matching, is the 

discriminatory power of mass accuracy which is retained even within low-quality spectra. 

Based on these data we surmise that the HRF strategy is less dependent upon input spectral 

quality – a characteristic that will propel the emergent area of small molecule discovery and 

profiling applications.

Application to Discovery Metabolomic Analyses. High chromatographic resolution, 

excellent sensitivity, and conserved fragmentation of molecular precursors render GC/MS a 
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fitting method for discovery-based metabolic profiling. In recent years there has been a 

marked decrease in the time required to comprehensively sequence genomes, 

transcriptomes, and proteomes. These increases in throughput have largely come as a result 

of coincident improvements in instrumentation and informatics enabling faster sequencing 

than ever before. Discovery metabolomics has lagged behind these other “omics” 

technologies due in large part to the difficulty in assigning confident identifications to 

analyzed compounds. We assert that by coupling the recent advances in high-resolution 

GC/MS instrumentation with new data processing schemes, the depth and speed at which 

metabolomes can be fully characterized can be greatly increased. One approach to realizing 

this potential is to utilize the HRF approach as a data reduction strategy for eliminating 

spurious hits, and retaining only those which are chemically plausible.

To characterize the utility of the HRF approach for metabolomic applications the algorithm 

was applied to a discovery analysis of a yeast metabolite extract. Here a TMS-derivatized 

yeast metabolome and solvent blank were analyzed on a Q Exactive GC system in tandem. 

Following data acquisition individual spectra were extracted from both raw files using the 

described in-house deconvolution algorithm. Spectral deconvolution yielded 19,367 spectral 

features which were placed into 554 feature groups – each group containing fragments 

which are assumed to stem from a singular precursor. Deconvolution results were manually 

validated and additional curation was employed where necessary (Supplementary Figure 
4). EI-MS spectra that were common to both the yeast extract and solvent blank were 

eliminated from consideration. In total, 232 EI-MS spectra (all containing no fewer than 10 

m/z peaks) were considered for this analysis, post background subtraction. These spectra 

were then searched against the NIST database (~ 213,000 compounds) at unit resolution. 

The 20 highest scoring spectral matches were returned and HRF scores were then calculated 

for each – generating 4,640 HRF scores in total. Figure 4a displays the distributions for 

both scores. The orthogonality between these two metrics is readily apparent. While the 

majority of spectral match scores cluster around 30-40 with a skew towards higher scores – 

again, this distribution represents the 20 best hits to each spectrum, many of which were 

derived from lowly abundant precursors - the HRF distribution is bimodal with large clusters 

at both extremes. These clusters (greater than 90 and less than 10) comprise 60.69% of all 

returned results. Supplementary Figure 5 highlights the uniqueness of matched chemical 

formulas, assigned HRF scores, and theoretical fragment annotations arising from these top 

20 hits to each EI-MS spectrum.

In the analysis of reference standards we observed no instances where a correct 

identification yielded spectral match or HRF scores lower than 20 or 90, respectively. To 

visualize these data we present a heat map (Figure 4b)displaying each EI-MS spectrum as a 

row with the calculated HRF score for each of the 20 putative spectral matching assignments 

as the columns. This plot reveals that top scoring spectral matches are not always consistent 

with the chemical formula information gleaned by the HRF calculation. We find that 76.00% 

of returned identifications are eliminated after applying an HRF threshold (90) including 

58.62% of all number one spectral match hits. We also note many instances in which lower 

spectral match scores to a given spectrum yield higher HRF scores suggesting that joint 

consideration of both metrics is advantageous. To determine the value of the HRF method to 
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eliminate from consideration incorrect putative assignments we plotted the number of 

candidate identifications per spectrum before and after application of HRF scoring (Fig. 4c). 

Imposing a spectral match score cutoff of 20, eliminates only 5.28% (245) of hits, leaving 

the analyst to sort through the remaining 4,240 candidates. Application of the HRF score 

threshold in addition to the spectral match score threshold, however, allows dismissal of the 

majority of the putative candidate identifications – 79.78% (3,720). In fact, the HRF method 

allows the analyst to reduce the number of viable candidate structures with confidence; for 

example, 65.09% of spectra retain three or fewer valid candidates. While analysts will still 

find it useful to confirm candidate identifications by sampling pure reference standards, the 

tremendous reduction in candidate identifications will expedite the process of small 

molecule identification and provide a means to accelerate the pace of metabolomic 

discovery.

CONCLUSIONS

Small molecule analysis and discovery remains at the core of many fields – e.g., toxicology, 

sports doping, environmental analysis, food safety, clinical research, etc. – and is emerging 

as a key technology in the expanding area of metabolomics. GC/MS is a robust and mature 

method for profiling small molecules, but has recently undergone a transformation with the 

introduction of state-of-art mass analyzer capabilities that deliver routine high-resolution and 

accurate mass measurement. The new type of GC/MS data created by these modern systems 

has transformative potential – realizing this promise, however, requires new and innovative 

data processing approaches.

Here we describe a simple and straightforward method, HRF, which leverages accurate mass 

to both improve spectral deconvolution and increase confidence in small molecule 

identifications. The HRF approach can be used in conjunction with traditional spectral 

matching and effectively extends the utility of currently available unit-resolution reference 

libraries. Moreover, information provided by this approach is orthogonal to traditional 

spectral matching. In the future we predict this method will be of high value for the analysis 

of novel compounds, where a suitable reference spectrum is unavailable. In this application 

users would simply provide suspected chemical formulae and/or structures and utilize the 

HRF scoring method to test candidate plausibility. No such technology currently exists. We 

note the HRF approach facilitates rapid annotation of EI-MS spectra, has potential for LC-

MS/MS applications, and may prove useful for automated false-discovery rate calculations. 

In summary, by enabling discrimination between candidate molecular precursors on the 

basis of both measured fragmentation profiles and accurate mass, the HRF method 

capitalizes on new high-resolution GC/MS instrumentation and the large, existing unit 

resolution EI-MS spectral libraries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
High-resolution filtering workflow with spectral matching. (a) Peaks observed across 

consecutive scans are condensed into data features. (b) Features are smoothed and grouped 

based on elution apex. All features within a group are assumed to arise from a singular 

precursor. (c) Individual spectra are derived from feature groups (using average m/z and 

apex intensity) and can then be submitted for spectral matching. (d) A strong spectral match 

of an experimentally-derived spectrum of loratadine against the corresponding NIST 

reference spectrum. All sub-formulas from C22H23ClN2O2 are generated and sorted by exact 

formula mass less an electron. (e) Sub-formulas are matched to peaks in ascending order 

based on m/z. For each matched theoretical fragment a variant containing appropriate heavy 

isotopes is created and placed into the list of sub-formulas in sorted-order. (f) For the high-

resolution spectrum of loratadine 99.2617% of the measured ion current can be annotated 

with a sub-formula of C22H23ClN2O2.
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Figure 2. 
High-resolution filtering results. (a) Spectral match and HRF scores are shown for the 105 

spectra in the dataset. (b) HRF scores for a spectrum of beta-sitosterol (TMS) using 60,560 

different formulas are shown. The true parent (C32H58OSi) is shown in red. Sub- and 

supersets of C32H58OSi are shown in green and blue respectively. (c) Cumulative 

distributions of the 60,560 HRF scores calculated for all 105 spectra are shown in gray. A 

representative distribution generated by combining all results is shown in blue.
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Figure 3. 
Analysis of drugs spiked into human urine at variable concentration. (a) GC-MS TIC 

chromatograms from the most concentrated (blue) and least concentrated (red) spiked 

samples are shown. (b) Deconvolved feature groups for the drug Glutethimide at high (blue) 

and low (red) concentrations. Background features are shown in gray. (c) Spectral match and 

HRF scores for each drug analyzed at all concentrations where analyte abundance was 

sufficient to produce a spectrum. (d) Two spectra were isolated for each drug (one at the 

most concentrated point, the other at the least) and 55,290 HRF scores were calculated using 

unique formulas (0-500 Da) in the NIST database. Cumulative HRF results are shown for 

each drug using a spectrum acquired at high and low concentration (blue and red, 

respectively). A combined distribution is also shown for each population of drug spectra.
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Figure 4. 
Discovery yeast metabolomic analysis. (a) Distributions of the top 20 spectral match/

corresponding HRF scores to 232 spectra extracted from a yeast metabolomics experiment. 

(b) HRF scores corresponding to the 20 best spectral matches (left to right) for all 232 

spectra (top to bottom) are shown in the blue heat map. The intensity of each pixel reflects 

the percentage of total ion current that can be annotated with an exact chemical formula. (c) 

Viable candidates/spectrum when applying spectral match and HRF score thresholds.
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