Skip to main content
. Author manuscript; available in PMC: 2016 Dec 21.
Published in final edited form as: Pac Symp Biocomput. 2016;22:219–229. doi: 10.1142/9789813207813_0022

Table 1.

Comparison of different feature sets using three classification learning models.

Features Model Accuracy Sensitivity Specificity Precision F-measure

ANN 96.95 98.73 95.29 95.42 0.970
SDAE SVM 98.04 97.21 99.11 99.17 0.981
SVM-RBF 98.26 97.61 99.11 99.17 0.983
ANN 63.04 60.56 70.76 84.58 0.704
DIFFEXP500 SVM 57.83 64.06 46.43 70.42 0.618
SVM-RBF 77.391 86.69 71.29 67.08 0.755
ANN 59.93 59.93 69.95 84.58 0.701
DIFFEXP0.05 SVM 68.70 82.73 57.5 65.04 0.637
SVM-RBF 76.96 87.56 70.48 65.42 0.747
ANN 96.52 98.38 95.10 95.00 0.965
PCA SVM 96.30 94.58 98.61 98.75 0.965
SVM-RBF 89.13 83.31 99.47 99.58 0.906
ANN 97.39 96.02 99.10 99.17 0.975
KPCA SVM 97.17 96.38 98.20 98.33 0.973
SVM-RBF 97.32 89.92 99.52 99.58 0.943