
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
MUSCLE: a multiple sequence alignment method with reduced 
time and space complexity
Robert C Edgar*

Address: Department of Plant and Microbial Biology, 461 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA

Email: Robert C Edgar* - bob@drive5.com

* Corresponding author    

Abstract
Background: In a previous paper, we introduced MUSCLE, a new program for creating multiple
alignments of protein sequences, giving a brief summary of the algorithm and showing MUSCLE to
achieve the highest scores reported to date on four alignment accuracy benchmarks. Here we
present a more complete discussion of the algorithm, describing several previously unpublished
techniques that improve biological accuracy and / or computational complexity. We introduce a
new option, MUSCLE-fast, designed for high-throughput applications. We also describe a new
protocol for evaluating objective functions that align two profiles.

Results: We compare the speed and accuracy of MUSCLE with CLUSTALW, Progressive POA
and the MAFFT script FFTNS1, the fastest previously published program known to the author.
Accuracy is measured using four benchmarks: BAliBASE, PREFAB, SABmark and SMART. We test
three variants that offer highest accuracy (MUSCLE with default settings), highest speed (MUSCLE-
fast), and a carefully chosen compromise between the two (MUSCLE-prog). We find MUSCLE-fast
to be the fastest algorithm on all test sets, achieving average alignment accuracy similar to
CLUSTALW in times that are typically two to three orders of magnitude less. MUSCLE-fast is able
to align 1,000 sequences of average length 282 in 21 seconds on a current desktop computer.

Conclusions: MUSCLE offers a range of options that provide improved speed and / or alignment
accuracy compared with currently available programs. MUSCLE is freely available at http://
www.drive5.com/muscle.

Background
Multiple alignments of protein sequences are important
in many applications, including phylogenetic tree estima-
tion, secondary structure prediction and critical residue
identification. Many multiple sequence alignment (MSA)
algorithms have been proposed; for a recent review, see
[1]. Two attributes of MSA programs are of primary
importance to the user: biological accuracy and computa-
tional complexity (i.e., time and memory requirements).
Complexity is of increasing relevance due to the rapid

growth of sequence databases, which now contain
enough representatives of larger protein families to exceed
the capacity of most current programs. Obtaining biolog-
ically accurate alignments is also a challenge, as the best
methods sometimes fail to align readily apparent con-
served motifs [2]. We recently introduced MUSCLE, a new
MSA program that provides significant improvements in
both accuracy and speed, giving only a summary of the
algorithm [2]. Here, we describe the MUSCLE algorithm
more fully and analyze its complexity. We introduce a

Published: 19 August 2004

BMC Bioinformatics 2004, 5:113 doi:10.1186/1471-2105-5-113

Received: 25 March 2004
Accepted: 19 August 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/113

© 2004 Edgar; licensee BioMed Central Ltd. 
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15318951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-5-113
http://www.biomedcentral.com/1471-2105/5/113
http://creativecommons.org/licenses/by/2.0
http://www.drive5.com/muscle
http://www.drive5.com/muscle
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
new option designed for high-throughput applications,
MUSCLE-fast. We also describe a new method for evaluat-
ing objective functions for profile-profile alignment, the
iterated step in the MUSCLE algorithm.

Current methods
While multiple alignment and phylogenetic tree recon-
struction have traditionally been considered separately,
the most natural formulation of the computational prob-
lem is to define a model of sequence evolution that
assigns probabilities to all possible elementary sequence
edits and then to seek an optimal directed graph in which
edges represents edits and terminal nodes are the
observed sequences. This graph makes the history explicit
(it can be interpreted as a phylogenetic tree) and implies
an alignment. No tractable method for finding an optimal
graph is known for biologically realistic models, and sim-
plification is therefore required. A common heuristic is to
seek a multiple alignment that maximizes the SP score
(the summed alignment score of each sequence pair),
which is NP complete [3]. It can be achieved by dynamic
programming with time and space complexity O(LN) in
the sequence length L and number of sequences N [4],
and is practical only for very small N. Stochastic methods
such as Gibbs sampling can be used to search for a maxi-
mum objective score [5], but have not been widely
adopted. A more popular strategy is the progressive
method [6,7] (Figure 1), which first estimates a phyloge-
netic tree. A profile (a multiple alignment treated as a
sequence by regarding each column as a symbol) is then
constructed for each node in the binary tree. If the node is
a leaf, the profile is the corresponding sequence; other-
wise its profile is produced by a pair-wise alignment of the
profiles of its child nodes (Figure 2). Current progressive
algorithms are typically practical for up to a few hundred
sequences on desktop computers, the best-known of
which is CLUSTALW [8]. A variant of the progressive
approach is used by T-Coffee [9], which builds a library of
both local and global alignments of every pair of
sequences and uses a library-based score for aligning two
profiles. On the BAliBASE benchmark [10,11], T-Coffee
achieves the best results reported prior to MUSCLE, but
has a high time and space complexity that limits the
number of sequences it can align to typically around one
hundred. In our experience, errors in progressive align-
ments can often be attributed to one of the following
issues: sub-optimal branching order in the tree, scoring
parameters that are not optimal for a particular set of
sequences (especially gap penalties), and inappropriate
boundary conditions (e.g., seeking a global alignment of
proteins having different domain organizations). Mis-
alignments are sometimes readily apparent, motivating
further processing (refinement). One approach is to use a
progressive alignment as the initial state of a stochastic
search for a maximum objective score (stochastic refine-

ment). Alternatively, pairs of profiles can be extracted from
the progressive alignment and re-aligned, keeping the
results only when an objective score is improved (horizon-
tal refinement) [12].

Implementation
The basic strategy used by MUSCLE is similar to that used
by PRRP [13] and MAFFT [14]. A progressive alignment is
built, to which horizontal refinement is then applied.

Algorithm overview
MUSCLE has three stages. At the completion of each stage,
a multiple alignment is available and the algorithm can be
terminated.

Stage 1: draft progressive
The first stage builds a progressive alignment.

Similarity measure
The similarity of each pair of sequences is computed,
either using k-mer counting or by constructing a global
alignment of the pair and determining the fractional
identity.

Distance estimate
A triangular distance matrix is computed from the pair-
wise similarities.

Tree construction
A tree is constructed from the distance matrix using
UPGMA or neighbor-joining, and a root is identified.

Progressive alignment
A progressive alignment is built by following the branch-
ing order of the tree, yielding a multiple alignment of all
input sequences at the root.

Stage 2: improved progressive
The second stage attempts to improve the tree and builds
a new progressive alignment according to this tree. This
stage may be iterated.

Similarity measure
The similarity of each pair of sequences is computed using
fractional identity computed from their mutual alignment
in the current multiple alignment.

Tree construction
A tree is constructed by computing a Kimura distance
matrix and applying a clustering method to this matrix.

Tree comparison
The previous and new trees are compared, identifying the
set of internal nodes for which the branching order has
changed. If Stage 2 has executed more than once, and the
Page 2 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
number of changed nodes has not decreased, the process
of improving the tree is considered to have converged and
iteration terminates.

Progressive alignment
A new progressive alignment is built. The existing align-
ment is retained of each subtree for which the branching
order is unchanged; new alignments are created for the
(possibly empty) set of changed nodes. When the align-
ment at the root is completed, the algorithm may termi-
nate, return to step 2.1 or go to Stage 3.

Stage 3: refinement
The third stage performs iterative refinement using a vari-
ant of tree-dependent restricted partitioning [12].

Choice of bipartition
An edge is deleted from the tree, dividing the sequences
into two disjoint subsets (a bipartition). Edges are visiting
in order of decreasing distance from the root.

Profile extraction
The profile (multiple alignment) of each subset is
extracted from the current multiple alignment. Columns
containing no residues (i.e., indels only) are discarded.

Re-alignment
The two profiles obtained in step 3.2 are re-aligned to
each other using profile-profile alignment.

Accept/reject
The SP score of the multiple alignment implied by the
new profile-profile alignment is computed. If the score
increases, the new alignment is retained, otherwise it is
discarded. If all edges have been visited without a change
being retained, or if a user-defined maximum number of

iterations has been reached, the algorithm is terminated,
otherwise it returns to step 3.1. Visiting edges in order of
decreasing distance from the root has the effect of first re-
aligning individual sequences, then closely related groups

Algorithm elements
In the following, we describe the elements of the MUSCLE
algorithm. In several cases, alternative versions of these
elements were implemented in order to investigate their
relative performance and to offer different trade-offs
between accuracy, speed and memory use. Most of these
alternatives are made available to the user via command-
line options. Four benchmark datasets have been used to
evaluate options and parameters in MUSCLE: BAliBASE
[10,11], SABmark [15], SMART [16-18] and our own
benchmark, PREFAB [2].

Objective score
In its refinement stage, MUSCLE seeks to maximize an
objective score, i.e. a function that maps a multiple
sequence alignment to a real number which is designed to
give larger values to better alignments. MUSCLE uses the
sum-of-pairs (SP) score, defined to be the sum over pairs of
sequences of their alignment scores. The alignment score
of a pair of sequences is computed as the sum of substitu-
tion matrix scores for each aligned pair of residues, plus
gap penalties. Gaps require special consideration (Figure
3). We use the term indel for the symbol that indicates a
gap in a column (typically a dash '-'), reserving the term
gap for a maximal contiguous series of indels. The gap
penalty contribution to SP for a pair of sequences is com-
puted by discarding all columns in which both sequences
have an indel, then applying an affine penalty g + λe for
each remaining gap where g is the per-gap penalty, λ is the

Progressive alignmentFigure 1
Progressive alignment. Sequences are assigned to the 
leaves of a binary tree. At each internal (i.e., non-leaf) node, 
the two child profiles are aligned using profile-profile align-
ment (see Figure 2). Indels introduced at each node are indi-
cated by shaded background.

M Q T I F

L H - I W

M Q T I F

L H I W

L Q S W

L S F

L Q S W

L - S F

M Q T I F

L H - I W

L Q S - W

L - S - F

Profile-profile alignmentFigure 2
Profile-profile alignment. Two profiles (multiple 
sequence alignments) X and Y are aligned to each other such 
that columns from X and Y are preserved in the result. Col-
umns of indels (gray background) are inserted as needed in 
order to align the columns to each other. The score for 
aligning a pair of columns is determined by the profile func-
tion, which should assign a high score to pairs of columns 
containing similar amino acids.

M Q T F

L H T W

L Q S W

X

L T I F

M T I WY

M Q T - F

L H T - W

L Q S - W

L - T I F

M - T I W
Page 3 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
gap length (number of indels in the gap), and e is the gap-
length penalty (sometimes called the extension penalty).

Progressive alignment
Progressive alignment requires a rooted binary tree in
which each sequence is assigned to a leaf. The tree is cre-
ated by clustering a triangular matrix containing a dis-
tance measure for each pair of sequences. The branching
order of the tree is followed in postfix order (i.e., children
are visited before their parent). At each internal node, pro-
file-profile alignment is used to align the existing align-
ments of the two child subtrees, and the new alignment is
assigned to that node. A multiple alignment of all input
sequences is produced at the root node (Figure 1).

Similarity measures
We use the term similarity for a measure on a pair of
sequences that indicates their degree of evolutionary
divergence (the sequences are assumed to be related).
MUSCLE uses two types of similarity measure: the frac-
tional identity D computed from a global alignment of
the two sequences, and measures obtained by k-mer
counting. A k-mer is a contiguous subsequence of length
k, also known as a word or k-tuple. Related sequences tend
to have more k-mers in common than expected by chance,
provided that k is not too large and the divergence is not
too great. Many sequence comparison methods based on
k-mer counting have been proposed in the literature; for a
review, see [19]. The primary motivation for these
measures is improved speed as no alignment is required.
MAFFT uses k-mer counting in a compressed alphabet
(i.e., an alphabet in which symbols denote classes that
may contain two or more residue types) to compute its

initial distance measure. The alphabet used in MAFFT is
taken from [20], and is one of the options implemented
in MUSCLE. Trivially, identity is higher or equal in a com-
pressed alphabet; it cannot be reduced. If the alphabet is
chosen such that there are high probabilities of intra-class
substitution and low probabilities of inter-class substitu-
tion, then we might expect that detectable identity (and
hence the number of conserved k-mers) could be usefully
extended to greater evolutionary distances while limiting
the increase in matches due to chance. We have previously
shown [21] that k-mer similarities correlate well with frac-
tional identity, although we failed to find evidence that
compressed alphabets have superior performance to the
standard alphabet at lower identities. We define the fol-
lowing similarity measure between sequences X and Y:

F = Στ min [nX(τ), nY(τ) ] / [min (LX, LY) - k + 1 ].  (1)

Here τ is a k-mer, LX, LY are the sequence lengths, and nX(τ)
and nY(τ) are the number of times τ occurs in X and Y
respectively. This definition can be motivated by consid-
ering an alignment of X to Y and defining the similarity to
be the fraction of k-mers that are conserved between the
two sequences. The denominator of F is the maximum
number of k-mers that could be aligned. Note that if a
given k-mer occurs more often in one sequence than the
other, the excess cannot be conserved, hence the mini-
mum in the numerator. The definition of F is an approxi-
mation in which it is assumed that (after correcting for
excesses) common k-mers are always alignable to each
other. MUSCLE also implements a binary approximation
FBinary, so-called because it reduces the k-mer count to a
present / absent bit:

FBinary = Στ δXY(τ) / [min (LX, LY) - k + 1 ].  (2)

Here, δXY(τ) is 1 if τ is present in both sequences, 0 other-
wise. As multiple instances of a given k-mer in one
sequence are relatively rare, this is often a good approxi-
mation to F. The binary approximation enables a signifi-
cant speed improvement as the size of the count vector for
a given sequence can be reduced by an order of magni-
tude. This allows the count vector for every sequence to be
retained in memory, and pairs of vectors to be compared
efficiently using bit-wise instructions. When using an inte-
ger count, there may be insufficient memory to store all
count vectors, making it necessary to re-compute counts
several times for a given sequence.

Distance measures
Given a similarity value, we wish to estimate an additive
distance measure. An additive measure distance measure
d(A, B) between two sequences A and B satisfies d(A, B) =
d(A, C) + d(C, B) for any third sequence C, assuming that
A, B and C are all related. Ideal but generally unknowable

Gap penalties in the SP scoreFigure 3
Gap penalties in the SP score This figure shows a multi-
ple alignment of three sequences s, t and u. The SP score is 
the sum over all pairs of sequences of their pairwise align-
ment score. The contribution to the SP score from the pair 
(s, t) is computed by discarding columns in which both 
sequences have indels (arrows). Such indels are said to be 
external with respect to the pair. Gaps in the remaining col-
umns (gray background) are assessed affine penalties g + λe 
where g is the per-gap penalty, λ is the gap length, and e is 
the gap extension penalty.
Page 4 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
is the mutation distance, i.e. the number of mutations that
occurred on the historical path between the sequences.
The historical path through the phylogenetic tree extends
from one sequence to the other via their most recent com-
mon ancestor. The mutation distance is trivially additive.
The fractional identity D is often used as a similarity meas-
ure; for closely related sequences 1 - D is a good approxi-
mation to a mutation distance (it is exact assuming
substitution at a single site to be the only allowed type of
mutation and that no position mutates more than once).
As sequences diverge, there is an increasing probability of
multiple mutations at a single site. To correct for this, we
use the following distance estimate [22]:

dKimura = -loge (1 - D - D2/5)  (3)

For D ≤ 0.25 we use a lookup table taken from the CLUS-
TALW source code. For k-mer measures, we use:

dkmer = 1 - F.  (4)

Tree construction
Given a distance matrix, a binary tree is constructed by
clustering. Two methods are implemented: neighbor-join-
ing [23], and UPGMA [24]. MUSCLE implements three
variants of UPGMA that differ in their assignment of dis-
tances to a new cluster. Consider two clusters (subtrees) L
and R to be merged into a new cluster P, which becomes
the parent of L and R in the binary tree. Average linkage
assigns this distance to a third cluster C:

dAvg
PC = (dLC + dRC)/2.  (5)

We can take the minimum rather than the average:

dMin
PC = min [dLC, dRC].  (6)

Following MAFFT, we also implemented a weighted mix-
ture of minimum and average linkage:

dMix
PC = (1 - s) dMin

PC + s dAvg
PC,  (7)

where s is a parameter set to 0.1 by default. Clustering pro-
duces a pseudo-root (the last node created). We imple-
mented two other methods for determining a root:
minimizing the average branch weight [25], as used by
CLUSTALW, and locating the root at the center of the
longest span.

Sequence weighting
Conventional wisdom holds that sequences should be
weighted to correct for the effects of biased sampling from
a family of related proteins; however, there is no consen-
sus on how such weights should be computed. MUSCLE
implements the following sequence weighting schemes:

none (all sequences have equal weight), Henikoff [26],
PSI-BLAST [27] (a variant of Henikoff), CLUSTALW's,
GSC [28], and the three-way method [29]. We found the
use of weighting to give a small improvement in bench-
mark accuracy results, e.g. approximately 1% on BAli-
BASE, but saw little difference between the alternative
schemes. The CLUSTALW method enables a significant
reduction in complexity (described later), and is therefore
the default choice.

Profile functions
In order to apply pair-wise alignment methods to profiles,
a scoring function must be defined for a pair of profile
positions, i.e. a pair of multiple alignment columns. This
function is the profile analog of a substitution matrix; see
for example [30]. We use the following notation. Let i and
j be amino acid types, pi the background probability of i,
pij the joint probability of i and j being aligned to each
other, Sij the substitution matrix score, f xi the observed fre-
quency of i in column x of the first profile, f x

G the
observed frequency of gaps in that column, and αx

i the
estimated probability of observing i in position x in the
family. (Similarly for position y in the second profile).
Estimated probabilities α are derived from the observed
frequencies f, typically by adding heuristic pseudo-counts
or by using Bayesian methods such as Dirichlet mixture
priors [31]. A commonly used profile function is the
sequence-weighted sum of substitution matrix scores for
each pair of letters, selecting one from each column (PSP,
for profile SP):

PSPxy = Σi Σj f xi f yj Sij.  (8)

Note that Sij = log (pij / pipj) [32], so

PSPxy = Σi Σj f xi f yj log (pij / pi pj).  (9)

PSP is the function used by CLUSTALW and MAFFT. It is
a natural choice when attempting to maximize the SP
objective score: if gap penalties are neglected, maximizing
PSP maximizes SP under the constraint that columns in
each profile are preserved. (This follows from the observa-
tion that the contribution to SP from a pair of sequences
in the same profile is the same for all alignments allowed
under the constraint). MUSCLE implements PSP func-
tions based on the 200 PAM matrix of [33] and the 240
PAM VTML matrix [34]. In addition to PSP, MUSCLE
implements a function we call the log-expectation (LE)
score. LE is a modified version of the log-average (LA) pro-
file function that was proposed on theoretical grounds
[35]:

LAxy = log Σi Σj αx
i αy

j pij / pi pj.  (10)

LE is defined as follows:
Page 5 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
LExy = (1 - f xG) (1 - f yG) log Σi Σ j f xi f yj pij / pipj.  (11)

The MUSCLE LE function uses probabilities computed
from VTML 240. Note that estimated probabilities α in LA
are replaced by observed frequencies f in LE. The factor (1
- fG) is the occupancy of a column. Frequencies fi must be
normalized to sum to one if indels are present (otherwise
the logarithm becomes increasingly negative with increas-
ing numbers of gaps even when aligning conserved or
similar residues). The occupancy factors are introduced to
encourage more highly occupied columns (i.e., those with
fewer gaps) to align, and are found to significantly
improve accuracy. We avoid these complications in the
PSP score by computing frequencies in a 21-letter alpha-
bet (amino acids + indel), and by defining the

substitution score of an amino acid to an indel to be zero.
This has the desired effect of down-weighting column
pairs with low occupancies, and can also be motivated by
consideration of the SP function. If gap penalties are
ignored, then this definition of PSP preserves the optimi-
zation of SP under the fixed-column constraint by cor-
rectly accounting for the reduced number of residue pairs
in columns containing gaps.

Gap penalties
We call the first indel in a gap its gap-open; the last its gap-
close. Consider an alignment of two profiles X and Y, and
a gap of length λ in X in which the gap-open is aligned to
position yo in Y and the gap-close to yc. The penalty for this
gap is b(yo) + t(yc) + λe, where b and t are costs for opening
and closing a gap that vary according to the position in Y,
and e is a length cost (sometimes called a gap extension
penalty) that does not vary by position. A fixed length cost
allows a minor optimization of the scoring scheme [14].
Consider a global alignment of sequences X and Y having
lengths LX and LY. If a constant δ (the center) is added to
each substitution matrix score and δ/2 is added for each
gapped position, this adds the constant value δ(LX + LY)/2
to the score of any possible alignment, and the set of opti-
mal alignments is therefore unchanged. Given a scoring
scheme with substitution matrix Sij and extension penalty
e, we can thus choose δ/2 = e and instead use S'ij = Sij + 2e
and e' = 0 to obtain the same alignment. The constant 2e
can be added to the substitution matrix at compile time,
and no explicit extension penalty is then needed in the
recursion relations. MUSCLE uses this optimization for
the PSP function, but not for LE (where the center must be
added at execution time after taking the logarithm). Let f
y
o be the number of gap-opens in column y in Y and f yc be

the number of gap-closes in column y. MUSCLE computes
b and t as follows (Figure 4):

b(y) = g/2 (1 - f yo) (1 + hw(y)H),  (12)

t(y) = g/2 (1 - f yc) (1 + hw(y)H).  (13)

Here, g is a parameter that can be considered a default per-
gap penalty, hw(y) is 1 if y falls within a window of w con-
secutive hydrophobic residues or zero otherwise, and H is
a tunable parameter. By default, w = 5, H = 1.2. The factor
g/2 (1 - f yo) is motivated by considering the SP score of the
alignment. The gap penalty contribution to SP for a pair
of sequences (A ∈ Y, B ∈ X) is computed by discarding all
columns in which both sequences have an indel, then
applying an affine penalty g + λe for each remaining gap.
It is convenient here to consider that half of the per-gap
penalty g is applied to the open position and half to the
close position. Suppose a gap G is inserted into X such that
the gap-open is aligned to position y in Y. If a sequence s
∈ Y has a gap-open at y, then the SP score includes no

Position-specific gap penaltiesFigure 4
Position-specific gap penalties. An alignment of two pro-
files X and Y. Gaps in sequences t and u are embedded in X. 
Y contains a single sequence w. The gap in w (gray back-
ground) is inserted to align the profiles and is not part of Y. 
Consider the SP score for this alignment. We need not con-
sider pairs of sequences in X as their scores are unchanged 
under all possible alignments of X to Y, leaving the inter-pro-
file pairs (s, w), (t, w), (u, w) and (v, w). Note that there is no 
gap penalty for the pairs (u, w) and (v, w) as these pairs do 
not have gaps relative to each other. The remaining pairs (t, 
w) and (u, w) are assessed a penalty g + 3e for the gap in Y. 
The total over all pairs of open or close penalties due to a 
gap in Y is thus reduced in proportion to the fraction of 
sequences in X having a gap with the same open or close 
position. We incorporate this into the PSP score by using 
position-specific gap penalties b(x) and t(x). For example, b(x) 
in column 4 of X is half the default value because half of the 
sequences in X open a gap in that column. Note that there is 
no open penalty at the N-terminal and no close penalty at 
the C-terminal. This causes terminal gaps to receive half the 
penalty of internal gaps.
Page 6 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
open penalty for G induced by any pair (s, t) : t ∈ X. The
multiplier (1 - f yo) therefore corrects the gap-open contri-
bution to the SP score due to pre-existing gaps in Y. (It
should be noted that even with this correction, there are
other issues related to gaps and PSP still does not exactly
optimize SP under the fixed-column constraint). The
increased penalty in hydrophobic windows is designed to
discourage gaps in buried core regions where insertions
and deletions are less frequent. Note that MUSCLE treats
open and close positions symmetrically, in contrast to
CLUSTALW, which treats the open position specially and
may therefore tend to produce, in word processing terms,
left-aligned gaps with a ragged right margin.

Terminal gaps
A terminal gap is one that opens at the N-terminal position
of the sequence to which it is aligned or closes at the C-ter-
minal; as opposed to an internal gap. It has been suggested
[9,36] that global methods have intrinsic difficulties with
long deletions or insertions. We believe that these difficul-
ties are often due to the choice of penalties for terminal
gaps. CLUSTALW, which charges no penalty for terminal
gaps, tends to fail to open a needed internal gap and thus
fail to align terminal motifs; MAFFT, which charges the
same penalty for terminal and internal gaps, sometimes
aligns small numbers of residues to a terminal by inserting
an unnatural internal gap. By default, MUSCLE penalizes
terminal gaps with half the penalty of an internal gap. This
is done by setting b(1), the open penalty at the C-terminal,
and t(L), the close penalty at the N-terminal, to zero (Fig-

ure 4). The option of always applying full penalties, as in
MAFFT, is also provided. We found that the compromise
of a half penalty for terminal gaps gave good results for a
wide range of input data, but that further improvements
could sometimes by achieved by the following technique.
If the length ratio of the two profiles to be aligned exceeds
a threshold (by default, 20%), then MUSCLE constructs
four different alignments in which gaps at both, one or
neither terminals are fully penalized. A conservation score is
defined by subtracting all gap penalties (both internal and
terminal) from the alignment score, leaving a sum over
profile functions only. The alignment with the highest
conservation score is used.

Tree comparison
In progressive alignment, two subtrees will produce iden-
tical alignments if they have the same set of sequences at
their leaves and the same branching orders (topologies).
We exploit this observation to optimize the progressive
alignment in Stage 2 of MUSCLE, which begins by con-
structing a new tree. Unchanged subtrees are identified,
and their alignments are retained (Figure 5). A progressive
alignment of the changed subtrees is constructed,
producing the same alignment at the root that would be
obtained starting from the leaves. Tree comparison is per-
formed by the following algorithm. Consider two trees A
and B with identical sets of N leaves. Leaves are identified
by consecutive integers (ids) 1 through N. Call a pair of
nodes, one from each tree, equivalent if they are the same
leaf or they are internal nodes and their children are
equivalent. The left/right position of a child is not consid-
ered; in other words, subtree rotations are allowed
(because they do not change the results of a progressive
alignment). Traverse A in prefix order (children before
their parent), assigning internal nodes ids N + 1 through
2N in the order visited. When visiting an internal node PA,
take the ids of its two child nodes LA and RA and use them
as indexes into a lookup table pointing to nodes in B. If
(a) LA is equivalent to a node LB in B and RA is equivalent
to a node RB, and (b) LB and RB have the same parent PB,
then assign PB the same id as PA, to which it is equivalent.
When the traversal is complete, a node b in B is equivalent
to some node in A if and only if b has an id. This proce-
dure is O(N) time and space.

Defaults, optimizations and complexity analysis
We now discuss the default choices of algorithm elements
in the MUSCLE program and analyze their complexity.

Complexity of CLUSTALW
It is instructive to consider the complexity of CLUSTALW.
This is of intrinsic interest as CLUSTALW is currently the
most widely used MSA program and, to the best of our
knowledge, its complexity has not previously been stated
correctly in the literature. It is also useful as a baseline for

Tree comparisonFigure 5
Tree comparison. Two trees are compared in order to 
identify those nodes that have the same branching orders 
within subtree rotation (white). If a progressive alignment 
has been created using to the old tree, then alignments at 
these nodes can be retained as the same result would be 
produced at those nodes by the new tree. New alignments 
are needed at the changed (black) nodes only.

s

u

v

w

x

t

u

t

s

x

w

v

old tree new tree 
Page 7 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
motivating some of the optimizations used in MUSCLE.
The CLUSTALW algorithm can be described by the same
steps as Stage 1 above. The similarity measure is the frac-
tional identity computed from a global alignment, cluster-
ing is done by neighbor-joining. Global alignment of a
pair of sequences or profiles is computed using the Myers-
Miller linear space algorithm [37] which is O(L) space and
O(L2) time in the typical sequence length L. Given N
sequences and thus N(N - 1)/2 = O(N2) pairs, it is there-
fore O(N2L2) time and O(N2 + L) space to construct the
distance matrix. The neighbor-joining implementation is
O(N2) space and O(N4) time, at least up to CLUSTALW
1.82, although O(N3) time is possible; see e.g. [38]. A sin-
gle iteration of progressive alignment computes a profile
of each subtree from its multiple alignment, which is
O(NPLP) time and space in the number of sequences in
the profile NP and the profile length LP, then uses Myers-
Miller to align the profiles in O(LP) space and O(LP

2)
time. There are N - 1 internal nodes in a rooted binary tree
and hence O(N) iterations. It is often assumed that LP is
O(L), i.e. that O(0) gaps are introduced in each iteration.
However, we often observe the alignment length to grow
approximately linearly, i.e. that O(1) gaps are added per
iteration. For example, taking the average over all itera-
tions in all alignments in version 3 of the PREFAB
benchmark, Stage 1 of MUSCLE adds 2.8 gaps per itera-
tion to the longer profile. It is therefore more realistic to
assume that LP is O(L + N), making one iteration of pro-
gressive alignment O(NL + L2) in both space and time.
This analysis is summarized in Table 1.

Initial distance measure
One might expect (a) that a more accurate distance meas-
ure would lead to a more accurate final alignment due to
an improved tree, and (b) that errors due to a less accurate
distance measure might be eliminated by allowing Stage 2
to iterate more times. Neither of these expectations is sup-
ported by our test results (unpublished). Allowing Stage 2
to iterate more than once with the goal of further improv-
ing the tree gave no significant improvement with any dis-
tance measure. Possibly, the tree is biased towards the
MSA that was used to estimate it, and the MSA is biased by
the tree used to create it, making it hard to achieve

improvements. The most accurate measure on a pair of
sequences is presumably the fractional identity D com-
puted from a global alignment, but use of D in step 1.1
does not improve average accuracy on benchmark tests.
The 6-class Dayhoff alphabet used by MAFFT proved to
give slightly higher benchmark accuracy scores, despite
the fact that other alphabets were found to correlate better
with D [21]. We also found that the use of the binary
approximation FBinary gave slightly reduced accuracy
scores even when Stage 2 was allowed to iterate. The
default choice in MUSCLE is therefore to use the Dayhoff
alphabet in step 1.1 and to execute Stage 2 once only.
While the impact on the average accuracy of the final
alignment due to the different options is not understood,
we observe that a better alignment of a pair of sequences
is often obtained from a multiple alignment than from a
pair-wise alignment, due to the presence of intermediate
sequences having higher identities. It is therefore plausi-
ble that D obtained from the multiple alignment in step
2.1 may be more accurate than D obtained from a pair-
wise alignment in step 1.1, and this may be relatively
insensitive to the method used to create the tree for Stage
1. But this leaves unexplained why k-mer counting
appears to be as good as or better than D in Stage 1. Com-
puting F from a pair of sequences is O(L) time and O(1)
space, so for all pairs the similarity calculation is O(N2L),
compared with O(N2L2) in CLUSTALW. For a typical L
around 250, combined with an order of magnitude
improvement due to the simplicity of k-mer counting
compared with dynamic programming, this typically
gives a three orders of magnitude speed improvement for
computing the distance matrix in MUSCLE compared
with CLUSTALW. The default strategy is therefore well jus-
tified as a speed optimization, and has the added bonus
of providing a small improvement in accuracy.

Clustering
MUSCLE implements both UPGMA and neighbor-join-
ing. We found UPGMA to give slightly better benchmark
scores than neighbor-joining; UPGMA is therefore the
default option. We expect neighbor-joining to give a bet-
ter estimate of the correct evolutionary tree (see e.g. [38]).
However, it is well-known that alignment accuracy

Table 1: Complexity of CLUSTALW. Here we show the big-O asymptotic complexity of the elements of CLUSTALW as a function of 
L, the typical sequence length, and N, the number of sequences, retaining the highest-order terms in N with L fixed and vice versa.

Step O(Space) O(Time)

Distance matrix N2 + L N2L2

Neighbor joining N2 N4

Progressive (one iteration) NLP + LP = NL + L2 NLP + LP
2 = N2 + L2

Progressive (total) NL + L2 N3 + NL2

TOTAL N2 + L2 N4 + L2
Page 8 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
decreases with lower sequence identity (see e.g. [39]). It
follows that given a set of profiles, the two that can be
aligned most accurately will tend to be the pair with the
highest identity, i.e. at the shortest evolutionary distance.
This is exactly the pair selected by the nearest-neighbor cri-
terion in UPGMA. By contrast, neighbor-joining selects a
pair of evolutionary neighbors, i.e. a pair having a com-
mon ancestor. When mutation rates are variable, the evo-
lutionary neighbor may not be the nearest neighbor
(Figure 6). This explains why a nearest-neighbor tree may
be superior to the true evolutionary tree for guiding a pro-
gressive alignment. Neighbor-joining is naively O(N4)
time, although this can be reduced to O(N3). UPGMA is
naively O(N3) time as the minimum of an N2 matrix must
be found in each of N - 1 iterations. However, this can be
reduced to O(N2) time by maintaining a vector of pointers
to the minimum value in each row of the matrix. We are

again fortunate to find that the most accurate method is
also the fastest.

Dynamic programming
The textbook algorithm for pair-wise alignment with aff-
ine penalties employs three dynamic programming matri-
ces; see e.g. [40,41]. A more time-and space-efficient
implementation can be achieved using linear space for the
recursion relations and a single matrix for trace-back
(Kazutaka Katoh, personal communication). Consider
sequences X and Y length LX, LY. We use the following
notation: Xx is the xth letter in X, Xx the first x letters in X,
Sxy the substitution score (or profile function) for aligning
Xx to Yy, bX

x the score for a gap-open in Y that is aligned to
Xx, tX

x the score for a gap-close aligned to Xx, Uxy the set of
all alignments of Xx to Yy, Mxy the score of the best align-
ment in Uxy ending in a match (i.e., Xx and Yy are aligned),
Dxy the score of the best alignment ending in a delete rel-
ative to X (Xx is aligned to an indel) and Ixy the score of the
best alignment ending in an insert (Yy is aligned to an
indel). A match is preceded by either a match, delete or
insert, so:

Neighbor-joining and UPGMA trees for progressive alignmentFigure 6
Neighbor-joining and UPGMA trees for progressive 
alignment. Here we show the same set of four sequences 
and the order in which they will be aligned according to a 
neighbor-joining tree (above) and a UPGMA tree (below). 
Notice that t and u are the most closely related pair, but (s, t) 
and (u, v) are evolutionary neighbors. With neighbor joining, t 
and u are not aligned to each other until the root, in contrast 
to UPGMA, which aligns s and t as the first pair.

s

t 

u 

v 

u,v 

s,t 

(s,t),(u,v)

t 

u 

v 

s

(t,u),v
t,u 

((t,u),v),s 

Additive profilesFigure 7
Additive profiles. The profile functions in MUSCLE require 
amino acid frequencies for each column. Here we show the 
alignment of two profiles X and Y, giving a new profile Z. 
Note that the count nZ

i for amino acid i in a given column of 
Z is the sum of the counts in the child profiles, i.e. nZ

i = nX
i + 

nY
i. In terms of frequencies, this becomes f Zi = NXf Xi /NZ + 

NYf Yi/NZ, where NX, NY, NZ are the number of sequences in 
X, Y and Z respectively. Therefore, given a suitable sequence 
weighting scheme, it is possible to compute frequencies in Z 
from the frequencies in X and Y. This avoids the step of 
building an explicit multiple alignment for Z in order to com-
pute frequencies, as done in CLUSTALW and MAFFT.
Page 9 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
Mxy = Sxy + max { Mx-1y-1, Dx-1y-1 + tX
x-1, Ix-1y-1 + tY

y-1}  (14)

We assume that a center parameter has been added to Sxy
such that the gap extension penalty is zero. By considering
all possible lengths for the final gap,

Dxy = max(k<x) [Mky + bX
k+1].  (15)

Here, k is the last position in X that is aligned to a letter in
Y. Extract the special case of a gap of length 1:

Dxy = max { max(k<x-1) [Mky + bX
k+1], Mx-1y + bX

x}.  (16)

Hence,

Dxy = max { Dx-1y, Mx-1y + bX
x }.  (17)

Similarly,

Ixy = max { Ixy-1, Mxy-1 + bY
y }.  (18)

Let the outer loop iterate over increasing x and the inner
loop over increasing y. For fixed x, define vectors Mcurr

y =
Mxy, Mprev

y = Mx-1y, Dcurr
x = Dxy, Dprev

x = Dx-1y; for fixed x, y
define scalars Icurr = Ixy, Iprev = Ixy-1. Now we can re-write
(14), (17) and (18) to obtain the following recursion
relations:

Mcurr
y = Sxy + max { Mprev

y-1, Dprev 
y-1 + tX

x-1, Iprev
y-1 + tY

y-1 }
(19)

Dcurr
y = max { Dprev

y, Mprev
y + bX

x }  (20)

Icurr = max { Iprev, Mprev
y + bY

y }.  (21)

An LX × LY matrix is needed for the trace-back that pro-
duces the final alignment.

Inner loop
The inner-most dynamic programming loop, which com-
putes the profile function, deserves careful optimization.
We will consider the case of PSP; similar optimizations are
possible for LE. PSP = Σi Σj f xi f yj Sij = Σi f xi Wy

i, where Wy
i

= Σj f yj Sij. The vector Wy
i is used LX times, and it therefore

pays to compute it once and cache it. Observe that a typi-
cal profile column contains << 20 different amino acids.
We sort the frequencies in decreasing order; the summa-
tion Σi f xi Wy

i is terminated if a frequency f xi = 0 is encoun-
tered. This typically reduces the time spent in the
summation, especially when sequences are closely related.
As with Wy

i, the sort order is computed once and cached.
Observe that the roles of the two profiles are not symmet-
rical. It is most efficient to choose X, for which frequency
sort orders are computed, to be the profile with the lowest
amino acid diversity when averaged over columns. With

this choice, the summation terminates earlier on average
then if the other profile is identified as X. Note that out of
N - 1 iterations of progressive alignment, a minimum of

 and maximum of N - 1 profile-profile alignments
will include at least one profile containing one sequence
only, and in the refinement phase exactly N of the 2N - 1
edges in the tree terminate on a leaf. At least half of all
profile-profile alignments created in the MUSCLE algo-
rithm therefore include a profile of one sequence only.
Special cases where one or both profiles is a single
sequence can be handled in separate subroutines, saving
overhead due to unneeded loops that are guaranteed to
execute once only. This optimization is especially useful
for the LE function as it enables the logarithm to be incor-
porated into the W vector.

Diagonal finding
Many alignment algorithms are optimized for speed, typ-
ically at some expense in average accuracy, by using fast
methods to identify regions of high similarity between
two sequences, which appear as diagonals in the similarity
matrix. The alignment path is then constrained to include
these diagonals, reducing the area of the dynamic pro-
gramming matrix that must be computed. MAFFT uses the
fast Fourier transform to find diagonals. MUSCLE uses a
different technique which we have previously shown [21]
have comparable sensitivity and to be significantly faster.
We use a compressed alphabet to find k-mers in common
between two sequences, then attempt to extend the
match. In the case of diagonal identification we found
compressed alphabets to significantly out-perform the
standard amino acid alphabet [21]. Currently, MUSCLE
uses 6-mers in the Dayhoff alphabet for diagonal finding,
as for the initial distance measure, though other alphabets
are known to give slightly better performance [21]. A can-
didate diagonal is rejected if there is any overlap (i.e., if a
single position in one of the sequences appears in two or
more diagonals) or if it is less than a minimum length
(default 24). The ends of the diagonal are deleted (by
default, the first and last five positions) as they are less
reliable. Despite these heuristics, we find the use of diag-
onal-finding to reduce average accuracy and to give only
modest improvements in speed for typical input data; this
option is therefore disabled by default. Similar results are
seen in MAFFT; the most accurate MAFFT script is NWNSI
[14], in which diagonal-finding is also disabled.

Additive profiles
Both the PSP and LE profile functions are defined in terms
of amino acid frequencies and position-specific gap pen-
alties. The data structure representing a profile is a vector
of length LP in which each element contains frequencies
for each amino acid type and a few additional values
related to gaps. We call this data structure a profile vector,
as distinct from a profile matrix, an explicit N × LP multiple

N /2
Page 10 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
alignment containing letters and indels. For N > 20, using
profile vectors reduces the cost of computing the profile
function compared with profile matrices, and is therefore
preferred for use in dynamic programming. In CLUS-
TALW and MAFFT, the implementation of progressive
alignment builds a profile matrix at each internal node of
the tree, which is used to compute a profile vector. This
procedure is O(NLP) = O(N2 + NL) in time and space,
becoming expensive for large N. Observe that the count of
a given amino acid in a column in the parent matrix is the
sum of the counts in the two child columns that are
aligned at that position (Figure 7). With a suitable
sequence weighting scheme, it is therefore possible to
compute the amino acid frequencies of the parent profile
vector from the frequencies in the two child profile vectors
and the alignment path. This is an O(LP) procedure in
both time and space, giving a significant advantage for N
>> 20. Three issues must be addressed to fully implement
this idea: the sequence weighting scheme, inclusion of
occupancy factors and position-specific gap penalties, and
construction of a profile matrix (i.e., the final multiple
alignment) at the root node.

Sequence weighting
For the frequencies in the parent profile vector to be a lin-
ear combination of the child frequencies, the weight
assigned to a sequence must be the same in the child and
parent profiles. This requirement is not satisfied, for
example, by the Henikoff or PSI-BLAST schemes, which
compute weights based on a multiple alignment. We
therefore choose the CLUSTALW scheme, which com-
putes a fixed weight for each sequence from edge lengths
in the tree.

Gap representation
To compute gap penalties, we need the frequencies fo of
gap opens and fc of gap closes in each position. In the case
of the LE profile function, we additionally require the gap
frequency fG. These can be accommodated by storing fo, fc
and fe in the profile vector, where fe is the frequency of gap-
extensions in the column (meaning that indels are found
in a given sequence in the column, the preceding column
and in the following column; i.e., a gap-close is not
counted as an extension). These three occupancy frequencies
are sufficient for computing the profile function and the
position-specific gap penalties b and t. Note that we can
compute the frequency fG of indels, as needed for the
occupancy factor in the profile function, as follows:

fG = fo + fc + fe.  (22)

Now consider the problem of computing the occupancy
frequencies in the parent profile vector, given only the
child occupancy frequencies and the trace-back path for
the alignment. Consider first a diagonal edge in the path,

i.e. an edge that does not open or extend a gap, following
another diagonal edge. In this case, the occupancy fre-
quencies are computed similarly to amino acid frequen-
cies (as a sum in which a child frequency is weighted
according to the total weight of the sequences in its pro-
file). For horizontal or vertical edges, i.e. edges that open
or extend gaps, the parent occupancy frequencies can be
computed by considering the effect of the new column of
indels (Figure 8). It is straightforward to work through all
cases and show that the three frequencies fo, fc and fe are
sufficient for their values in the parent profile vector to be
computed in O(LP) time from the child profile vectors and
alignment path.

Construction of the root alignment
By avoiding the use of profile matrices, the complexity of
a single progressive alignment iteration is reduced from
O(LP 

2 + NLp) space and O(LP
2 + NLP) time to O(LP

2) =
O(L2 + NL) space and time. The NL term in the time com-
plexity is now due only to the increase in profile length,
and is therefore typically much smaller than before. The

Occupancy frequencies in additive profilesFigure 8
Occupancy frequencies in additive profiles. Here we 
show an alignment of profiles X and Y giving Z. A column C 
of indels (shaded background) has been inserted at position x 
in order to align X to Y. To compute the number of gap-
extensions in column x of Z, three cases must be considered: 
(1) a gap-extension in the corresponding column of Y, (2) a 
gap-open in the preceding column of X, and (3) a gap-exten-
sion in the preceding column of X. By enumerating all such 
cases, it is straightforward to compute the occupancy fre-
quencies in Z from the occupancy frequencies of X and Y, 
plus the alignment path.
Page 11 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
root alignment is constructed by storing the alignment
path produced at each internal node. For each input
sequence, the path to the root is followed, inserting the
gaps induced by each alignment path at each internal
node. This procedure is O(NLP log N) = O(N 2 log N + NL
log N) time, and requires O(NLP) = O(NL + N 2) space for
storage of the paths. This is expensive for large N, and we
therefore optimize this step by using a device we call an e-
string, a type of edit string.

E-strings
An alignment path can be considered as an operator on a
pair of sequences that inserts indels into those sequences
such that their lengths become equal. Conventionally, an
alignment path is represented as a vector of three symbols
representing edges in the graph, say M, D and I (for match,
delete and insert, i.e. a diagonal, horizontal or vertical
edge). Note that indels in one sequence are inserted only
by Ds, indels in the other are inserted only by Is. Define
an e-string e to be a vector of |e| integers interpreted as an
operator that inserts indels into a string by scanning it
from left to right (Figure 9). A positive integer n means
skip n letters of the string; a negative integer -n means
insert n indels at the current position. We require the vec-
tor to be in its shortest form, so signs always alternate. We

represent an alignment path as a pair of e-strings, one for
each sequence, assigned to the appropriate edges in the
tree. We will typically find that |e|, the length of the e-
string, is much less than LP, the length of the alignment
path. Now consider the effect of applying two consecutive
e-strings ("multiplying" them). This can be expressed as a
third e-string, which can be efficiently computed in O(|e|)
time from the multiplicands. For each leaf (input
sequence), the product is computed of e-strings on the
path to the root (Figure 10). The final e-string obtained at
the root is then applied to the sequence. This method does
not reduce the big-O time or space complexity, but is
much faster than a naive implementation.

Brenner's method
Steven Brenner (personal communication) observed that
a multiple alignment can be alternatively be obtained by
aligning each sequence to the root profile. This requires
O(NLP

2) time, giving a lower asymptotic complexity in N
at the expense of an additional factor of LP. This method
gives opportunities for errors relative to the "exact" e-
string solution (when a sequence misaligns to its copy in
the profile), but can also lead to improvements by allow-
ing the sequence to correctly align to conserved motifs
that were not apparent when the sequence was added.
(Note the resemblance to the refinement stage, which
begins by re-aligning individual sequences to the rest).
The chances for error are reduced by constraining the
alignment to forbid gaps in the root profile. Our tests
show that this method gives comparable average accuracy
to the e-string solution but to be slower for up to at least

E-stringsFigure 9
E-strings. (1) The effect of the e-string operator <3,-1,2> 
on the sequence MQTIF. A positive number n skips n letters, 
a negative number -n insert n indels. (2) The effect of applying 
two successive e-strings. In the last line, the result is 
expressed as a new e-string applied to the original string. (3) 
We define multiplication on two e-strings as yielding the e-
string that is equivalent to applying the two e-strings in 
order. (4) An alignment path is conventionally represented as 
a vector of edge types (M, D and I). In this example, 
MDMIMM, shown above a pairwise alignment, is the path 
that generates that alignment. The alignment can also be gen-
erated by a pair of e-strings (shown to the right). An align-
ment path is therefore equivalent to a pair of e-strings.

Root alignment constructionFigure 10
Root alignment construction. Here we show the same 
progressive alignment as Figure 1. Each edge in the tree is 
labeled with the e-string for its side of the alignment at the 
parent node. The e-string needed to insert indels into a 
sequence in the root alignment can be determined by multi-
plying e-strings along the path to the root. For example, for 
sequence LSF, the root e-string is <3,-1,1>*<1,-1,2> = <1,-
1,1,-1,1>.
Page 12 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
a few thousand sequences, and e-strings are therefore used
by default.

Refinement complexity
In the following, we assume that an explicit multiple
alignment (profile matrix) of all sequences is maintained,
and determine the complexity of each step in Stage 3. Step
3.1 determines the bipartition induced by deleting an
edge from the tree. This is O(N) time, and sufficiently fast
that there is little motivation for further optimization.
Step 3.2 extracts profiles for the two partitions from the
current multiple alignment and computes their profile
vectors, which is O(NLP) time and space. Step 3.3 per-
forms profile-profile alignment, which is O(LP

2) time and
space. Step 3.4 computes the SP score, which is O(N2LP)
time and O(NLP) space (discussed in more detail shortly).
A single iteration of Stage 3 is thus O(N2LP + LP

2) time and
O(NLP + LP

2) space. There are O(N) edges in the tree, so
executing this process for all edges is O(N3LP + NLP

2) time
and O(NLP + LP

2) space, which is O(N4 + N3L + NL2) time
and O(N2 + NL + L2) space. Assuming that a fixed maxi-
mum number of iterations of Stage 3 is imposed, this is
also the total complexity of refinement. We now consider
optimizations of the refinement stage.

Anchor columns
A multiple alignment can be divided vertically at high-
confidence (anchor) columns. Each vertical block is then
refined separately, improving speed and reducing space
due to the O(L2) factor in dynamic programming. This
strategy has been used by several previous algorithms,
including PRRP [13], RASCAL [42] and MAFFT. In
MUSCLE, the following criteria are used to identify
anchor columns. The profile function (LE or PSP) must
exceed a threshold, the averaged profile function over a
window around the position must exceed a (lower)
threshold, and the column may not contain a gap. In
addition, the contribution to the averaged score from a
single column has a ceiling, reducing skew in the averaged
score due to exceptionally high-scoring columns. These
heuristics are designed to avoid anchor columns that have
high scores but are either artifacts (similar residues found
by chance in unrelated regions) or are too close to variable
regions. When performing a profile-profile alignment,
each anchor column and its two immediate neighbors
(which form the boundaries of vertical blocks) are
required to remain aligned; i.e., terminal gaps are forbid-
den except at the true terminals. Introducing this
constraint overcomes a small degradation in average
alignment quality that is otherwise observed. This implies
that the degradation is sometimes due to cases where a
well-conserved region is divided into two parts by an
anchor column, one of which becomes short enough that
it misaligns to a similar short motif elsewhere.

SP score
Notice that computation of the SP score dominates the
time complexity of refinement and of MUSCLE overall,
introducing O(N4) and O(N3L) terms. We are therefore
motivated to consider optimizations of this step. We first
consider the contribution SPa to the SP score from amino
acids; gap penalties require special treatment. Let s and t
be sequences, x be a column, s [x] be the amino acid of
sequence s in column x, and S(i, j) be the substitution
score of amino acids i and j. It is convenient to impose an
(arbitrary) ordering on the sequences and amino acid
types. Then,

SPa = Σx Σs Σt >s S(s [x], t [x]).  (23)

Define δ(s, i, x) = 1 if s [x] = i, 0 otherwise, and ni [x] = Σs
δ(s, i, x). We say ni [x] is the count of amino acid type i in
column x. We can now transform the sum over pairs of
sequences into a sum over pairs of amino acid types:

SPa = Σx Σi ni Σj nj>i S(i, j) + 1/2 Σx Σi (ni
2 - ni) S(i, i).  (24)

Frequencies are computed as:

f xi = ni [x]/ N.  (25)

Using frequencies,

For simplicity, we have neglected sequence weighting; it is
straightforward to show that (26) applies unchanged if
weighting is used. Note that (23) is O(N2LP) but (25) and
(26) are O(NLP). For N >> 20, this is a substantial
improvement. Let SPg be the contribution of gap penalties
to SP, so SP = SPa + SPg. It is natural to seek an O(NLP)
expression for SPg analogous to (26), but to the best of our
knowledge no solution is known. Note that in MUSCLE
refinement, the absolute value of the SP score is not
needed; rather, it suffices to determine the difference in
the SP scores before and after re-aligning a pair of profiles.
Let SP(s, t) be the contribution to the SP score from a pair
of sequences s and t, so SP = Σs Σt>s SP(s,t), and denote the
two profiles by X and Y. Then we can decompose SP into
intra-and inter-profile terms as follows:

SP = Σs∈X Σt∈X:t>s SP(s, t) + Σs∈Y Σt∈Y:t>s SP(s, t) + Σs∈X Σt∈Y
SP(s, t)  (27)

Note that the intra-profile terms are unchanged in any
alignment that preserves the columns of the profile intact,
which is true by definition in profile-profile alignment.
This follows by noting that any indels added to align the
profiles are guaranteed to be external gaps with respect to

SPa = ( ) + −( ) ( ) ( )∑∑∑∑∑ >N f f S i j N f f N S i ix
i

x
j

x
i

x
iixj iix

2 2 22 26, / / , .
Page 13 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
any pair of sequences in the same profile. It therefore suf-
fices to compute the change in the inter-profile term:

SPXY = Σs∈X Σt∈Y SP(s, t).  (28)

This reduces the average time by a factor of about two. We
can further improve on this by noting that in the typical
case, there are few or no changes to the alignment. This
suggests computing the change in SP score by looking
only at differences between the two alignments. Let π- be
the alignment path before re-alignment and π+ the path
after re-alignment. The change in alignment can be speci-
fied as the set of edges in π- or π+, but not both; i.e., by con-

sidering a path to be a set of edges and taking the set
symmetric difference ∆π = (π- ∪ π+) - (π- ∩ π+). The path
π+ after re-alignment is available from the dynamic pro-
gramming traceback. The path π- before re-alignment can
be efficiently computed in O(LP) time. Note that in order
to construct the profile of a subset of sequences extracted
from a multiple alignment, those columns that contain
only indels in that subset must be deleted. The set of such
columns in both profiles is therefore available as a side
effect of profile construction, and this set immediately
implies π-. It is a simple O(LP) procedure to compute ∆π
from π- and π+. Note that SPa is a sum over columns, and
there is a one-to-one correspondence between columns
and edges in π. The change in SPa can therefore be com-
puted as a sum over columns in ∆π, with a negative sign
for edges from π-, reducing the time complexity from
O(NLP) to O(N|∆π|). We now turn our attention to SPg.
We say that a gap G intersects ∆π if and only if any indel in
G is in a column in ∆π, and denote by Γ the set of gaps that
intersect ∆π. If a gap does not intersect ∆π, i.e. does not
have an indel in a changed column, its contribution to SPg

is unchanged. It therefore suffices to consider penalties for
gaps in Γ, again with negative signs for edges from π-. The
construction of Γ is straightforward in O(NLP) time.
Finally, a sum over pairs in Γ is needed, reducing the
O(N2) component to the smallest possible set of terms.

Dimer approximation
We next describe an approximation to SP that can be com-
puted in O(NLP) time. Define a two-symbol alphabet {X,
-} in which X represents any amino acid and - is the indel
symbol. There are four dimers in this alphabet: XX, X-, -X
and --, which denote by no-gap, gap-open, gap-close and

Dimers in the {X,-} alphabetFigure 11
Dimers in the {X,-} alphabet. Gap penalties for the 
sequence pair (s, u) can be computed be considering all 
aligned pairs of dimers in the alphabet {X,-}, where X is any 
amino acid and - is the usual indel symbol. Four cases are 
highlighted. Note that an aligned pair of identical dimers 
never contribute a gap penalty as any indels in the dimers are 
necessarily external, as in the left-most example.

Problem dimer pairFigure 12
Problem dimer pair. The aligned dimer pair -X ↔ -- 
causes a problem because its gap penalty contribution cannot 
be computed without additional information. Note that the 
first column of indels is external; after this column is dis-
carded, different penalties may be needed, as these two 
examples show.

Dimer substitution matrixFigure 13
Dimer substitution matrix. This matrix specifies the con-
tribution to the total gap penalty for a pair of sequences for 
each possible pair of aligned dimers. Here, g is the per-gap 
penalty, e is the gap-extension penalty. The problem case -X 
↔ -- is approximated as tg, where t is a tunable parameter.
Page 14 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
gap-extend respectively. Re-write a multiple alignment in
terms of these dimers, adopting the convention that dimer
ab composed of symbol a in column x-1 and symbol b in
column x is written in column x. Now consider the
contribution to SPg of an aligned pair of dimers, written as
ab↔cd. Clearly XX↔X- adds a gap-open penalty; XX↔-X
adds a gap-close (Figure 11). To avoid double-counting,
we will include only the penalty contribution of indels in
the second column. Then XX↔X- adds a per-gap penalty,
but XX↔-X adds zero because the second column does
not contain a gap. External indels must be discarded; so,
for example, --↔-- adds zero. In fact, aligning two identi-
cal dimers always contributes zero because any indel in
the second column is found in both sequences and is
therefore external. The contribution of all possible pairs of
dimers is unambiguous, with the exception of -X↔--,
which can add a per-gap or extend penalty (Figure 12). We

approximate this case by assigning it a penalty of tg, where
g is the default per-gap penalty and t is a tunable
parameter, set to 0.2 by default. With this approximation,
dimers can be treated like amino acids: the scores for each
aligned pair of dimers forms a substitution matrix (Figure
13), and SPg can be computed by summing substitution
scores over all pairs of sequences. We can now apply
Equation 26, re-interpreting the frequency vectors f as
having 24 components (20 amino acids and four dimers),
and compute the change in SP by considering only those
columns in ∆π. We find use of the dimer approximation
to marginally reduce benchmark scores. By default, MUS-
CLE therefore uses the exact SP score for N ≤ 100 and the
dimer approximation for N > 100, where the higher time
complexity of the exact score becomes more noticeable.

Evaluation of profile functions
We have previously attempted a systematic comparison of
profile functions [30]. The methodology used in that
work demanded careful optimization of affine gap param-
eters for each function. This proved to be time-consuming
and tedious, and we therefore tried the following alterna-
tive approach, inspired by the notion that a good profile
function should be good at discriminating correctly
aligned pairs of profile positions from incorrectly aligned
pairs. The protocol begins with a set of pair-wise structural
alignments. With the sequence of each structure as a

Discrimination plot for PP2Figure 14
Discrimination plot for PP2. The x axis is the number of 
true column pairs with scores ≤ S for some value S, as a frac-
tion of the total number of true pairs; the y axis is the 
number of false column pairs with scores ≤ S, as a fraction of 
the total number of false pairs. The databases were con-
structed from the PP2 test set. Shown are discrimination 
plots for the log-expectation (LE), log-average (LA), Yona-
Levitt (YL), LAMA, and profile sum of pairs (PSP) functions. 
The LE function shows higher discrimination over the entire 
range of scores than any other function we tested (complete 
results not shown). The poor performance of the "standard" 
PSP function is striking. PSP displays negative discrimination 
over some of its range where it falls below the diagonal 
(dashed line).

Discrimination plot for PPFigure 15
Discrimination plot for PP. This is similar to Figure 13, 
except that the database was generated from the PP test set. 
Here we see an ambiguous result as the discrimination plots 
for LE and PSP intersect.
Page 15 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
query, we used PSI-BLAST to search the NCBI non-redun-
dant protein sequence database [43], giving a multiple
sequence alignment (profile) for each structure. Note that
we use the term profile in this context to mean the
sequence alignment produced by PSI-BLAST, not the scor-
ing matrix. Using the structural alignments as a guide, we
then created a database in which columns from the PSI-
BLAST profiles were aligned to each other, giving a large
set of pairs of alignment columns that we consider to be
correctly aligned (the "true" database, although there are
undoubtedly misaligned sequences and hence some
incorrect pairs). By selecting the same number of pairs of
columns at random from structures in different FSSP fam-
ilies, we created a similar ("false") database of unrelated
pairs. A profile function was evaluated by computing the
score of each pair of columns in both the true and false
databases, and then sorting the results in order of increas-
ing score. The results can be displayed by reviewing the
sorted list and, for each score S in the list, plotting the
number of true pairs with score ≤ S (x axis) against the
number of false pairs with score ≤ S (y axis); we call the
resulting graph a discrimination plot. Ideally, all true pairs
would score higher than all false pairs, in which case the
profile function would be a perfect discriminator and
would always produce perfect alignments. A function that
perfectly discriminates will appear as a Γ-shaped plot; a
function that has no ability to discriminate will appear as
a diagonal plot along the line x = y. If a function F has a
discrimination plot that is always above another function
G (i.e., DF(x) > DG(x) ∀ x, where DF is the discriminator
plot for F as a function of x), then F has a superior ability
to discriminate true from false pairs compared with G. If
the plots intersect, the situation is ambiguous and neither
function is clearly superior. We used sets of structural
alignments from [30] (PP) and [44] (PP2). PP contains
588 structure pairs with sequence identity ≤ 30%, z-score
≥ 15, RMSD ≤ 2.5Å and an alignment length of ≥ 50 posi-
tions. These criteria were designed to select pairs of struc-
tures with low sequence identity and high structural
similarity. PP2 contains 500 pairs selected from the FSSP
database [45] with ≤ 30% sequence identity, z-score ≥ 8
and ≤ 12, RMSD ≤ 3.5Å and alignment length ≥ 50. The
criteria for PP2 were designed to select challenging align-
ments with low sequence identity and relatively high
structural divergence, leading to a high frequency of gaps
and therefore, presumably, a stronger dependence on
accurate identification of sequence similarity. Results on
PP2 show the LE function to have higher discrimination
than all other tested functions (historically, the LE func-
tion was designed by systematic trial and error using a
wide range of different profile functions with feedback
from discrimination plots). This is illustrated in Figure 14,
in which the discrimination plot for LE on PP2 is com-
pared with several other functions: PSP, LA, Yona and Lev-
itt's [46], LAMA [47]. Using PP, we again find that LE is

superior to LA (not shown), but the comparison with PSP
is ambiguous as the discrimination plots intersect (Figure
15). A major advantage of this approach is that no gap
penalties are required, with the result that once the data-
bases have been constructed, a new function can be tested
in seconds rather than the days or weeks that were needed
with the earlier methodology. However, some caveats are
in order. We are using PSI-BLAST as a gold standard for
creating profiles, but PSI-BLAST may introduce biases
both due to its selection of sequences for inclusion in the
profile and due to errors in alignments of those sequences
to the query. If the profile function will be used to align
PSI-BLAST profiles, then this is an appropriate experimen-
tal design. But in the case of multiple sequence alignment,
where profiles are produced iteratively by the profile func-
tion itself, the results may not be directly applicable. We
also note that any monotonic transformation of the pro-
file function leaves the discriminator plot unchanged as it
does not change the sort order of the scores. (A monot-
onic transformation is F' = m(F) where m(x) is a monoton-
ically increasing function). However, a monotonic
transformation may change the alignments produced by a
profile function, so we can regard high discrimination as
a necessary but not sufficient condition for a good profile
function. One can turn this into a virtue by noting that the
discrimination plot allows the relative probability of true
versus false to be determined from a score. It is therefore
possible to numerically determine a log-odds function
from the discrimination plot, which can be evaluated by
table look-up. Using discrimination plots for PP2, we
found the optimal transformation for LE to be close to lin-
ear, in contrast to other functions we tried, including PSP
(results not shown). This observation further encouraged
us to explore the performance of LE in an MSA algorithm.
Testing on multiple alignment benchmarks we find LE to
give superior results on BAliBASE, but statistically indis-
tinguishable results on other databases (results not
shown). MUSCLE therefore uses LE as the default choice
as it sometimes gives better results but has not been
observed to give lower average accuracy on any of our
tests. It is also useful to introduce a method with a distinc-
tively different scoring scheme as an alternative that may
give better results on some input data and may provide
unique features for incorporation into jury or consensus
systems. One drawback of LE is its relatively slow perform-
ance due to the need to compute a logarithm for each cell
of the dynamic programming matrix.

Complexity of MUSCLE
The complexity of MUSCLE is summarized in Table 2. We
assume LP = O(L + N), the e-string construction for the
root alignment, and a fixed number of refinement
iterations.
Page 16 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
Results
MUSCLE offers a variety of options that offer different
trade-offs between speed and accuracy. In the following,
we report speed and accuracy results for three sets of
options: (1) the full MUSCLE algorithm including Stages
1, 2 and 3 with default options; (2) Stages 1 and 2 only,
using default options (MUSCLE-prog); and (3) Stage 1
only using the fastest possible options (MUSCLE-fast),
which are as follows: FBinary is used as a distance measure
(Equation 2), the PSP profile function is used, and diago-
nal finding is enabled.

Alignment accuracy
In Tables 3 and 4 we report the speed and accuracy of
MUSCLE v3.3, CLUSTALW v1.82, Progressive POA, a
recently published method that is claimed to be 10 to 30
times faster than CLUSTALW for large alignments [48],
and the MAFFT script FFTNS1 v3.82, the fastest previously
published method known to us. On the advice of one of
the authors of Progressive POA, we used command-line
options selecting global alignment with truncated gap
scoring (Catherine Grasso, personal communication). We
report results both using distance matrices computed by
BLAST (POA-blast) and using the distance method built
into the program (POA). We use four sets of reference
alignments: BAliBASE v2, PREFAB v3, SABmark v1.61,
and a version of SMART from July 2000. The accuracy
score is Q, the number of residue pairs correctly aligned
divided by the length of the reference alignment. For more

discussion of the reference data, assessment methodology
and a comparison of MUSCLE with T-Coffee and NWNSI,
the most accurate MAFFT script, see [2].

Execution speed
To compare speeds for a larger number of sequences, we
created a test set by using PSI-BLAST to search the NCBI
non-redundant protein sequence database for hits to
dienoyl-coa isomerase (1dci in the Protein Data Bank
[49]), selecting the highest-scoring 1,000 sequences. This
set of sequences had average length 282, maximum length
454 and average pair-wise identity 20%. We aligned ran-
domly chosen subsets of from 200 to 1,000 sequences
with each program and noted the total execution time. In
the case of 1,000 sequences, the resulting alignments had
from 1,100 from 1,400 columns, confirming that it is
unrealistic to assume that LP is O(L). Results are shown in
Figure 16. We have previously shown that MUSCLE-prog
is faster than FFTNS1 on a set of 5,000 sequences, for
which we estimated that CLUSTALW would require
approximately one year [2]. In this test, MUSCLE-fast is
approximately 3× faster than FFTNS1 for 200 sequences,
and 5× faster for 1,000 sequences. This trend continues for
larger numbers of sequences (complete results not
shown), showing that MUSCLE-fast has lower asymptotic
complexity, due largely to the use of additive profiles for
progressive alignment compared with the profile matrices
constructed by FFTNS1.

Table 2: Complexity of MUSCLE. Here we show the big-O asymptotic complexity of the elements of MUSCLE as a function of L, the 
typical sequence length, and N, the number of sequences, retaining the highest-order terms in N with L fixed and vice versa.

Step O(Space) O(Time)

K-mer distance matrix N2 + L N2L
UPGMA N2 N2

Progressive (one iteration) LP
2 = NL + L2 LP

2 = N2 + L2

Progressive (root alignment) NLP = N2 + NL NLP log N = N2 log N + NL log N
Progressive (N iterations + root) N2 + NL + L2 N3 + NL2

Refinement (one edge) NLP + LP
2 = N2 + L2 N2LP + LP

2 = N3+ L2

Refinement (N edges) N2 + L2 N4+ NL2

TOTAL N2 + L2 N4 + NL2

Table 3: Accuracy scores. The average accuracy, measured by the Q score, is reported for each method on each set of reference 
alignments.

Method PREFAB BAliBASE SABmark SMART

MUSCLE 0.648 0.896 0.430 0.856
MUSCLE-prog 0.634 0.883 0.427 0.837

FFTNS1 0.619 0.844 0.376 0.815
MUSCLE-fast 0.616 0.849 0.396 0.813
CLUSTALW 0.588 0.860 0.404 0.823

POA-blast 0.577 0.839 0.352 0.788
POA 0.576 0.834 0.280 0.797
Page 17 of 19
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
Conclusions
MUSCLE demonstrates improvements in accuracy and
reductions in computational complexity by exploiting a
range of existing and new algorithmic techniques. While
the design–typically for practical multiple sequence
alignment tools–arguably lacks elegance and theoretical
coherence, useful improvements were achieved through a
number of factors. Most important of these were selection
of heuristics, close attention to details of the
implementation, and careful evaluation of the impact of
different elements of the algorithm on speed and accu-
racy. MUSCLE enables high-throughput applications to
achieve average accuracy comparable to the most accurate
tools previously available, which we expect to be increas-
ingly important in view of the continuing rapid growth in
sequence data.

Availability and requirements
MUSCLE is a command-line program written in a con-
servative subset of C++. At the time of writing, MUSCLE
has been successfully ported to 32-bit Windows, 32-bit
Intel architecture Linux, Solaris, Macintosh OSX and the
64-bit HP Alpha Tru64 platform. MUSCLE is donated to
the public domain. Source code and executable files are
freely available at http://www.drive5.com/muscle.

References
1. Notredame C: Recent progress in multiple sequence align-

ment: a survey. Pharmacogenomics 2002, 3(1):131-144.
2. Edgar RC: MUSCLE: multiple sequence alignment with high

accuracy and high throughput. Nucleic Acids Res 2004,
32(5):1792-1797.

3. Wang L, Jiang T: On the complexity of multiple sequence
alignment. J Comput Biol 1994, 1(4):337-348.

4. Waterman MS, Smith TF, Beyer WA: Some biological sequence
metrics. Adv in Math 1976, 20:367-387.

5. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton
JC: Detecting subtle sequence signals: a Gibbs sampling strat-
egy for multiple alignment. Science 1993, 262(5131):208-214.

6. Hogeweg P, Hesper B: The alignment of sets of sequences and
the construction of phyletic trees: an integrated method. J
Mol Evol 1984, 20(2):175-186.

7. Feng DF, Doolittle RF: Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J Mol Evol 1987,
25(4):351-360.

8. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

9. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method
for fast and accurate multiple sequence alignment. J Mol Biol
2000, 302(1):205-217.

10. Bahr A, Thompson JD, Thierry JC, Poch O: BAliBASE (Bench-
mark Alignment dataBASE): enhancements for repeats,
transmembrane sequences and circular permutations.
Nucleic Acids Res 2001, 29(1):323-326.

11. Thompson JD, Plewniak F, Poch O: BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs. Bioinformatics 1999, 15(1):87-88.

12. Hirosawa M, Totoki Y, Hoshida M, Ishikawa M: Comprehensive
study on iterative algorithms of multiple sequence
alignment. Comput Appl Biosci 1995, 11(1):13-18.

13. Gotoh O: Significant improvement in accuracy of multiple
protein sequence alignments by iterative refinement as
assessed by reference to structural alignments. J Mol Biol 1996,
264(4):823-838.

14. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res 2002, 30(14):3059-3066.

Table 4: CPU times. The total CPU time required to create all alignments in each test set, measured in seconds on a 2.5 GHz Pentium 
4 desktop computer.

Method PREFAB BAliBASE SABmark SMART

MUSCLE-fast 540 11 45 30
FFTNS1 720 16 70 46

MUSCLE-prog 3,000 52 429 180
MUSCLE 11,000 81 1,500 560

POA-blast 11,000 90 290 670
CLUSTALW 15,000 160 210 480

POA 24,000 130 380 880

Execution time as a function of NFigure 16
Execution time as a function of N. This plot shows the 
execution time as a function of N (number of sequences) for 
the tested alignment methods. Input data is from 200 to 
1,000 sequences in increments of 200. Average sequence 
length is 282, maximum length 454.
Page 18 of 19
(page number not for citation purposes)

http://www.drive5.com/muscle
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11966409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11966409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=390337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=390337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8211139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8211139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6433036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6433036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3118049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=308517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/29.1.323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.1.87
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.1.87
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.1.87
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1996.0679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1996.0679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.1996.0679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8980688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkf436


BMC Bioinformatics 2004, 5:113 http://www.biomedcentral.com/1471-2105/5/113
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

15. Van Walle I, Lasters I, Wyns L: Align-m–a new algorithm for
multiple alignment of highly divergent sequences. Bioinformat-
ics 2004.

16. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P: SMART: a
web-based tool for the study of genetically mobile domains.
Nucleic Acids Res 2000, 28(1):231-234.

17. Ponting CP, Schultz J, Milpetz F, Bork P: SMART: identification
and annotation of domains from signalling and extracellular
protein sequences. Nucleic Acids Res 1999, 27(1):229-232.

18. Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modu-
lar architecture research tool: identification of signaling
domains. Proc Natl Acad Sci U S A 1998, 95(11):5857-5864.

19. Vinga S, Almeida J: Alignment-free sequence comparison-a
review. Bioinformatics 2003, 19(4):513-523.

20. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary
change in proteins in Atlas of protein sequence and struc-
ture,. Edited by: Dayhoff MO, Ech RV. Maryland: National Biomedical
Research Foundation; 1978. 

21. Edgar RC: Local homology recognition and distance measures
in linear time using compressed amino acid alphabets. Nucleic
Acids Res 2004, 32(1):380-385.

22. Kimura M: The neutral theory of molecular evolution. Cam-
bridge University Press; 1983. 

23. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4(4):406-425.

24. Sneath PHA, Sokal RR: Numerical taxonomy. San Francisco:
Freeman; 1973. 

25. Thompson JD, Higgins DG, Gibson TJ: Improved sensitivity of
profile searches through the use of sequence weights and
gap excision. Comput Appl Biosci 1994, 10(1):19-29.

26. Henikoff S, Henikoff JG: Position-based sequence weights. J Mol
Biol 1994, 243(4):574-578.

27. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

28. Gerstein M, Sonnhammer EL, Chothia C: Volume changes in pro-
tein evolution. J Mol Biol 1994, 236(4):1067-1078.

29. Gotoh O: A weighting system and algorithm for aligning
many phylogenetically related sequences. Comput Appl Biosci
1995, 11(5):543-551.

30. Edgar RC, Sjolander K: A comparison of scoring functions for
protein sequence profile alignment. Bioinformatics 2004 in press.

31. Sjolander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haus-
sler D: Dirichlet mixtures: a method for improved detection
of weak but significant protein sequence homology. Comput
Appl Biosci 1996, 12(4):327-345.

32. Altschul SF: Amino acid substitution matrices from an infor-
mation theoretic perspective. J Mol Biol 1991, 219(3):555-565.

33. Jones DT, Taylor WR, Thornton JM: The rapid generation of
mutation data matrices from protein sequences. Comput Appl
Biosci 1992, 8(3):275-282.

34. Muller T, Spang R, Vingron M: Estimating amino acid substitu-
tion models: a comparison of Dayhoff's estimator, the resol-
vent approach and a maximum likelihood method. Mol Biol
Evol 2002, 19(1):8-13.

35. von Ohsen N, Zimmer R: Improving profile-profile alignment
via log average scoring. In: Algorithms in Bioinformatics, First Interna-
tional Workshop, WABI 2001 Volume 2149. Edited by: Gascuel O,
Moret BME. Berlin: Springer-Verlag; 2001:11-26. 

36. Thompson JD, Plewniak F, Poch O: A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids Res
1999, 27(13):2682-2690.

37. Myers EW, Miller W: Optimal alignments in linear space. Com-
put Appl Biosci 1988, 4(1):11-17.

38. Felsenstein J: Inferring Phylogenies. Sunderland, Massachusetts:
Sinauer Associates; 2004. 

39. Sauder JM, Arthur JW, Dunbrack RL Jr: Large-scale comparison of
protein sequence alignment algorithms with structure
alignments. Proteins 2000, 40(1):6-22.

40. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence
analysis. Cambridge University Press; 1998. 

41. Setubal J, Meidanis J: Introduction to computational biology.
Pacific Grove, California: Brooks/Cole; 1997. 

42. Thompson JD, Thierry JC, Poch O: RASCAL: rapid scanning and
correction of multiple sequence alignments. Bioinformatics
2003, 19(9):1155-1161.

43. Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence
project: update and current status. Nucleic Acids Res 2003,
31(1):34-37.

44. Edgar RC, Sjolander K: COACH: profile-profile alignment of
protein families using hidden Markov models. Bioinformatics
2004 in press.

45. Holm L, Sander C: Touring protein fold space with Dali/FSSP.
Nucleic Acids Res 1998, 26(1):316-319.

46. Yona G, Levitt M: Within the twilight zone: a sensitive profile-
profile comparison tool based on information theory. J Mol
Biol 2002, 315(5):1257-1275.

47. Pietrokovski S: Searching databases of conserved sequence
regions by aligning protein multiple-alignments. Nucleic Acids
Res 1996, 24(19):3836-3845.

48. Grasso C, Lee C: Combining partial order alignment and pro-
gressive multiple sequence alignment increases alignment
speed and scalability to very large alignment problems. Bioin-
formatics 2004.

49. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids
Res 2000, 28(1):235-242.
Page 19 of 19
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/28.1.231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/27.1.229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.95.11.5857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=373290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=373290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14729922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkh180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0022-2836(94)90032-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7966282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0022-2836(94)90012-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0022-2836(94)90012-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8120887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2051488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2051488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1633570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=148477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10373585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/27.13.2682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3382986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=165558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=165558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519942
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkg111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=147193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/26.1.316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2001.5293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/jmbi.2001.5293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11827492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8871566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/24.19.3836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=102472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/28.1.235
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Current methods

	Implementation
	Algorithm overview
	Stage 1: draft progressive
	Similarity measure
	Distance estimate
	Tree construction
	Progressive alignment

	Stage 2: improved progressive
	Similarity measure
	Tree construction
	Tree comparison
	Progressive alignment

	Stage 3: refinement
	Choice of bipartition
	Profile extraction
	Re-alignment
	Accept/reject

	Algorithm elements
	Objective score
	Progressive alignment
	Similarity measures
	Distance measures
	Tree construction
	Sequence weighting
	Profile functions
	Gap penalties
	Terminal gaps
	Tree comparison
	Defaults, optimizations and complexity analysis
	Table 1

	Complexity of CLUSTALW
	Initial distance measure
	Clustering
	Dynamic programming
	Inner loop

	Diagonal finding
	Additive profiles
	Sequence weighting
	Gap representation
	Construction of the root alignment
	E-strings
	Brenner's method

	Refinement complexity
	Anchor columns
	SP score
	Dimer approximation

	Evaluation of profile functions
	Complexity of MUSCLE

	Results
	Alignment accuracy
	Execution speed
	Table 2
	Table 3
	Table 4


	Conclusions
	Availability and requirements
	References

