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Abstract

Background—Computational psychiatry is a burgeoning field that utilizes mathematical 

approaches to investigate psychiatric disorders, derive quantitative predictions, and integrate data 

across multiple levels of description. Computational psychiatry has already led to many new 

insights into the neurobehavioral mechanisms that underlie several psychiatric disorders, but its 

usefulness from a clinical standpoint is only now starting to be considered.

Methods—Examples of computational psychiatry are highlighted, and a phase-based pipeline for 

the development of clinical computational-psychiatry applications is proposed, similar to the 

phase-based pipeline used in drug development. It is proposed that each phase has unique 

endpoints and deliverables, which will be important milestones to move tasks, procedures, 

computational models, and algorithms from the laboratory to clinical practice.

Results—Application of computational approaches should be tested on healthy volunteers in 

Phase I, transitioned to target populations in Phase IB and Phase IIA, and thoroughly evaluated 

using randomized clinical trials in Phase IIB and Phase III. Successful completion of these phases 

should be the basis of determining whether computational models are useful tools for prognosis, 

diagnosis, or treatment of psychiatric patients.

Conclusions—A new type of infrastructure will be necessary to implement the proposed 

pipeline. This infrastructure should consist of groups of investigators with diverse backgrounds 

collaborating to make computational psychiatry relevant for the clinic.
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Introduction

Neuroscience has made tremendous progress in understanding the neural circuitry that 

underlies processes such as attention, memory, emotion, and decision-making. Yet, these 

advances have brought little change to the care of psychiatric patients. There are no tools for 

prognosis, diagnosis, or treatment monitoring based on neuroscience approaches in routine 

clinical use today (1, 2), and novel developments in this direction have stalled (3). 

Neuroscience has also had negligible impact on reshaping disorder categories in new 

diagnostic classifications for mental disorders (4, 5). As a consequence, it is widely 

recognized by many leading academic psychiatrists that clinical psychiatry has not changed 

fundamentally over the past 50 years (6, 7). In response to this crisis, we suggest that 

computational psychiatry (CP) is uniquely placed to deal with the complexities of the 

problem and the arising data; argue that the development of clinical tools using CP 

approaches will, at least initially, play a large role in the development of biomarkers.

Computational psychiatry

Computational psychiatry comprises a set of approaches aimed at arriving at a 

computational understanding of the neural and cognitive substrates of psychiatric disorders 

(8). Why should computational approaches be useful for the translation of neuroscience 

insights into clinical improvements for patients with psychiatric disorders? One of the most 

prominent reasons for the negligible effect of neuroscience on clinical psychiatry is arguably 

the complexity of the problem. Psychiatric disorders are intrinsically complex, multivariate 

phenomena that defy univariate, descriptive approaches. In combination with the ever larger 

and more complex datasets modern experimental techniques produce, this calls for the 

application of novel and powerful analytical approaches. We and others have recently argued 

that CP provides a broad set of tools, ranging from detailed biophysical modeling to 

machine learning, that are uniquely suited to address these challenges (9).

CP encompasses two broad approaches (8, 10–16): theory-driven, often mechanistic models, 

and data-driven approaches, often using machine-learning techniques. Theory-driven models 

encompass multiple levels of analysis, including (a) biophysically based models that address 

the cellular, synaptic, and circuit levels, (b) connectionist and neural models that address the 

large-scale neural systems and behavioral levels, (c) algorithmic models (e.g., from 

reinforcement learning) that address, at an abstract level, the algorithms that the brain uses to 

implement certain computations and how behavior is a result of those computations, and (d) 

normative models, often based on Bayesian ideas, that address the types of computations 

that the brain makes or should make and how behavior and neural activity does or does not 

conform to those normative ideals. Generative versions of all these models can also be used 

to simulate behavior, estimate parameters or determine the best model for individual 

subjects, and even to refine the experimental approach and design to obtain data in the future 
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(17). The mechanistically interpretable parameters that result from applying these models to 

measured behavior and brain activity can be used for both hypothesis testing and model 

validation (11). Moreover, CP measures may also provide estimates of hidden, disease-

relevant processes that can potentially be useful as novel targets in treatment-development 

programs. Thus, theory-driven models in computational psychiatry can be viewed as a 

microscope that enables us to unveil process components of the complex dysfunctions.

The second approach, that of machine learning, applies a wide range of techniques from 

statistics, computer science, and other fields, for classification, prediction, clustering, outlier 

detection, learning of association rules, and sequence analysis (18). Prominent examples of 

commonly used machine-learning tools include Random Forests (19), Support Vector 

Machines (20), Linear Discriminant Analysis (21), and k-Nearest Neighbor (22). These tools 

can not only be applied to assess a single marker, but can also be used to select among 

multivariable regression models and thus can be considered complex model-selection 

algorithms (23). Machine-learning tools have found their way into the medical field for a 

large number of different applications, ranging from the prediction of health-care services 

(24) to clinical predictions of the progression of Alzheimer’s disease (25, 26). They are 

especially important in high-dimensional data settings, i.e., when the number of variables is 

much larger than the number of cases (27, 28). The combination of a mechanistically driven 

computational model together with a data-driven machine learning approach to optimally 

delineate categories and generate robust predictions may turn out to be particularly powerful 

to make neuroscience relevant for clinical psychiatry (12, 14, 16).

The last decade has brought several major advances that help to understand why CP is at the 

brink of making a major impact to integrate measurements across levels of analysis and be 

of practical use for the clinician. First, research in computational psychiatry has skyrocketed 

in the last few years; as a result, a recognizable computational psychiatry community has 

started to form and meet regularly in dedicated symposia, conferences, and other venues. 

Second, several research groups have developed toolboxes that enable researchers to apply 

and test different computational models on their data (29–36). Third, the use of machine-

learning tools (37) applied to increasingly complex features has made it possible to classify 

or cluster subjects on the basis of biological and behavioral measurements (12, 38, 39). 

Fourth, many of the computational models require significant computational resources to 

disambiguate different models; the increasingly widespread availability of high computing 

power has made it possible to evaluate these models on a large scale.

Lessons in the development of clinical tools

For CP to bear fruits and truly accelerate the translation of neuroscience into improved 

patient outcomes (27, 28, 40–45), it is worthwhile considering lessons learned in three 

domains. The first concerns the clinical applications of biomarkers, which provide a helpful 

guide to potential clinical usability of neuroscience methods. The second is the distinction 

between significance testing and prediction. Finally, for such methods to withstand the 

multifaceted challenges of actual clinical practice, they have to go through a process of 

validation, which we suggest may take a form akin to that of the drug-development pipeline. 

Reference to such a pipeline may help to determine the current state of development of a 
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given tool or technique and inform decisions about further investment into neuroscience 

methods.

Clinical applications of biomarkers

CP techniques are likely to have a prominent translational role in the development of novel 

biomarkers, which have been defined as “ measurable characteristics that reflect 

physiological, pharmacological, or disease processes” (46) or as “ indicator[s] signaling an 

event or condition in a biological system or sample and giving a measure of exposure, effect, 

or susceptibility” (47). Biomarkers have had limited, if any, impact on clinical psychiatry, as 

exemplified in a recent review focused on schizophrenia (1). In the broader domain of 

medicine, however, biomarkers have been used for several well-defined clinical applications 

(47–49). First, biomarkers can be used in a prognostic setting to attempt to determine the 

likely course of the disease. A related application of prognostic biomarkers is the early 

detection of disease, i.e., screening. Second, biomarkers can be used to identify subgroups 

that respond more uniformly to certain therapeutic interventions to increase the likelihood of 

therapeutic success (stratification) and to select a particular drug or intervention from an 

available class (differentiation). Third, biomarkers can be used to replace clinical 

assessments to assess the progress of interventions as efficacy surrogates, allowing, for 

instance, early changes in treatment strategy. They can also be used to indicate risk of 

disease re-emergence after remission (monitoring). A fourth use is to exclude patients from 

certain interventions, i.e., to prevent toxicity. As a possible example within the realm of CP, 

it is conceivable that certain measures of learning might predict adverse effects of certain 

psychological interventions. In addition to requiring different data, these approaches differ in 

the demands they place on measures. For example, the broader the target population for a 

screening test, the less burdensome and costly the test can be; as another example, 

biomarkers to be used for monitoring or as efficacy surrogates must have particularly high 

test-retest reliability. Considering these issues in advance will help focus resources on the 

most promising CP measures early on.

Prediction versus significance

A second lesson arises in the distinction between significance testing and prediction. As in 

the rest of medicine, diagnosis and treatment in psychiatry initially had to be based on verbal 

report, observable behavior, and clinical phenomena. Clinical needs then rightly dictated the 

aggregation of these phenomena into nosological categories—psychiatric disorders—that 

achieve some reliability between clinicians (50, 51). These categories have some predictive 

value in that they provide rough guides to treatment, treatment monitoring, prognosis, and 

toxicity. However, the prevalence of trial-and-error treatment and the relatively high 

percentage of non-responders in psychiatry clearly attest to the insufficient predictive value 

of existing diagnoses.

A substantial amount of research has sought to identify variables that differ significantly 

across existing diagnostic categories (e.g., differences in neural processes between healthy 

comparison subjects and schizophrenia patients) or that are correlated with a feature of 

interest (e.g., the degree of depression, anxiety, or psychosis). Unfortunately, such research 

has done little to improve predictive value in psychiatry. For instance, no biomarkers for 
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neuropsychiatric disorders have been successfully translated to clinical practice (52). One 

possibility is that this approach to research has not yet progressed far enough to lead to 

clinical applications, and so we just need more of the same type of research. We propose a 

different perspective, however, arguing that this type of research may be fundamentally 

misaligned with the goals of prediction. We base this contention on two observations. First, 

these approaches generally just reify existing diagnostic categories, rather than trying to 

move beyond them. Second, and more fundamentally, the statistical approaches used for 

assessing significance are different from those required to detect useful predictors. There is 

no guarantee that a variable that differs significantly between two groups will be useful for 

prediction, nor is there any guarantee that a variable that does not differ significantly 

between groups is not useful for prediction (53). In fact, a variable that does not differ 

significantly between two groups, regardless of sample size, may be a better predictor than 

one that does (53). The key difference between significant and predictor variables is that 

significant variables are based on assumptions of the exact form of the underlying 

distribution.

An alternative is hence a framework in which the focus is systematically and explicitly on 

prediction. Such an approach has many advantages, which we suggest make it a natural 

focus for translational efforts. It can avoid reifying existing categories by potentially 

bypassing diagnostic labels entirely, instead predicting directly clinically relevant variables 

(e.g., treatment response) (14), but it can also easily be combined with, and naturally 

enhance, the current diagnostic schemes by making incremental contributions that can be 

made explicit (54–56). The predictive framework also brings patient-relevant outcomes into 

the focus of neuroscientists. CP techniques can be especially helpful for such a predictive 

approach. Both theory- and data-driven approaches, and indeed their combination, can be 

used to extract relevant predictive features from complex, high-dimensional datasets (9). 

Mechanistic models can achieve this by extracting meaningful, low-dimensional underlying 

mechanistic measures from complex, high-dimensional data (e.g., extracting a couple of 

parameters that characterize learning from complex learning trajectories). Machine learning 

(ML) techniques achieve this through general-purpose statistical data characterizations. 

There has been substantial recent interest in using these techniques for practical purposes 

such as automated classification of psychiatric disorders based on brain-imaging data (38). 

Integrating mechanistic and ML approaches affords an integration of predictive models with 

a mechanistic understanding of psychiatric disease that may actually result in improved 

prediction (12, 16).

Prediction, however, is not an end in itself, but merely a step on the path towards using 

neuroscience methods to improve therapeutic decision making and ultimately treatment 

outcomes and cost-effectiveness of care (56). Statistical tools can be used to estimate the 

size of these improvements. For instance, the statistical properties of the biomarker can be 

combined with information about the prevalence of the disorder and the efficacy of 

treatments to estimate the impact of the biomarker on patient outcomes (23, 57). However, 

the ultimate test of the effectiveness of a prediction tool, like any other intervention, is a 

Randomized Clinical Trial (RCT). In this case, the predictive test is the intervention, which 

is examined for its efficacy (58). Thus, a group of providers would be randomized to receive 

test information whereas another group of providers would be randomized to receive no 
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information. Patient outcomes are the main dependent measure, and a significantly different 

outcome across groups of patients treated by providers with and without test information 

provides support for the clinical utility of the test (58).

A development pipeline for computational psychiatry inspired by the drug-

development pipeline

The development cycle of biomarkers, drugs, and medical devices involves five different 

types of studies including of (a) preclinical studies, (b) clinical assay development, (c) 

longitudinal and cross-sectional repository studies, (d) prospective studies, and (e) 

randomized controlled studies (47, 49, 59, 60). To accelerate the application of new 

knowledge in CP from discovery to implementation in clinical practice, we propose the 

adoption of a similar pipeline. Specifically, we propose a phased translational approach that 

divides the pragmatic knowledge production into phases, similar to pipelines described for 

the development of drugs, diagnostic markers, and other interventions.

Preclinical phase

This phase establishes a first version of the CP tool. It starts with the early stages of 

identifying process targets, determining what measures to employ, and developing 

appropriate experimental paradigms, computational models, and model-fitting routines to 

tap into those targets. This phase is characterized by small-scale experiments typically 

developed in individual laboratories by computational and theoretical neuroscientists, 

experimental psychologists, cognitive and behavioral neuroscientists, and other basic 

scientists. This phase typically uses cross-sectional studies with healthy volunteers to 

determine whether the empirical and computational framework appropriately probes the 

presumed process(es) of interest. Moreover, modeling experts may be able to use data 

repositories to develop computational models for a particular target population.

Phase I(a): robustness

The main aim for this phase is to assess and improve the robustness of the CP tool, i.e., to 

develop a complete package consisting of reliable and robust probes, measures, and analysis 

tools that can subsequently be used as a package in clinical studies. These studies are 

focused on the more “mundane” aspects of pragmatic CP, which are often underappreciated 

but are critical for success in the subsequent phases. Important factors include, among 

others, fine-tuning of the probes (e.g., recording or task lengths), test-retest reliability, 

external, construct and converging validity, ceiling or floor effects, training effects, 

sensitivity to experimental manipulation, detailed characterization and optimization of 

model-fitting procedures, or dependence on context and implementation. Some of these 

issues have been addressed in detail by the CNTRICs initiative (61), albeit not in the context 

of CP. These experiments will need to include a large number of healthy individuals and 

comprise both cross-sectional and limited longitudinal studies. As this involves a substantial 

research effort, it may benefit from multi-site collaborations.
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Phase I(b): clinical validity

During this phase, the models, paradigms, and/or techniques developed in the earlier phases 

are first applied to particular clinical populations. These studies focus on relatively small 

clinical samples and can provide the first evidence regarding whether computational 

modeling helps to provide a more sensitive measure or a deeper understanding of the 

putative process dysfunction. The experimental designs can be varied and include case-

control studies, experimental designs with specific manipulations, longitudinal prospective 

designs, and even early interventional studies. The goal for this phase is to determine the 

sensitivity, specificity, validity, and explanatory value that computational approaches add to 

existing clinical care. In addition, similar to “dose-finding” studies, these experiments may 

modulate a particular parameter such as sensory processing difficulty or working memory 

load to optimize the estimation of a computational parameter for a particular target 

population. At this stage, many experiments will be conducted in individual laboratories that 

include a close collaboration between academic psychiatrists or psychologists and 

theoretical or computational neuroscientists. Phases Ia and Ib are both part of Phase I 

because they are interdependent. Thus, despite the seemingly linear process, it is clear that 

identification and development are iterative processes (62). In many cases, especially those 

that do not involve interventions, it may be more efficient to move to Phase Ib well before all 

aspects of Phase Ia are completed.

Phase II: initial proof of efficacy in a RCT

The critical step in translating neuroscience to clinical psychiatry is to clearly show the 

efficacy and utility of a diagnostic, prognostic, or interventional approach in a psychiatric 

population. Phase II randomized controlled trials (RCTs) are essential in establishing 

whether computational psychiatry will be relevant clinically. However, these trials need to be 

sufficiently powered to be confident that primary or secondary endpoints will be met. 

Typically, Phase II trials have to use multi-site designs and therefore require significant 

resources in terms of money, personnel, and infrastructure. They will therefore need to be 

developed as endeavors of consortia who have an interest in translating CP into the clinic. At 

this stage, experts in clinical trials, statisticians with clinical design expertise, and academic 

clinicians who can contribute expert opinions about critical measures and outcome 

assessments will need to integrate with the team of investigators that have conducted Phase I 

studies. A possible example for a Phase II CP trial could be to determine whether 

computational parameters extracted from behavioral or neural data can improve treatment 

decisions (say, deciding to stop antidepressant treatment if a patient shows a normalization 

of reward-related parameters). Another example could be to test if a task-derived 

computational parameter that indicates a greater reliance on goal-directed rather than 

habitual behavior (63, 64) could help to predict who would benefit from cognitive therapy.

Phase III – establish clinical effectiveness

In drug and biomarker development, Phase III studies are carried out according to strict 

regulations that ensure the reproducibility of the results and help to ensure transparent data 

acquisition and analysis. There have been no Phase III trials using computational-psychiatry 

approaches. Like Phase III clinical trials for novel therapeutics, these studies are going to be 
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expensive, have to be carried out at multiple sites, and will need to be based on highly robust 

probes, computational models, and measures. At this stage, economic analyses are essential 

to be able to convince organizations providing mental-health care to include novel 

approaches into their coverage. Interestingly, there has been relatively little discussion of 

what economic model would support the addition of neuroscience-based measures in general 

and CP approaches in particular.

Phase IV – post-marketing refinement

These studies comprise “post-marketing” surveillance of an approved procedure or 

biomarker aimed at detecting rare or long-term adverse effects of its use in the broader 

patient population. They can also be used to test for efficacy in patient populations that were 

not examined in Phase II or III trials (e.g., does assigning patients to cognitive therapy based 

on a model parameter that reflects reliance on goal-directed versus habitual responses also 

work for other age ranges, contexts, socioeconomic status, and so on). These studies could 

include CP-based patient selection or stratification of individuals with particular types of 

depression (e.g. post-partum, post-stroke, or trauma-related) to determine whether these 

individuals would be good candidates for learning-based treatment interventions.

Discussion

The goal for a pragmatic approach to research in psychiatry is to generate impactful research 

that makes a difference in mental health. In this article, we sought to lay out a strategy and 

roadmap to take computational psychiatry from the laboratory, where it still resides more 

comfortably, to the clinic. We called for a fundamental shift in research focus, from seeking 

to find statistically significant differences between groups to seeking to develop predictive 

models that address real clinical needs, noting that these two goals are not as well aligned as 

one might initially think. We also proposed a phased development pipeline, akin to that used 

in drug or device development, to take computational psychiatry from the initial, preclinical 

stages all the way to the clinic. This type of pipeline makes the key transitions explicit, 

which will help to clearly frame go/nogo decisions for continued development, highlight 

measurements that help to quantify value-added benefit, and create a timeline for the 

experiments and clinical studies that are necessary to move forward. The majority of CP 

work thus far has been at the preclinical and Phase I stages. Recent work, however, has 

started to show promise in the application of computational psychiatry to real clinical 

problems (9).

There are a number of CP tools with clinical potential. As one example, the burgeoning 

literature on model-free versus model-based learning (64–68) has resulted in the 

development of a task and a rich set of computational analyses, and it has been applied to a 

variety of disorders, including various substance dependences and obsessive-compulsive 

disorder (69, 70). As another example, neural and more abstract models of the role of 

dopamine in reinforcement learning have similarly led to the development of tasks and 

models that have been applied across a wide range of psychiatric and neurological disorders 

(15, 71). However, unlike standard neuropsychological (72) or cognitive approaches (73), 

there are no systematic initiatives that have prospectively examined the reliability and 
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clinical usefulness of computational approaches. Furthermore, there has as yet been no 

structured initiative within the context of computational psychiatry to bring together 

individuals with the various necessary skills to conduct such studies. Similar efforts in 

closely related fields—e.g., the cognitive neuroscience treatment to improve cognition in 

schizophrenia (CNTRICS) initiative (74, 75)—can provide valuable insights as to how to 

establish an operational environment to make these studies possible.

To realize the potential of CP tools, there will need to be an effort based on a scientific 

community that includes researchers with a wide range of expertise. The lack of interaction 

between basic scientists and clinical researchers that are familiar with the intricacies of the 

disease is a well-know issue from other fields (49). Target populations have to be carefully 

selected, and important aspects beyond socio-demographics, such as substance use, physical 

activity, and metabolic status that can have profound influences on biological markers and 

may well affect cognitive processing (76) should be thoughtfully assessed. Realizing the 

potential of CP tools will also require an operational framework, i.e., a more systematic way 

of developing probes, models, and experiments, sharing insights and results, communicating 

findings quickly and effectively, and helping to implement models and experimental 

procedures across laboratories. It may also be helpful to consider Quality System (QS) 

regulation. This regulation requires that, before making a new test, the developers must 

identify relevant inputs and outputs and must establish a program for verifying and 

validating production processes and test performance (77). In addition to being essential for 

effective biomarker development and regulatory approval, guidelines on QS regulation share 

remarkable similarity to those recently suggested for high-impact journal publication (78), 

and these practices are consistent with increasingly regulated reporting of findings using 

publication standards such as CONSORT (79) or STARD (80).

In conclusion, we have argued that the complexity and features of the problems and data in 

clinical psychiatry mean that computational approaches will play a key role in making 

neuroscience relevant for clinical psychiatry, ultimately helping to make neuroscience 

relevant to day-to-day psychiatric practice. Achieving this challenging goal will require a 

systematic, focused approach, akin to that used in drug development; it seems quite unlikely 

that leaving things to chance—i.e., to disjoint, ad hoc efforts—will be able to bridge the 

wide gap between initial development of CP tools and their eventual use in clinical practice. 

We proposed a systematic pipeline to guide these efforts, and we identified limitations of 

current research efforts in psychiatry that may be hindering, rather than assisting, progress in 

the development of clinically useful tests, tools, and techniques. We hope that sophisticated 

computation, a systematic framework, and new organizational schemes for the operational 

implementation of this framework will finally translate neuroscience insights into clinical 

practice.
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