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Abstract

Characterizing the variability of resting-state functional brain connectivity across subjects

and/or over time has recently attracted much attention. Principal component analysis (PCA)

serves as a fundamental statistical technique for such analyses. However, performing PCA

on high-dimensional connectivity matrices yields complicated “eigenconnectivity” patterns,

for which systematic interpretation is a challenging issue. Here, we overcome this issue with

a novel constrained PCA method for connectivity matrices by extending the idea of the pre-

viously proposed orthogonal connectivity factorization method. Our new method, modular

connectivity factorization (MCF), explicitly introduces the modularity of brain networks as a

parametric constraint on eigenconnectivity matrices. In particular, MCF analyzes the vari-

ability in both intra- and inter-module connectivities, simultaneously finding network modules

in a principled, data-driven manner. The parametric constraint provides a compact module-

based visualization scheme with which the result can be intuitively interpreted. We develop

an optimization algorithm to solve the constrained PCA problem and validate our method in

simulation studies and with a resting-state functional connectivity MRI dataset of 986 sub-

jects. The results show that the proposed MCF method successfully reveals the underlying

modular eigenconnectivity patterns in more general situations and is a promising alternative

to existing methods.

1 Introduction

Characterizing the variability of the brain’s functional network organization is of fundamental

importance in basic neuroscience as well as clinical researches. Functional connectivity [1] is

usually measured as pairwise covariances or correlations of neural signals, typically for 5-10

minutes of resting state, and the connectivities among many brain regions are summarized as

what is called the (functional) connectivity matrix. The inter-subject variability of this matrix,
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or its associated graph, has been linked to individual differences in cognitive function and neu-

rological health or disease (e.g., [2–4]); the variability is observed even within a single subject

in a shorter time-scale, either during rest or correspondingly to the changes in task states (e.g.,

[5–11]), further indicating its relation to ongoing mental states. The central issue is thereby to

discover characteristic patterns from connectivity matrices collected from many subjects and/

or time windows, for which unsupervised machine learning or exploratory multivariate analy-

sis techniques play a crucial role.

Principal component analysis (PCA) is one such unsupervised method that has been suc-

cessfully applied to analyzing the variability of functional connectivity matrices, as first dem-

onstrated by [8] with resting-state functional magnetic resonance imaging (fMRI). They

showed that principal components (PCs) and the associated basis patterns, called eigenconnec-
tivity, shed unique light on the intrinsic structures of variability that complements other

approaches (e.g., using k-means clustering, as in [7, 9]). In subsequent studies, more advanced

methods such as independent component analysis (ICA) [12] have also been used for a similar

purpose, while the intuitive notion of eigenconnectivity retains its fundamental importance to

characterize the variability of connectivity matrices.

However, in practice, performing PCA-based eigenconnectivity analysis on high-dimen-

sional connectivity data has a severe limitation; the visualization and interpretation of compli-

cated eigenconnectivity patterns are often quite challenging. Each pattern is typically

visualized as a matrix using any appropriate color mapping or as a graph superimposed on an

anatomical brain image where each node represents a brain region [8]. In either case, the visu-

alized patterns can be very complicated when the number of nodes is large, and often further

simplifications or post-hoc analysis of those patterns are needed to draw meaningful

conclusions.

Here, we overcome such difficulties with a novel constrained PCA approach that explicitly

takes the brain’s functional modularity into account. The notion of functional network mod-

ules in the brain has already been widely accepted, as exemplified by resting-state networks

(RSNs) [13, 14], and a modular view is often very helpful to intuitively understand complicated

relationships among a large number of network nodes. In particular, our approach naturally

allows a systematic visualization using the modules’ spatial patterns which are usually more

intuitive than graphical ones; this is a great advantage over standard PCA or more conven-

tional constrained PCA techniques such as sparse PCA (e.g., [15, 16]) and 2D-PCA [17]. Such

an idea of analyzing network variability in terms of underlying modules is therefore very

attractive from both neurophysiological and practical perspectives.

Previously, we developed one such module-constrained PCA technique called orthogonal
connectivity factorization (OCF) [18]. OCF decomposes the variability of the connectivity

matrices into those of pairwise inter-module connectivities, i.e., connectivity between two

groups of nodes. The two groups (herein called modules) are found in a data-driven manner

by learning two corresponding weight vectors that are mutually orthogonal, each of which

roughly defines the spatial extent of a module. In our application to resting-state fMRI connec-

tivity data, optimized weight vectors produced meaningful spatial patterns resembling well-

known RSNs, giving a compact and interpretable decomposition of connectivity matrices.

However, OCF aims at a very simple analysis and visualization of the variability of connectiv-

ity, which leads to some lack of generality.

In the present study, we extend the OCF approach one step further and develop a new mod-

ule-constrained PCA method called modular connectivity factorization (MCF). Like OCF, this

new method finds network modules to decompose the variability of connectivity matrices,

while it improves OCF in a number of ways. Most importantly, MCF analyzes the variabilities

of both inter-module connectivity and intra-module connectivity, i.e., connectivity within each
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single module. In fact, OCF implicitly assumes that the variability of intra-module connectivity

is negligible, which may cause misinterpretation of results when such an assumption does not

hold. To further improve the interpretability, we also constrain the weight vectors in MCF so

that the same signs are in each module. Moreover, we generalize MCF so that it can learn

eigenconnectivities among more than two modules to give added flexibility for representing

eigenconnectivity patterns.

Our method is based on an explicit factorization of eigenconnectivity matrices with module

weight vectors and a matrix summarizing the eigenconnectivity at the module level. The

weight vectors are constrained so that the modules are mutually non-overlapped, which is a

stronger assumption than orthogonality in OCF. Further nonnegativity constraints on the

weight vectors avoid mixed signs in each module, and the factorized representation can be

readily extended with more than two modules. We solve the optimization problem of our con-

strained PCA using an approximate gradient projection technique, in conjunction with an effi-

cient initialization scheme based on post-hoc analysis of the eigenconnectivity patterns

obtained by PCA.

The main goals of this study are summarized as follows. We 1) present the theory and algo-

rithms of MCF with sufficient mathematical details and 2) show MCF’s advantages over exist-

ing eigenconnectivity analysis methods, namely PCA and OCF. For the second purpose, we

specifically perform simulation studies by artificially creating connectivity matrices so that the

ground truth is known. To further demonstrate the method’s applicability to real data, we also

3) apply our method to a publicly available resting-state fMRI connectivity dataset and com-

pare the result with other methods.

2 Materials and methods

In this section, we first introduce the two existing methods for eigenconnectivity analysis

(PCA and OCF), and then describe the underlying motivations and mathematical details of

our new MCF method. Subsequently, we explain the details of our simulation studies and real-

data analysis which we performed to compare these methods. Table 1 summarizes some com-

mon notations used below.

2.1 Principal component analysis (PCA)

We begin by introducing the basic concept of eigenconnectivity analysis using PCA.

Denote by X ¼ ðxijÞ 2 R
D�D a connectivity matrix of interest representing the pairwise con-

nectivity among a predefined set of D nodes (e.g., brain regions). Each element xij denotes the

connectivity between nodes i and j quantified with any appropriate measure. Diagonal ele-

ments xii (i.e., self-connections) are also allowed to vary for generality. In the present study, we

focus on a symmetric (undirected) connectivity measure, where X is a symmetric matrix.

Since we observe many connectivity matrices, we can in fact consider X a random quantity

(random matrix) from which we observe a sample.

Our goal here is to decompose the variability of the observed connectivity matrices into

interpretable components for which PCA serves as the most fundamental method. Specifically,

given sample {X1, X2, . . ., XN} that consists of N instances of random matrix X, PCA finds a lin-

ear decomposition, such that

Xn ¼
�X þ s1nB1 þ s2nB2 þ � � � ; ð1Þ

where �X denotes the sample mean, smn denotes the m-th principal component (PC) for n = 1,

2, . . ., N, and Bm denotes the corresponding pattern of the loadings, i.e., an eigenconnectivity

matrix. Patterns B1, B2, . . . can be extracted one-by-one using a well-known deflation method,
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so that the m-th component maximally explains the residual sample variance that was not

explained by the preceding components.

We focus on the first deflation step, in which we solve the following maximization problem

to obtain pattern B (where the subscript is omitted for simplicity):

max
B

X

n

ðtr½B> ~Xn�Þ
2
; subject to k B k¼ 1; ð2Þ

where ~Xn :¼ Xn �
�X is the centered connectivity matrix and k B k:¼

ffiffiffiffiffiffiffiffiffiffiffiP
ijb2

ij

q
denotes the

Frobenius norm. Here, tr½B> ~X � is the dot-product between matrices B and ~X . Thus the objec-

tive function simply means (N times) the sample variance along the one-dimensional subspace

spanned by B. Note that if every Xn is symmetric, optimal B is always symmetric, as is easily

verified; we omit the explicit symmetricity constraint in Eq (2) for simplicity. In the subse-

quent deflation steps, the same problem is recursively solved, where the component, explained

in the preceding step, is further subtracted from every ~Xn.

2.2 Orthogonal connectivity factorization (OCF)

The above idea of PCA-based eigenconnectivity analysis [8] is fundamental to characterize the

variability of brain connectivity. However, since the obtained high-dimensional eigenconnec-

tivity patterns B can be very complicated, their visualization and interpretation are quite

challenging.

For example, as in [8] and in some examples below in the present study, we typically visual-

ize each matrix pattern as a tiled square colored according to the elements’ values. However,

such a simple visualization might not be very intuitive without a succinct one-dimensional

ordering of nodes; it may even be problematic due to the arbitrariness of the ordering. The pat-

tern can also be visualized more intuitively as an undirected graph by superimposing it on an

anatomical brain image, although the graph drawn can again be very complicated, and ad-hoc

pruning of the nodes and/or edges is usually required for simplification.

Table 1. List of notations.

Symbol Description

Xn D × D connectivity matrix (n = 1, 2, . . ., N)

�X Sample average of connectivity matrices

~X n Centered connectivity matrix Xn �
�X

B Eigenconnectivity matrix

sn Corresponding component of n-th connectivity matrix

W D × K module weight matrix

wk Weight vector of k-th module; k-th column of W

G K × K module-level eigenconnectivity matrix

gkl Eigenconnectivity between modules k and l; (k, l)-entry of G

Ω Set of Ws that have at most one nonzero element per row; see Eq (6)

Ω+ Set of Ws that are nonnegative and in Ω; see Eq (8)

k � k ℓ2-norm (for vector) or Frobenius norm (for matrix)

tr[�] Trace of a matrix
> Transpose of a matrix

R Set of real numbers

Rþ Set of nonnegative real numbers

doi:10.1371/journal.pone.0168180.t001
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To overcome such difficulties in PCA eigenconnectivity analyses, OCF [18] introduces a

constrained eigenconnectivity matrix B so that the eigenconnectivity pattern is effectively sim-

plified and naturally admits intuitive interpretations. OCF assumes that each (symmetric)

eigenconnectivity matrix B is at most rank two, according to an empirical observation that the

eigenspectrums of B (obtained by PCA) are often dominated by two eigenvalues with opposite

signs [18], and then explicitly parameterizes B as

B ¼
1
ffiffiffi
2
p ðw1w>

2
þ w2w>

1
Þ; ð3Þ

where w1 and w2 are weight vectors that are assumed to be orthonormal. The coefficient,

1=
ffiffiffi
2
p

, simply ensures kBk = 1. Substituting Eq (3) into the original PCA problem Eq (2) (and

with the symmetricity of ~Xn), we have the optimization problem of OCF given by

max
w1 ;w2

X

n

ðw>
1

~Xnw2Þ
2
;

subject to k w1 k¼k w2 k¼ 1; w>
1

w2 ¼ 0:

ð4Þ

This problem was solved in [18] using a simple alternating maximization algorithm with auxil-

iary variables. An efficient procedure for an approximate solution has also been developed

based on a post-hoc analysis of eigenconnectivity matrices obtained by PCA.

The idea of the specific parameterization of eigenconnectivity matrix Eq (3) is illustrated in

Fig 1(a) and 1(b). Here, the observed connectivity matrices are supposed to reflect the modu-

larity of the underlying system, so that each matrix more or less exhibits an approximate block

structure under any appropriate node ordering. Then a principal component characterizes the

variability in such block-like connectivity matrices (Fig 1(a)). The two weight vectors (Fig 1

(b)) have the same length as the number of nodes and in effect define the two modules. The

nodes with large absolute weights in w1 or w2 belong to modules 1 or 2, where the imposed

orthogonality is expected to force the modules to be approximately non-overlapping. Then,

taking the symmetrized outer products of the two vectors, resultant eigenconnectivity matrix

B mainly explains the variability in an off-diagonal block (and its transpose) of the observed

connectivity matrices, which corresponds to the inter-module connectivity between the two

modules defined by w1 and w2.

Hence, OCF specifically seeks a decomposition of the variability into a simple form of

eigenconnectivity between any pair of modules. The simplicity of each component pattern is

expected to improve the interpretability. Importantly, the weight values of the nodes can be

directly mapped to the corresponding spatial positions in the brain so that they can be readily

visualized as spatial activation maps on the brain rather than naive matrix representations or

complicated graphical patterns. Such a visualization using spatial maps is often more intuitive

and does not suffer from arbitrariness in node ordering or methods for graph simplification.

2.3 New method: modular connectivity factorization (MCF)

Now we explain our motivation for the new development and describe the formulation and

specific algorithms of our MCF method.

2.3.1 Motivation for new method. Although OCF has been demonstrated to be successful

in decomposing the variability of connectivity matrices [18], we noticed some of its drawbacks

that might prevent it from being widely applicable. The following issues particularly motivated

us to develop the new MCF method which we describe below.

First, OCF implicitly assumes that the variability of connectivity within each module (i.e.,

intra-module connectivity) is almost negligible, where the two self-product terms, w1w>
1

and
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w2w>
2

, are dropped in Eq (3). If this assumption does not hold, the two weight vectors neces-

sarily overlap to spuriously produce nonzero patterns within individual modules (i.e., diagonal

blocks of eigenconnectivity matrix; see Fig 1(b)). This inseparability of intra- and inter-module

connectivities is problematic because it complicates the interpretation of weight vectors and

might even distort the inter-module (off-diagonal) parts of the eigenconnectivity if the intra-

module parts need to have large values.

Second, the weight and eigenconnectivity patterns obtained by OCF might contain both

positive and negative signs in one module (Fig 1(b)), which is often difficult to interpret. The

different signs in eigenconnectivity mean that the connectivities corresponding to positive and

negative signs vary in opposite directions. If one increases, the other decreases, and vice versa.

Hence, mixed eigenconnectivity signs imply that a module may be divided into submodules

with distinct functional properties, characterized by strong anti-correlations (i.e., negative cor-

relations) in the variability of their connectivities to any other modules as well as the variability

in their internal connectivities, if intra-module connectivity is also taken into account. Such

inhomogeneity would be more interpretable if it were represented explicitly as different

modules.

Finally, OCF focuses on the variability of connectivity between a pair of modules, and thus

it is not applicable to finding general eigenconnectivity patterns among more than two mod-

ules. Although an empirical observation [18] strongly motivated the rank-two approximation,

it does not necessarily imply that the information discarded by the approximation is meaning-

less. In particular, we can expect to obtain eigenconnectivity patterns that are more interesting

from any neurophysiological (or any other domain-specific) perspective by increasing the

rank and thus the number of modules.

2.3.2 MCF’s representation of eigenconnectivity matrix. We introduce a new paramet-

ric representation of simplified eigenconnectivity matrix B by extending the one of OCF Eq

(3). To begin with, we only consider a pair of modules. The general case of more than two

modules is described in Section 2.3.5.

The new parametric form of B is given as follows, which is also illustrated in Fig 1(c):

B ¼
X2

k¼1

X2

l¼1

gklwkw
>

l ¼WGW>; ð5Þ

where wk is the weight vector for module k, such that node j belongs to module k when its j-th

element wjk is nonzero. The two weight vectors are collected in the D × 2 matrix W = (w1, w2).

Real coefficients gkl determine the relative magnitudes and the signs of these outer products

wkw>l and are collected in a 2 × 2 matrix G = (gkl). For simplicity, we assume that matrix G is

non-singular, so that the number of modules equals the rank of B. To avoid an obvious ambi-

guity in the scaling between W and G, we fix every wk to have unit ℓ2-norm, i.e., kwkk = 1 for

every k.

Next we explain additional assumptions on parameters W and G in detail:

Fig 1. Illustration of OCF and MCF. (a) Single component sn characterizes variability of connectivity xij with a block-structured

eigenconnectivity matrix (top left). Here we illustrate a general situation such that diagonal elements xii may also vary. (b) OCF’s

parametric eigenconnectivity matrix. Two orthogonal weight vectors define two modules, whose symmetrized outer product w1w>
2
þ

w2w>
1

gives an eigenconnectivity matrix (red: positive, blue: negative). Intra-module eigenconnectivity is assumed to be zero (as

illustrated in the middle), but spurious patterns may appear (diagonal parts of eigenconnectivity matrix). (c) Similar illustration for

MCF, which explicitly imposes disjointness and nonnegativity on module weights W = (w1, w2). 2 × 2 real matrix G fully represents

both intra- and inter-module eigenconnectivities; WGW> (i.e., the above four terms) gives a node-level eigenconnectivity matrix.

doi:10.1371/journal.pone.0168180.g001
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1. Variabilities in both intra- and inter-module connectivities: As a key difference from the

parametrization Eq (3) of OCF, we let every diagonal element gkk of G be generally nonzero,

so that the new one Eq (5) represents both the intra-module and inter-module connectivities

with outer products wkw>k and wkw>l (k 6¼ l). Coefficient gkl specifies the overall strengths

and signs of the corresponding term in Eq (5), since the outer products are normalized

commonly as k wkw>l k
2 ¼ 1. In what follows, we refer to G as a module-level eigenconnec-

tivity matrix, representing node-level B in a compact form.

2. Disjointness of modules: To avoid the spurious effects on intra-module eigenconnectivity

due to the overlap of weight vectors among modules, we further constrain the weight vec-

tors so that their nonzero elements do not overlap among modules. That is, we set W 2 O,

where

O :¼ fW 2 RD�2 j at most one element per row is nonzerog: ð6Þ

Then the modules are mutually disjoint, and each wkw>k and wkw>l (k 6¼ l) represent

clearly the intra- and inter-module eigenconnectivity patterns. Note that the weight vectors

are now mutually orthonormal (i.e., W>W = I) as in OCF, which readily results from W 2
O and the unit-norm constraints on the columns as introduced above.

3. Nonnegativity/Uniform signs: To improve the interpretability of the obtained weight vectors,

we further constrain each module’s weights to have uniform signs. Notice that the sign of

each module is actually arbitrary and is eventually absorbed into G. Here, we thus specifi-

cally set every weight to be nonnegative, i.e.,

W 2 RD�2

þ
; ð7Þ

whereRþ denotes the set of nonnegative real numbers.

The matrix factorization Eq (5) with these specific assumptions as above still has some inde-

terminacy in parameters W and G. An obvious indeterminacy is the permutation of the mod-

ules. That is, relation B = WGW> holds even if W and G are replaced with WP and P> GP for

any permutation matrix P without violating the above constraints on W. Another indetermi-

nacy is that the global sign of G can always be flipped since the global sign of B is immaterial,

as in PCA. In practice, these indeterminacies do not seem to cause serious problems, since the

permutation and the global sign may be arbitrarily chosen after learning so that the interpreta-

tion is easier.

2.3.3 Stepwise MCF via post-hoc matrix factorization. Before presenting the principled

constrained PCA approach based on the new eigenconnectivity representation, we first intro-

duce a stepwise approach (Stepwise MCF) to approximately obtain W and G based on the

eigenconnectivity matrix BPCA precomputed by PCA. The stepwise approach is useful in its

own right, while we specifically use it to effectively initialize the iterative algorithm of con-

strained PCA (see Section 2.3.4). In the following, we briefly sketch the algorithm; the details

are found in S1 Appendix (Section A).

Algorithm 1 summarizes the entire procedure of Stepwise MCF to obtain a single MCF

component, which essentially consists of the following steps: first, 1) we solve the uncon-

strained PCA problem Eq (2) to obtain eigenconnectivity matrix BPCA, and then 2) compute

the two eigenvectors of BPCA corresponding to the largest eigenvalues (in absolute value) to

form a D × 2 matrix U. Finally, we 3) alternatingly optimize an orthogonal matrix V and
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W 2 O+ so that the error between UV> and W is minimized, where

Oþ :¼ O \ RD�2

þ
: ð8Þ

This can be solved by a simple modification of a technique previously developed for (multi-

class) spectral clustering [19], and an additional column-wise normalization further ensures W
to satisfy all of the original constraints, i.e., W 2 O+ and 8kkwkk = 1. We further 4) set G = W>

BPCA W to obtain an approximate factorization BPCA�WGW>.

In this procedure, we randomly initialize V as an orthogonal matrix and flip the signs of its

columns to make every entry of ðUV>Þ>1 ¼ V �u nonnegative, where �u :¼ U>1 and 1 denotes

an all-one vector. This simple heuristics ensures that the columns of UV> to be summed up

are nonnegative, so that UV> becomes closer to nonnegative W. The projection to W 2 O+

possibly results in zero column vectors in W due to the lack of explicit norm constraint. To

avoid this, we detect zero columns to restart the procedure from re-initialized V.

Algorithm 1 Stepwise MCF (single component)

Require:Connectivity matrices{Xn}; constant � > 0
1: PerformPCA on connectivity matricesto obtainBPCA
2: Computethe best rank-twoeigenvaluedecompositionBPCA� UQU

>; �u  U>1
3: RandomlygenerateorthogonalmatrixV
4:V  VdiagðsignðV�uÞÞ
5: repeat
6: Vold V
7: W  POþ

ðUV>Þ . Projectionto the set Ω+ (see S1 Appendix)
8: if any columnin W is zero vector,then
9: RandomlygenerateorthogonalmatrixV
10: V  VdiagðsignðV�uÞÞ
11: else
12: Computesingularvaluedecomposition:U> W = L Σ R>; V RL>

13: end if
14: until k V>oldV � I k< �

15: Normalizeeverycolumnin W to have unit ℓ2-norm
16: G W> BPCA W

We remark that the approximate factorization BPCA�WGW> is in fact applicable to any

matrix B other than that obtained by PCA. Thus, Algorithm 1 (except for the first line) can

readily be used, e.g., to analyze a single connectivity matrix Xn or the average �X ; the stepwise

analysis can even be combined with any methods other than PCA, such as k-means clustering

(see S2 Appendix) and ICA.

2.3.4 Constrained PCA algorithm. Plugging the factorized eigenconnectivity matrix

Eq (5) into the original PCA problem Eq (2), we have the following constrained PCA optimiza-

tion problem to obtain a single MCF component:

max
W;G

XN

n¼1

ðtr½WG>W> ~Xn�Þ
2
;

subject to W 2 Oþ; 8k k wk k¼ 1; k G k¼ 1:

ð9Þ

The additional unit-norm constraint on G ensures kBk = 1, since W>W = I implies kWGW>k
= kGk. Note that optimal G is symmetric because every ~Xn is symmetric; if we further con-

strain G so that every diagonal entry is zero, constant 1=
ffiffiffi
2
p

in OCF Eq (3) emerges in the off-
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diagonal entries under the unit-norm constraint on G. An alternative interpretation of

Problem (9) is given in S1 Appendix (Section B).

To solve Eq (9), we use a simple alternating maximization scheme with auxiliary variables,

similar to [18]. Let r = (r1, r2, . . ., rN)> be an auxiliary vector variable satisfying krk = 1, and

define C :¼
P

nrn ~Xn. Then the square root of the objective function in Eq (9) has the following

lower bound:

ðObjective in ð9ÞÞ
1

2 �
XN

n¼1

rntr½WG>W> ~Xn� ¼ tr½WG>W>C�; ð10Þ

where equality holds when rn equals tr½WG>W> ~Xn� times a constant factor to ensure krk = 1.

Since taking the square root does not change the solution of the Problem (9), the Problem (9)

is equivalent to the maximization of the right-hand side in Eq (10). The lower bound is then

maximized alternatingly between (W, G) and r.

The solution for r was given above. To derive the solution for (W, G), we first analytically

solve for G, yielding G = W> CW/kW> CWk, and then substitute it into the right-hand side of

Eq (10). We again square the objective without changing the optimal solution and eventually

have a reduced problem only for W:

max
W
kW>CW k2; subject to W 2 Oþ; 8k k wk k¼ 1; ð11Þ

which we solve with a gradient projection technique (see, e.g., [20]). Note that we do not need

to perfectly solve this inner maximization Eq (11), but we only need to increase the objective.

In practice, we perform the gradient projection step only once at each alternating maximiza-

tion step.

We introduce a single gradient projection step as the following update of W:

W  PðW þ ZDWÞ; ð12Þ

where matrix ΔW defines the search direction in the space of W, η� 0 is a stepsize parameter,

and P is the projection operator to keep W in the feasible set (see below). Denote by f(W) the

objective function in Eq (11) and byrW f(W) its gradient, derived in S1 Appendix (Section C)

as

rW f ðWÞ ¼ 4CWW>CW: ð13Þ

Then, according to a theory of optimization on manifold [21], we set the search direction as

DW ¼ rW f ðWÞ � WðrW f ðWÞÞ>W; ð14Þ

which restricts the gradient in the tangent space of the Stiefel manifold (i.e., the set of Ws such

that W>W = I) at W. We choose the stepsize η at each update by a backtracking line search to

satisfy Armijo’s condition (e.g., [20]).

The projection operator in Eq (12) still needs to be specified. Unfortunately, exact orthogo-

nal projection P of W to feasible set {WjW 2 O+, 8kkwkk = 1} has no simple solution. Thus we

use an approximate method and first project W to O+ without norm constraints, followed by

the normalization of every column so that each has a unit norm. Note that the first step can be

solved by Proposition 1, given in S1 Appendix (Section A), and the subsequent normalization

does not violate W 2 O+, so that W eventually belongs to the feasible set. Algorithm 2 summa-

rizes the overall algorithm.
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Algorithm 2 MCF (single component): solution to constrained PCA Eq (9)

Require:N connectivity matrices ~X n; initialstepsize η > 0; α 2 (0, 1) for
Armijocondition,β 2 (0, 1) for backtrackingline search,and � > 0 for stop-
ping the criterion
1: InitializeW and G usingAlgorithm1
2: repeat
3: rn  tr½W> ~X nWG� for everyn
4: Normalizer to have unit ℓ2-norm
5: C  

P
nrn ~Xn

6: rf(W) 4CWW> CW
7: ΔW rf(W) − W(rf(W))> W
8: Wold W
9: repeat
10: W 0  POþ

ðW þ ZDWÞ . Projectionto the set Ω+ (see S1 Appendix)
11: Normalizeeach columnof W0 to have unit ℓ2-norm
12: η βη
13: untilf(W0)� f(W) + αtr[(rf(W))>(W0 − W)]
14: W W0

15: until kW> Wold − Ik < �
16: ComputeG = W> CW and normalizeG to have unit Frobeniusnorm

2.3.5 Generalization to K modules. So far we have only considered two modules to repre-

sent a single eigenconnectivity matrix, B. In fact, the current formulation allows the number of

modules to be any positive integer smaller than D, which further generalizes MCF. Let K
denote the number of modules. Then weight matrix W has K columns, and module-level

eigenconnectivity G is a K × K square matrix. The above algorithms remain valid, except that

the rank-2 approximation in line 2 of Algorithm 1 must be replaced with rank-K
approximation.

As an exploratory analysis method, however, we must usually avoid setting the numbers of

modules too large. The standard choice of K = 2 is thus reasonable since it gives the minimal

case that includes both intra- and inter-module connectivities. We can also increase K so that

the patterns obtained are more meaningful in terms of domain knowledge, although the mod-

ule-level eigenconnectivity patterns might quickly become too complicated. We usually set K
to less than about five so that the result can be easily visualized.

To support the selection of reasonable numbers of modules K, we can also examine the

eigenvalue spectrum of BPCA: Let q1, q2, . . ., qD be the eigenvalues of BPCA, sorted in nonin-

creasing order. Then the power (squared Frobenius norm) of BPCA is orthogonally decom-

posed into squared eigenvalues q2
k. Given the spectrum, we can use any conventional heuristics

in the PCA literature to determine which eigenvalues’ contributions q2
k are meaningful (see,

e.g., [22]). In practice, such an approach can be easily combined with Stepwise MCF (Algo-

rithm 1). In the subsequent optimization of the constrained PCA (Algorithm 2), we simply use

the same K selected at the initialization stage.

2.3.6 Extraction of multiple components. The solution to Eq (9) gives the first MCF

component in terms of W and G. Similar to PCA, a deflation method can be used to obtain

subsequent components, solving Eq (9) in a recursive manner. Given corresponding compo-

nents sn ¼ tr½ðWGW>Þ
> ~Xn�, we replace every instance ~Xn with the residual unexplained by

the preceding components:

~Xn  
~Xn � snWGW>; ð15Þ
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and then the next component’s W and G can be obtained by solving Eq (9) again with

updated ~Xn.

According to this deflation scheme, the m-th step yields an approximate decomposition of

centered connectivity matrices ~Xn in terms of basis {B1, B2, . . ., Bm} as well as the correspond-

ing components denoted by smn. Note that matrices B1, B2, . . ., Bm are not necessarily orthogo-

nal to each other (i.e., dot-products tr½B>i Bj� are not necessarily zero), so that the total variance

(in the data space) explained by the m components cannot be simply computed by summing

up the variances of components smn as in a standard way.

Here, following the idea of adjusted total variance [15], which was originally developed for

sparse PCA, we evaluate the total explained variance by MCF components with a correction to

the non-orthogonality. First we orthogonalize the basis using the well-known Gram-Schmidt

method to get
Pm

m0¼1
~sm0n~Bm0 ¼

Pm
m0¼1

sm0nBm0 with orthonormal basis f~Bm0 g and adjusted com-

ponents ~sm0n. Then we compute the adjusted total variance explained by the MCF components

by summing the adjusted component variances, i.e., ð1=NÞ
Pm

m0¼1
ð
PN

n¼1
~s2
m0nÞ.

2.3.7 Relation to nonnegative tensor factorization. Interestingly, our MCF developed

above turns out to be closely related to nonnegative tensor factorization (see, e.g., [23]) which

has recently also found applications in the brain’s functional network analyses [24]; the goal is

rather different from eigenconnectivity analysis. In S3 Appendix, we compare our method

with a particular type of nonnegative tensor factorization as well and discuss their fundamental

differences.

2.4 Simulation studies

We performed simulation studies to compare the performance of our MCF method with exist-

ing methods for eigenconnectivity analysis.

2.4.1 Simulation I: illustrative example. First, we performed a simple simulation to illus-

trate how our new MCF method improves the existing methods for eigenconnectivity analysis,

namely, PCA and OCF. In particular, we examined the effect of increasing the variability of

intra-module connectivity on the estimated eigenconnectivity and the weight matrix patterns.

Here, connectivity matrices Xn were created simply by multiplying a random number gen-

erated from standard Gaussian distribution to a true eigenconnectivity matrix B and adding

symmetric random noise En. The number of nodes was set to D = 20. True B was created as B
= WGW>, where two unit-norm columns w1 and w2 were given so that only entries wj1 for j 2
{4, 5, . . ., 8} and wj2 for j 2 {12, 13, . . ., 18} were nonzero. These nonzero values were set uni-

form in each column. Noise En was generated by first sampling the upper triangular part as

random Gaussian white noise (SD: 0.3) and copying it into the strictly lower triangular part to

form a symmetric matrix. Matrix G was specifically given as

G ¼

ffiffiffiffiffiffiffi
c=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � cÞ=2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � cÞ=2

p ffiffiffiffiffiffiffi
c=2

p

0

@

1

A; ð16Þ

for some values of c 2 [0, 1]. Notice that the sum of the squares in the diagonal and off-diago-

nal elements satisfy g2
11
þ g2

22
¼ c and g2

12
þ g2

21
¼ 1 � c. Thus parameter c gives the relative

strength of the intra-module network variability in the data.

We applied PCA, OCF and MCF (Algorithm 2, K = 2) to the collection of connectivity

matrices synthesized as above. We used a relatively large sample size, N = 10,000, to clarify the

difference particularly due to the modeling assumptions in those methods rather than stochas-

tic estimation errors. We implemented all the methods in Matlab; we used eigs function for
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PCA and the original code for OCF (https://www.cs.helsinki.fi/u/ahyvarin/code/ocf/). We set

the tolerance parameters � reasonably small, i.e., � = 10−12 in Algorithm 1 and � = 10−6 in Algo-

rithm 2. In Algorithm 2, we also set the initial stepsize as η = 0.01, Armijo parameter α = 10−4

as suggested in [25], and β = 0.5 to halven the stepsize in each backtracking step. These settings

were common for all the experiments below.

2.4.2 Simulation II: quantitative comparison. Next, we performed a more quantitative

evaluation of the estimation errors by the above methods. Here, we randomly synthesized N
symmetric matrices X1, X2, . . ., XN of size 100 × 100 (D = 100) according to the following gen-

erative model,

Xn ¼ s1nB1 þ s2nB2 þ En; ð17Þ

so that unit-norm symmetric matrices B1 and B2 define a two-dimensional subspace in the

matrix space, along which observed matrices Xn largely varied. The coefficients, s1n and s2n,

were randomly generated by zero-mean Gaussian distributions with the standard deviations

(SDs) given by 1 and 0.6. Random noise En was again generated from Gaussian white noise

(SD: 0.3), symmetrized appropriately as above.

Matrices B1 and B2 were created randomly in each run of the simulation in the following

manner. First, we generated a 100 × 10 weight matrix W by randomly partitioning the D nodes

into ten non-singleton subsets (this step simply produced modules of moderate sizes; only the

four columns in W were selected and the remaining six were discarded). and sampling the cor-

responding nonzero weights wjk from uniform distribution over [0.5, 1.5], followed by renor-

malizing each column of W to have unit ℓ2-norm. Then we randomly chose two columns in W
to form W1 and another two columns from the remaining eight columns of W to form W2.

Finally, we generated 2 × 2 symmetric matrices G1 and G2 from the Gaussian distribution,

renormalized them to have a unit Frobenius norm, and set Bm ¼WmGmW>

m for m = 1, 2. To

generate each G, we either 1) explicitly set the diagonal elements at zero (i.e., gkk = 0 for any k,

as OCF assumes) before normalization or 2) randomly sampled those diagonal elements as

well.

We compared 1) the standard PCA on connectivity matrices, 2) OCF, 3) Stepwise MCF

(Algorithm 1), which was also used to initialize MCF, and 4) MCF, using the projected gradi-

ent method (Algorithm 2). We ran these four algorithms in the two different conditions on

true G explained above.

By construction, B1 and B2 synthesized above were mutually orthogonal and thus serve as

the orthonormal basis of the two-dimensional principal subspace. B1 and B2 gave the true

eigenconnectivity patterns of the first and second PCs to each of which corresponding estimate

B̂ should approach. Thus, as a basic performance measure, we evaluated estimation error k

Bm � B̂m k for m = 1, 2, i.e., the root mean squared error (RMSE) between the corresponding

elements of the two matrices. We ran the simulation 100 times for given sample size N and

evaluated the estimation error in each of the 100 runs.

2.5 Resting-state fcMRI data analysis

We further compared MCF and OCF using a publicly available functional connectivity MRI

(fcMRI) dataset.

2.5.1 Dataset. The dataset consisted of a total of 986 functional connectivity matrices,

which we obtained from the USC Multimodal Connectivity Database (http://umcd.

humanconnectomeproject.org) [26]. We used the data tagged “1000_ Functional_ Connec-

tomes” and removed 17 connectivity matrices from the original 1003 because the files seemed

corrupt. Each connectivity matrix corresponded to one subject, consisting of pairwise
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correlations of blood-oxygen-level dependent (BOLD) signals between 177 functional regions-

of-interest (ROIs) that were obtained using the spatially constrained spectral clustering

method [27].

2.5.2 Data analysis. We applied both OCF and MCF (K = 2) to this dataset and extracted

two components with each method. Due to the existence of local optima in the objectives, we

used 20 different initial conditions and examined the results that achieved the maximum

explained variance. In fact, the result was qualitatively not sensitive to initial conditions; MCF

runs deterministically once initialized by the output of Algorithm 1 and we empirically found

that Algorithm 1 was quite robust to the initial choice of V.

We also demonstrated the generalization of MCF to more than two modules (Section 2.3.5)

using the same fcMRI dataset. As a preliminary analysis, we examined the eigenvalue spectrum

of the first PCA eigenconnectivity matrix BPCA to roughly estimate a reasonable number of

modules K (Fig 2). Note that the number of modules in MCF equals the number of eigenvalues

retained in the rank-K approximation of BPCA� UQU> performed in the generalized version

of Algorithm 1 (Section 2.3.5). The figure suggested that the first three (84%) or four modules

(89%) already cover a large fraction of variability explained by BPCA. We thus performed MCF

with K = 3 and K = 4, extracting only one component in each case for simplicity. To avoid

local optima, we again used 20 different initial conditions in each K, and examined the results

that achieved the maximum explained variance.

2.5.3 Visualization. To visualize the spatial weight patterns, we used a simple scheme

adopted [18]. We plotted a dot at each spatial coordinate of the ROI in different sizes and col-

ors and displayed the 3D spatial patterns in three different views: from the right lateral, the

dorsal, and the posterior. In each view, we projected the 3D dots to the three 2D planes, rather

than sectioning the 3D brain, so that the brain is regarded as transparent.

In addition, we illustrated module-level eigenconnectivity G as an undirected graph with

self-loops, where the squared magnitude and the sign of each entry are indicated by the edge

width and color. The OCF graph was also drawn in a similar manner, while G was actually a

Fig 2. Resting-state fcMRI data. Top 20 squared eigenvalues (black dashed line) of first PCA

eigenconnectivity matrix BPCA. Their cumulative proportions (with respect to total of 177 eigenvalues) are

shown in right vertical axis (blue solid line).

doi:10.1371/journal.pone.0168180.g002
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constant matrix with zero diagonals. Here, we set the global sign of each G (which is arbitrary)

to maximize the sum of the squares of the positive entries. Due to the arbitrariness of the global

sign, the signs (and colors) in G do not indicate excitatory or inhibitory relationships between

modules. Rather, they imply that the module-level connectivities of different signs are mutu-

ally anti-correlated when varying over individuals.

3 Results

3.1 Simulation studies

As an illustrative example, we first show the true and estimated Ws and Bs by PCA, OCF and

MCF (Simulation I; Fig 3). As seen in the left-most column where only the inter-module con-

nectivity varied (c = 0), true pattern B at the top was successfully recovered by every method.

In the second column with a relatively weak variability within modules (c = 0.2), PCA and

MCF produced almost the same pattern as true B, while the patterns obtained by PCA are rela-

tively noisy compared to those by MCF; as intended, OCF mostly recovered the off-diagonal

blocks of true B.

A drawback of OCF is seen when the relative strength of intra-module variability increased.

OCF spuriously produced the intra-module part (diagonal blocks) of B, which completely

destroyed the other inter-module part (off-diagonal blocks), as seen in c = 0.6, caused by the

inseparability of the two parts. In comparison, MCF successfully recovered true pattern B as

well as weight matrix W at every choice of c, which clearly illustrates the advantage of sepa-

rately modeling the intra-module and inter-module network variabilities.

We also made a more quantitative comparison among the methods (Simulation II). Fig 4

shows the distributions of the estimation error at three different sample sizes: N = 100, 1000,

and 10000. The two subfigures, (a) and (b), correspond to the first and second components in

two different conditions: when only inter-module connectivity varied (left panel) or when

both intra- and inter-module connectivity varied (right panel).

As seen in Fig 4(a) (left), both OCF and MCF decreased the error more quickly (in the sam-

ple size) than PCA. This clearly shows that these approaches may reduce the necessary sample

size to reliably estimate large-scale eigenconnectivity patterns. However, Fig 4(a) (right) shows

that OCF did not decrease the error even when the sample size became large when the intra-

module connectivity additionally varied, which is consistent with the above illustrative exam-

ple. In both conditions, MCF consistently exhibited the lowest errors. The error even

decreased from that of the initial stepwise solution by Stepwise MCF (labeled “Init.” in the fig-

ure), at least when both intra- and inter-module connectivity varied. This demonstrates the

advantage of the principled constrained PCA approach over the computationally simpler post-

hoc matrix factorization approach. Qualitatively similar results were seen in the second com-

ponent (Fig 4(b)), while the error slightly increased from that of the first component, especially

at relatively small sample sizes.

3.2 Resting-state fcMRI data analysis

3.2.1 Comparison with OCF. First we show the results by MCF of K = 2 in comparison to

OCF. Fig 5(a) and 5(b), compare the first and second components, each of which were both

obtained by MCF and OCF. These components explain the inter-individual variabilities in the

connectivity matrices. The order of the two weight vectors in each method is actually arbitrary;

we reordered the two OCF’s weight vectors to maximize their absolute inner products with the

corresponding MCF’s weight vectors. The signs in the OCF’s weight vectors were also appro-

priately flipped so that the patterns are comparable between the two methods.
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In both components, each spatial pattern obtained by MCF apparently consists of a few spa-

tially localized submodules.

In the first component (Fig 5(a)) of MCF, w1 forms an interesting network of primary sen-

sory areas, mainly of visual and sensorimotor modalities, with additional participation from

the auditory areas. This network is characterized by a large variability of intra-module connec-

tivity, reflected in a large diagonal entry in G (see below).

The w2 network in the first MCF component is characterized by large weights on the sub-

cortical areas (thalamus and basal ganglia), while other areas in the frontal cortex, the posterior

Fig 3. Simulation I: illustrative example. Each panel in the top row shows a true 20 × 2 weight matrix W = [w1, w2] (as well as its

transpose, two small rectangles) and corresponding eigenconnectivity matrix B (large squares). The four panels differ in relative

strength c 2 [0, 1] of intra-module network variability, as indicated at bottom of figure. c = 0 implies no variability within each module

and greater c indicates the stronger intra-module variability; in particular, c = 0.6 implies a greater intra-module variability than the

inter-module. Bottom three rows show corresponding estimates B by PCA, OCF, and MCF (proposed method), displayed in the

same manner. In all panels, red, white, and blue indicate positive, zero, and negative values, respectively (except for weight matrix

rectangles in PCA, which are left blank). Each panel and each W and B were scaled individually so that maximum absolute value

corresponds to boundary of color range (displayed at bottom right).

doi:10.1371/journal.pone.0168180.g003
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cingulate cortex (PCC), and the angular gyri (AG) also participated. We do not have a clear

interpretation for this network, which seems to combine elements of the executive control and

the default-mode network (DMN) with subcortical structures.

In the second MCF component (Fig 5(b)), w1 strikingly resembles the DMN, including ACC,

AG, and the medial prefrontal cortex as well as parts of the medial temporal lobe. w2 seems to be

a combination of the task-positive network (TPN) [28] and the salience network [29].

Fig 4. Simulation II: quantitative comparison. (a) Root mean squared error (RMSE) between true and

estimated B of first component versus sample size N (in log scale). Left panel: only inter-module connectivity

between two modules varied. Right panel: both intra-module and inter-module connectivities varied. Each plot

shows mean RMSE of 100 runs, where error bars indicate sample standard deviations in each side. Four

methods are shown with different colors and marker symbols. (b) Identical as above but for second

component.

doi:10.1371/journal.pone.0168180.g004
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The spatial patterns of the positive weights (red) in OCF resemble those of MCF. However,

the OCF patterns combine negative weights (blue) and positive weights, which may complicate

interpretation. The negative weights of w1 in the first component again resemble the DMN,

while the positive weights resemble the general sensory areas network in MCF. In w2, the posi-

tive parts appear to form the salience network, while the negative parts may be a purely visual

network. Thus, in this result, each OCF pattern seems to simultaneously represent two distinct

functional (sub)networks in the positive and negative parts of the weight vector. Readers

Fig 5. Resting-state fcMRI data. Spatial patterns of weight vector pairs, w1 and w2, as well as

eigenconnectivity G between the two modules, obtained as (a) first and (b) second components of MCF and

OCF. Dots display the magnitudes (indicated by color intensity and area and rescaled in each weight vector)

and signs (red: positive, blue: negative) of weight values at 177 ROIs. The brain is transparently viewed from

right lateral, dorsal, and posterior side. At center of each pair, eigenconnectivity G is represented as a two-

node undirected graph. Magnitude g2
kl of each entry is indicated by width of edge (straight bars: off-diagonal

entries, loops: diagonal entries); signs are indicated by two colors (orange: positive, purple: negative).

doi:10.1371/journal.pone.0168180.g005
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might wonder why the OCF results look different from the original results [18], obtained for a

subset (103 subjects) of our full dataset. However, the difference is actually not qualitatively

large after appropriately flipping the signs (specifically those of w1 in Fig 5(a) and w2 in Fig 5

(b) of our OCF results. Note that the signs of the weight vectors are arbitrary in OCF due to

the inherent indeterminacy.

The module-level eigenconnectivity, G, illustrated as a two-node undirected graph at the

center, further indicates that the variability within some modules was not negligible. The dif-

ferent signs between the intra-and inter-module eigenconnectivity in both the first and second

MCF components mean that these component explains anti-correlated changes between the

two types of connectivities. As mentioned above, the first MCF component (Fig 5(a)) exhibited

almost the same order of intra-module variability g2
11

(in the module represented by w1) as that

of the variability of inter-module connectivity g2
12

. This is easy to understand since the network

in the w1 groups together sensory areas of different modalities, and the connectivities among

the sensory modalities are probably quite variable. In contrast, as illustrated by the simulation

study in Section 2.4.1, we must be careful about the interpretation of the OCF results when the

intra-module network variability is not negligible.

3.2.2 Further demonstration with more than two modules. Our MCF can be general-

ized with more than two modules (Section 2.3.5). Here, we see that using a higher K may

increase the neurophysiological interest and ease interpretation.

We first show the weight and module-level eigenconnectivity patterns for K = 3 (Fig 6(a)).

First, w1 seems to represent the DMN, possibly with some additional temporal contribution.

Second, w2 seems to be a general sensory area network, similar to w1 in Fig 5(a), with slightly

less emphasis on the visual and anterior sensorimotor areas. Finally, w3 resembles the salience

network [29] with a particular contribution from the insula.

Thus, the three networks seem to represent clearly defined networks, two of which are well-

known (salience and DMN) and one of which is new but reasonable (sensory areas). But what

is even more interesting is that this particular combination of three networks appears very logi-

cal in the following sense; the sensory area network is related to outward-directed information

processing, and the DMN is related to inward-directed information processing, while the

salience network switches between the two, in particular, detecting when new significant sen-

sory information starts arriving. In fact, the connectivities of the salience network to the DMN

and the sensory network have opposite signs.

When the number of modules (networks) is increased to K = 4 (Fig 6(b)), the three net-

works found for K = 3 are mainly intact, but we see a new network in w4 that seems to be a

very clear-cut TPN with contributions around but not including the central sulcus, similar to

[28]. It is also interesting that the DMN’s intra-module variability is rather large compared to

all the others. This is presumably due to its different parts (e.g., anterior vs. posterior parts)

that perform different functions and thus with variable connectivities [5, 30]. Additional

results by Stepwise MCF and another stepwise analysis using k-means clustering is given in S2

Appendix; a further comparison with an existing nonnegative tensor factorization method is

found in S3 Appendix.

In this analysis, the running time of MCF to extract the 1st component (K = 4) was

1.55 ± 0.01s (mean±SD, 20 runs) on a Linux computer with 18 cores, 2.30GHz CPU and

128GB RAM, while performing only Stepwise MCF took 1.27 ± 0.01s.

4 Discussion

The brain’s functional architecture varies across subjects and/or over time, and its statistical

characterization is crucial to enhance our neuroscientific understanding of, e.g., individual
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Fig 6. Resting-state fcMRI data. Spatial patterns of weight vectors wk as well as module-level

eigenconnectivity G, obtained as first components of MCF with number of modules (a) K = 3 and (b) K = 4.

See caption of Fig 5 for visualization details.

doi:10.1371/journal.pone.0168180.g006
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difference in cognitive functions or temporal changes in mental states, as well as for potential

clinical applications. Although PCA is a fundamental method to characterize the variability of

functional connectivity matrices [8], it has a severe limitation in visualization and interpreta-

tion of complicated eigenconnectivity patterns.

To overcome this issue, we extended the idea of OCF [18] and developed MCF as a novel

module-constrained PCA method which explicitly takes the brain’s functional modularity into

account. As demonstrated in our resting-state fcMRI analysis (Section 3.2), MCF’s factorized

representation of eigenconnectivity matrix can be intuitively visualized using spatial patterns

of functional modules (networks) as well as a graph that summarizes the eigenconnectivity at

the module level. Such a ease of visualization is a great advantage of MCF over PCA. The simu-

lation studies (Section 3.1) also showed that MCF even needs less sample sizes for estimation

and our principled constrained PCA approach is advantageous over a post-hoc analysis of

PCA eigenconnectivity matrices.

Our MCF improved OCF so that it is readily applicable even when the variability in intra-

module connectivity is not negligible. The simulations and fcMRI data analysis clearly showed

the advantage of explicitly taking the intra-module network variability into account as well as

improved interpretability by additional nonnegativity constraints. We also demonstrated that

generalization to more than two modules can further increase the neurophysiological interest

and ease interpretation. From the above results, we conclude that our MCF improves both

interpretability and applicability over PCA and OCF and is a promising alternative to these

methods to explore the random variability of functional brain connectivity.

Applications of MCF to actual neuroscience or clinical studies will be a promising next step

of the present study. For example, the method will be useful to identify modules and their

eigenconnectivity that may have different contributions to functional connectivity in different

populations, such as patients and controls. The improved interpretability and applicability of

MCF then will be beneficial to draw meaningful conclusions more effectively. In particular,

the compact module-level representation may ease the visualization of results, avoiding addi-

tional rather complicated post-processing steps about node ordering or edge pruning. This

may greatly improve the overall efficiency of the analysis and may even reduce the arbitrari-

ness in the post-processing.

In practice, many techniques other than PCA, such as k-means clustering [7, 9] and inde-

pendent component analysis (ICA) [12], can also be used to summarize connectivity matrices.

One may also develop module-constrained versions of these methods by incorporating the

same factorized matrix representation B = WGW> as used by MCF, where B would be a clus-

ter centroid of k-means or a basis element of ICA; we have already done a stepwise analysis

corresponding to such an approach with a promising result (S2 Appendix). To derive specific

algorithms, one can use a similar lower-bounding technique (as Eq (10)) to derive an alternat-

ing optimization involving the subproblem Eq (11). We leave the investigation on this topic

for future research.

The method presented here is actually very general and may have a wide range of applica-

bility beyond such applications to functional brain connectivity data. In fact, since MCF does

not rely on the positive definiteness of observed connectivity matrices, it is applicable to any

random network data and is not limited to covariance (correlation) matrices as is typical in

functional connectivity analysis. In brain imaging applications, such data include anatomical

connectivity measured by diffusion tensor imaging (DTI). On the other hand, explicit use of

the geometric structure of positive semidefinite matrices might further improve our method

when restricting the data type as covariance or correlation matrices (e.g., [31]).

From a broader perspective, statistical modeling and the analysis of time-varying (nonsta-

tionary) networks are a topic of great interest in machine learning and network science. Many
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authors have developed methods, e.g., based on nonstationary graphical Markov modeling

with temporal smoothness [32–36], or state-space modeling combined with so-called stochas-

tic blockmodels or related probabilistic models [37–40], whose applications to brain imaging

data can also be found (e.g., [41, 42]). In contrast to such model-based methods, PCA-based

eigenconnectivity analysis like MCF puts more emphasis on extracting the relevant aspects of

data in a condensed manner rather than fully modeling and predicting the network (connec-

tivity) changes. It can even analyze purely inter-subject variability as demonstrated, since it

does not rely on any temporal structure (like smoothness) in the data.

In the present study, we did not mention some important conceptual aspects of OCF at all.

For example, a generative model interpretation of OCF for covariance or correlation matrices

has also been presented [18] in which the original data vectors (from which the sample covari-

ances or correlations are computed) are generated by a linear factor-analytic model with

orthogonal loadings. In addition, OCF has close connections to machine learning techniques

other than nonnegative tensor factorization, such as common spatial patterns and blind source

separation methods, as extensively discussed [18]. Since MCF shares a fundamental framework

with OCF, similar interpretations and connections are expected to be valid for MCF. Detailed

investigation is left for future study.

A Matlab software implementing our method will be available at the first author’s website

(http://www.cns.atr.jp/~hirayama).

Supporting Information

S1 Appendix. Proofs and derivations.

(PDF)
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S3 Appendix. Relation to Nonnegative Tensor Factorization.

(PDF)
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