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Abstract

Adult stem cells are a promising cell source for cartilage regeneration. Unfortunately, due to donor 

age and ex vivo expansion, stem cell senescence becomes a huge hurdle for these cells to be used 

clinically. Increasing evidence indicates that environmental preconditioning is a powerful approach 

in promoting stem cells’ ability to resist a harsh environment post-engraftment, such as hypoxia 

and inflammation. However, few reports organize and evaluate the literature regarding the 

rejuvenation effect of environmental preconditioning on stem cell proliferation and chondrogenic 

differentiation capacity, which are important variables for stem cell based tissue regeneration. This 

report aims to identify several critical environmental factors such as oxygen concentration, growth 

factors, and extracellular matrix and to discuss their preconditioning influence on stem cells’ 

rejuvenation including proliferation and chondrogenic potential as well as underlying molecular 

mechanisms. We believe that environmental preconditioning based rejuvenation is a simpler and 

safer strategy to program pre-engraftment stem cells for better survival and enhanced proliferation 

and differentiation capacity without the undesired effects of some treatments, such as genetic 

manipulation.
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Introduction

Due to the hostile environment in damaged tissue, such as inflammation, immune 

compromise, hypoxic stress, and insufficient blood supply [1], the survival rate of 

transplanted cells in vivo is low, only 1–3% [2,3], which is a huge hurdle for cell-based 

therapy [4,5]. The concept of “preconditioning-induced protection”, first raised by Murry in 

1986, is a process by which myocardial stem cells exposed to a sub-lethal ischemic 

condition could promote the heart’s tolerance to severe ischemia [6]. Since then, the 

preconditioning concept has been used as the most effective means of cytoprotection, 

especially for cell-based treatment of ischemic myocardium and stroke [7]. Despite the fact 

that cell death in musculoskeletal transplantation, such as cartilage [8] or intervertebral disc 

(IVD) repair [9], is not as robust as in the heart and brain, it is still crucial for cells to survive 

before a sufficient repair response is induced.

Common preconditioning approaches include hypoxia, cytokines and growth factors, and 

genetic manipulation. Genetic manipulation promotes the viability of stem cell engraftment 

by overexpression of cytoprotective genes. The common overexpressed genes in promoting 

the survival of mesenchymal stem cells (MSCs) include v-Akt Murine Thymoma Viral 

Oncogene (AKT) [10], B-cell lymphoma 2 (Bcl-2) [11], heat shock protein 20 (Hsp20) [12], 

nuclear factor related (erythroid-derived 2)-like 2 (Nrf2) [13], heme oxygenase-1 (HO) 

[14,15], endothelial nitric oxide synthase (eNOS) [16], connexin 43 (Cx43) [17], and 

hypoxia inducible factor-1α (HIF-1α) [18]. Other overexpressed genes, such as wild-type 

p53 inducible phosphatase-1 (WIP-1) [19] and lipocalin 2 (Lcn2) [20], could decrease MSC 

senescence during the process. However, genetic manipulation of MSCs has limited clinical 

benefit due to its inherent risks during genetic modification, such as random integration into 

the host genome inducing mutations [21].

Despite an initial focus on the suppression of inflammatory and immune responses and the 

promotion of cell survival rate as well as migration and homing of transplanted cells, 

preconditioning strategies now attract more attention for rejuvenation of regenerative and 

repair potentials of pre-engraftment cells [22,23]. As expansion is always needed to increase 

cell numbers for clinical application, it is critical to achieve expansion without 

compromising differentiation potential. Thanks to the discovery that crosstalk between 

MSCs and other cells in the native niche modulated MSCs’ properties [24,25], the in vitro 
establishment of these communications has been demonstrated [26,27]. This review paper 

focuses on summarizing up-to-date environmental preconditioning strategies during ex vivo 
expansion and discussing their influence on adult stem cell proliferation and chondrogenic 

potential, which is important for cartilage tissue engineering and regeneration using 

autologous stem cells that become prematurely senescent due to donor age and suffer 

replicative senescence because of extensive expansion. We hypothesize that, from the 

clinical perspective, environmental preconditioning based rejuvenation is a simpler and safer 

strategy to program pre-engraftment stem cells for better survival and enhanced proliferation 

and differentiation capacity without the undesired effects of some treatments, such as genetic 

manipulation [21].
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Hypoxic preconditioning

In native cartilage, cells are exposed to very low oxygen tension – about 7% (53 mmHg) in 

the superficial zone and 1% (5–8 mmHg) in the deep zone of articular cartilage [28]. There 

have been many studies investigating the effects of hypoxia on chondrogenic differentiation 

of MSCs in an attempt to determine the best point in the culture process to expose MSCs to 

hypoxic conditions. For example, should MSCs be expanded in hypoxia, differentiated in 

hypoxia, or should both expansion and differentiation take place in hypoxic conditions in 

order to attain the best results? Increasing evidence suggests that hypoxic pretreatment can 

not only promote cell survival and migration ability post-engraftment [29,30] but also can 

benefit cell rejuvenation, in terms of proliferation and differentiation capacity (Table 1) [31].

Evidence of cell proliferation capacity

Expansion of MSCs in hypoxic conditions has been shown to prevent stem cell senescence 

and yield higher proliferation rates, enhanced tissue forming capacity, and smaller, more 

densely organized, spindle-like cells than expansion in normoxic conditions [32,33]. Choi et 

al. found that hypoxic (2% oxygen) treatment significantly increased stemness markers, 

reduced expression 1 (REX1), SRY (sex determining region Y)-box 2 (SOX2), octamer-

binding protein 4 (OCT4), and NANOG, along with HIF-1α in human adipose stem cells 

(ASCs) [34]. The proliferation rate of ASCs under hypoxic incubation was also significantly 

enhanced, evidenced by an increase in cell number but a decrease in the mean population 

doubling time (PDT) despite no alteration of surface markers, including CD73, CD90, and 

CD105. Xu et al. found that 2% oxygen treatment yielded a significantly higher cell number 

and more DNA synthesis as well as shorter PDT in mouse ASCs [35]. They also found that 

hypoxic treatment significantly reduced the matrix metalloproteinase (MMP) family genes, 

MMP2, MMP3, MMP8, and MMP13.

Krinner et al. found that hypoxic (5% oxygen) treatment promoted in vitro population 

growth of ovine bone marrow stromal cells (BMSCs) as demonstrated by significantly larger 

colonies compared to those under normoxic conditions [36]. Similarly, Zscharnack et al. 

found that hypoxic treatment (5% oxygen) of ovine BMSCs significantly increased colony 

numbers and sizes but diminished senescence, as shown by lower levels of granularity and 

senescence-associated (beta)-galactosidase positive cells [37]. Boyette et al. found that 

hypoxic treatment (5% oxygen) in human BMSCs enhanced colony formation and 

proliferation, evidenced by 5-ethynyl-2′-deoxyuridine (EdU) incorporation, but with no 

change in Ki67 staining [38]. They also found that metabolic activity was increased after 96 

h of hypoxic treatment. However, hypoxia was not found to have any impact on cell death 

and apoptosis rates.

Martin-Rendon et al. found that exposure to hypoxia (1.5% oxygen) for 24 h demonstrated a 

moderate increase in total colony numbers of umbilical cord blood (UCB) CD133+ cells and 

a significant increase in viable cell numbers of human BMSCs [39]. In normoxia, there was 

low expression of endogenous HIF-1α in human BMSCs but not in UCB CD133+ cells; 

however, exposure to hypoxia for 24 h stabilized/upregulated HIF-1α in both cell 

populations. Hypoxia likely increased cell proliferation in a cell source-dependent manner. 

Kalpakci et al. found that hypoxic treatment (5% oxygen) resulted in a significant decrease 
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in number of dermis isolated adult stem cells at days 7, 9, and 11 of culture and a lower 

colony forming unit – fibroblast (CFU-F) compared with normoxic culture [40].

Evidence of chondrogenic potential

Accumulating evidence indicates that hypoxic preconditioning can promote MSC 

chondrogenic potential and concurrently inhibit unintended differentiation into the 

osteogenic lineage. Krinner et al. found that 5% oxygen preconditioning enhanced 

chondrogenic potential in ovine BMSCs [36]. Similarly, Müller et al. found that 4% oxygen 

preconditioning enhanced human BMSCs’ chondrogenic differentiation in both micromass 

and gelatin hydrogel culture systems [41]. Adesida et al. found that hypoxia preconditioned 

human BMSCs yielded pellets with enhanced chondrogenic capacity in spite of oxygen 

tension during pellet culture [42]. Also of note, Xu et al. found that hypoxic preconditioning 

enhanced chondrogenic differentiation but decreased osteogenic differentiation in mouse 

ASCs [35]. These results indicate that hypoxia during expansion may prepare MSCs 

specifically for chondrogenesis.

However, conflicting reports exist regarding hypoxic preconditioning, possibly due to varied 

situations, such as hypoxic extent and donor cell type. Martin-Rendon et al. found that 

hypoxic preconditioning (1.5% oxygen) did not change the differentiation potential of UCB 

CD133+ clonogenic myeloid cells but promoted human BMSCs’ chondrogenic potential 

despite having no effect on adipogenic and osteogenic differentiation [39]. Li and Pei found 

that hypoxic preconditioning did not promote chondrogenic potential in porcine synovium-

derived stem cells (SDSCs) [43]. Pilgaard et al. found that, despite enrichment with CFU-Fs 

during expansion under hypoxia (5% and 1% oxygen), human ASCs did not exhibit an 

enhanced chondrogenic differentiation in subsequent chondrogenic induction [44]. 

Furthermore, Boyette et al. found that hypoxic preconditioning decreased chondrogenesis in 

human BMSCs in a pellet culture, which worsened if combined with hypoxic treatment 

during chondrogenic induction; however, human BMSCs preconditioned in 21% oxygen 

differentiated robustly in pellet culture under both 5% oxygen and 21% oxygen conditions 

[38].

The effects on MSCs during expansion at normoxic levels and differentiation into 

chondrocytes at hypoxic levels have also been studied. MSCs under hypoxia for 

chondrogenic induction showed decreased proliferation, but elevated expression of sulfated 

glycosaminoglycan (GAG) and chondrogenic genes [45–48]. Interestingly, hypoxic 

conditions in pellet culture upregulated HIF-2α and downregulated COL10A1 (type X 

collagen) despite normoxia or hypoxia during cell expansion [42]. Hypoxic treatment also 

produced a mechanically functional hyaline cartilage-like tissue compared to the cells 

differentiated in normoxia [49]. Recently, Leijten et al. found that normoxia in pellet culture 

promoted the expression of the hypertrophic cartilage-enriched gene transcripts of 

COL10A1, MMP13, and pannexin 3 (PANX3) levels while hypoxia enhanced the articular 

cartilage-enriched gene transcripts of gremlin 1 (GREM1), frizzled-related protein (FRZB), 

and Dickkopf Wnt signaling pathway inhibitor 1 (DKK1) which act as inhibitors of 

hypertrophic differentiation [50]. In addition, they also found that, in a nude mouse model, 

hypoxia-preconditioned implants retained cartilage; on the other hand, normoxia-
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preconditioned implants readily underwent endochondral ossification [50]. These studies 

have shown that differentiation of MSCs in vitro in hypoxic conditions following normoxic 

expansion improves chondrogenesis when compared to cells differentiated in normoxic 

conditions.

Conflicting data also exist on the effect of hypoxia on chondrogenic induction. One study 

has shown that murine ASCs, when differentiated at 2% oxygen, exhibited increased 

proliferation and fewer chondrogenic markers compared to those differentiated in 21% 

oxygen [51]. Interestingly, the same investigators later showed that, when murine ASCs 

were expanded in 2% oxygen, then differentiated at normoxic levels, some chondrogenic 

markers [GAG content and COL2A1 (type II collagen) expression, but not expression of 

SOX9 or ACAN (aggrecan)] were increased compared to those expanded in 21% oxygen 

[52]. The differences between these two reports could have been a result of reactive oxygen 

species (ROS) accumulation during long-term exposure to hypoxic conditions in 

differentiation, which would have led to cell damage and decreased chondrogenic potential 

[35].

Potential mechanisms

The mechanism by which hypoxia exerts its effect on cells is mainly regulated by HIF-1, 

which is composed of two subunits, α and β [53]. Compared to the presence of the β 
subunit in the nucleus, the α subunit is constitutively expressed in the cytoplasm, where it is 

bound by von Hippel-Lindau (vHL) tumor suppressor protein, which is an E3 ubiquitin 

ligase that targets HIF-1α for degradation by the 26S proteasome. This vHL/HIF-1α 
interaction is oxygen dependent through a group of prolyl hydroxylases (PHDs), the most 

important of which is PHD domain-containing protein 2 (PHD2) [54,55]. These enzymes 

hydroxylate proline residues at Pro402 and Pro564 on HIF-1α [56] and at Pro405 and 

Pro531 on HIF-2α [57] and require Fe2+ and α-ketoglutarate as co-factors for their catalytic 

activity [58–60]. As a result of hydroxylation of these proline residues, vHL is able to bind 

HIF-1α and target it for destruction. However, as oxygen concentration decreases, the 

overall PHD2 function decreases as well, increasing the amount of HIF-1α that is able to 

translocate into the nucleus and bind to its counterpart, HIF-1β [59]. This complex binds to 

the hypoxia response element (HRE) on the genome, which induces expression of hypoxia-

regulated genes.

Although oxygen concentration is directly associated with the HIF-1 pathway, there are still 

mechanisms by which oxygen indirectly regulates cells’ response to hypoxia. For example, 

the AKT/phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) pathways might be important in upstream regulation of HIF-1. When cultured in 

hypoxic conditions, levels of phosphorylated AKT and p38 MAPK are elevated and, when 

AKT and p38 MAPK are inhibited, HIF-1α is unable to translocate to the nucleus [47,61]. 

Recent evidence indicates that the increase of stem cell survival after hypoxic 

preconditioning is largely through the stabilization of HIF-1α via a hypoxia-induced 

increase of phosphorylated AKT and p38 MAPK [47], resulting in the upregulation of the 

glycose-6-phosphate transporter and promotion of MSC survival [62]. Hypoxic 

preconditioning also modulates the pro-survival and pro-angiogenic factors of MSCs by 
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upregulation of vascular endothelial growth factor (VEGF) and B-cell lymphoma 2 (BcL-2) 

[30], for example, via the AKT and Extracellular Signal-regulated Kinase (Erk) involved 

complex pathways [61,63]. Hypoxic preconditioning also plays a critical role in 

mobilization and homing of MSCs through its capacity to induce HIF-1 mediated expression 

of stromal cell-derived factor-1 (SDF-1) [64] and its receptor C-X-C chemokine receptor 

type 4 (CXCR4) [65]. Additionally, CREB-binding protein (CBP) and p300 co-activator 

encourage transcription of HRE genes by binding the HRE/HIF-1 complex in an oxygen-

regulated manner that is independent of the HIF-1 pathway [66].

High oxygen tension has been shown to damage DNA, proteins, and lipids [67] by 

generation of abnormally high free-radical-derived ROS [68], causing senescence either by 

the p53-mediated pathway or by accelerating telomere loss [69]. In contrast, low oxygen 

tension activates HIF-1α, delaying senescence through the activation of macrophage 

inhibitory factor and inhibition of the p53-mediated pathway [70], regulating cell 

proliferation [71] and cell differentiation [72–74]. Mouse ASCs with the deletion of HIF-1α 
exhibited diminished chondrogenic capacity with no significant change in osteogenic 

differentiation and enhanced adipogenic differentiation [52]. Although HIF-1α has 

conventionally been thought responsible for the upregulation of chondrogenic gene 

expression, recent studies have shown that chondrogenesis may be more dependent on 

signaling through HIF-2 α. For example, MSCs expanded and differentiated within hypoxic 

conditions demonstrated no marked HIF-1α expression but showed upregulation of 

HIF-2α[42,45]. Interestingly, human articular chondrocytes with HIF-1α knockdown 

cultured in hypoxia (1% oxygen) had no effect on chondrogenic gene expression, while 

knockout of HIF-2α resulted in a marked decrease in expression of chondrogenic genes like 

SOX9 and COL2A1 [75]. These results indicate that the effects of hypoxia may be carried 

out by different mechanisms, depending on the level of hypoxia and the cell type.

FGF preconditioning

Growth factors are important in mediating the development and maintenance of hyaline 

cartilage [76]. As a result, the use of growth factors during MSC ex vivo expansion and 

chondrogenic induction has been well studied and yielded promising results. In the 

cytokines and growth factors, transforming growth factor alpha (TGFα) [77], interferon-

gramma (IFN-γ) [78], SDF-1 [79,80], epidermal growth factor (EGF) [81], and insulin-like 

growth factor I (IGF-I) [82] have been extensively studied. Along with hypoxic 

preconditioning, these approaches are considered environmental manipulation, in which 

there is a fine-tuned balance between self-renewal and differentiation potential of MSCs 

[83,84], particularly for basic fibroblast growth factor (FGF-2) mediated preconditioning in 

MSCs’ chondrogenic and osteogenic potential (Table 2) [85].

Evidence of cell proliferation and chondrogenic potential

FGF treatment could promote MSC proliferation, which is independent of species, such as 

mouse [86], human [87], and porcine [43], or of varied tissues, such as adipose [86], 

infrapatellar fat pad [88], bone marrow [89], and synovium [43]. Interestingly, FGF-2 

administration during expansion is associated with downregulation of some important 
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surface markers (such as CD49a, CD90, and CD146) but upregulation of chondrogenic 

potential, indicating that a difference in surface marker distribution does not result in 

impaired differentiation [87,90,91]. Microarray analysis did not find a clear pattern as to the 

mitogenic effect of FGF-2 on human BMSCs [92].

Given that supplementation during ex vivo expansion supports a proliferative state, 

subsequent withdrawal of FGF-2 is proposed to contribute to leaving the cell cycle and 

coming into a differentiation-competent state. For example, compared to treatment during 

pellet culture inhibiting chondrogenic differentiation [93,94], FGF-2 pretreated stem cells 

were reported to promote and retain expanded MSCs’ chondrogenic potential even after 30 

population doublings, whereas the non-pretreated stem cells lost chondrogenic 

differentiation after around 20 population doublings, which is more than 1000-fold 

difference in the number of cells [95]. Furthermore, FGF-2 pretreated MSCs from porcine 

infrapatellar fat pad were found to generate the most mechanically functional cartilage tissue 

[96]. Preconditioning with a specific growth factor cocktail [1 ng/mL TGF-β1, 5 ng/mL 

FGF-2, and 10 ng/mL platelet-derived growth factor-BB (PDGF-ββ)] in monolayer culture 

led to remarkable improvement in biomechanical and biochemical properties of bovine 

SDSC-seeded tissue constructs [97].

Interestingly, during the study on limb development, ten Berge et al. found that FGF-8 and 

Wnt3a signals worked together to promote limb bud cell proliferation while retaining cells 

in an undifferentiated condition; once both types of stimulations were withdrawn, the cells 

switched to chondrogenic differentiation [98]. Inspired by this report, Narcisi et al. observed 

that combined pretreatment with Wnt3a greatly promoted the effect of FGF2 on human 

BMSC proliferation by increasing cell doublings from 20 to 30. They also found that co-

preconditioned cells acquired enhanced chondrogenic potential; inhibition of Wnt3 signals 

during differentiation prevented calcification while preserving hyaline cartilage properties 

following transplantation in a mouse model [99]. In a three-dimensional (3D) pellet model, 

intriguingly, Centola et al. found that, contrary to their initial hypothesis, Wnt3a treatment 

induced human BMSCs to a five-fold increase in cell number despite a continuing decrease 

of total DNA content in the 3D construct; preconditioning with Wnt3a improved cells’ 

chondrogenic potential, which was antagonized by treatment with FGF2 [100].

Different from hypoxic pretreatment, which inhibits differentiation toward osteogenesis 

[85], more evidence showed that FGF-2 preconditioning could promote not only type II 

collagen but also type X collagen [43,91,92], suggesting that FGF-2 expanded MSCs 

yielded pellets with an enhanced capacity toward endochondral bone formation [93]. This 

finding indicates that stem cells pretreated with FGF-2 alone would benefit bone tissue 

engineering rather than cartilage tissue engineering, which is worth noting for future clinical 

application.

Potential mechanisms

Two potential mechanisms have been proposed for FGF-2 mediated MSC rejuvenation 

toward chondrogenesis. The first one is that MSCs with inherent chondrogenic potential are 

preferentially selected by pretreatment with FGF-2 during monolayer culture, in terms of 

selection mechanism [89]. Investigations found that ex vivo enrichment of MSCs by FGF-2 
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had long telomeres and could maintain chondrogenic potential for greater numbers of 

population doublings, despite low or non-detectable expression levels of telomerase activity 

[89,101]. This finding indicates that long telomeres in FGF-2 pretreated stem cells may be 

useful genetic markers for chondrogenic progenitor cells. Low expression of telomerase 

activity might be explained by the findings that expression of ectopic telomerase expands the 

life expectancy of BMSCs without impacting the proliferation rate and BMSCs transduced 

with telomerase display a promoted bone formation capability [102,103]; however, 

telomerase-deficient mice exhibited impaired differentiation of MSCs, indicating that the 

low levels of telomerase activity may be necessary to maintain the growth of MSCs [104].

Another potential mechanism is that the chondrogenic potential of MSCs may be generally 

enhanced by pretreatment with FGF-2 [105], possibly by inducing FGF-receptor 2 and N-

Cadherin, early mesenchymal condensation markers, and the key transcription factor Sox9 

for chondrogenesis [86,106], in terms of priming mechanisms. FGF-2 treatment during 

expansion caused significant downregulation of chondrogenic genes [92], but showed robust 

upregulation of these genes in subsequent chondrogenic induction, resulting in greater 

matrix production per cell [45]. Proteomics analysis indicated that FGF-2 preconditioning 

mediated an incomplete dedifferentiation of chondrocytes and an incomplete differentiation 

of SDSCs as observed by the management of a round of extracellular matrix (ECM) related 

proteins, both of which enabled expansion of cells that have great chondrogenic potential 

once seeded in three-dimensional (3D) culture [107]. Another example is that, in extensive 

MSC monolayer cultures, the level of integrin α10, expressed by chondrocytes in cartilage, 

was downregulated while the level of integrin α11, expressed by subsets of the fibroblastic 

lineage, was reversed by FGF-2 treatment, thus keeping MSCs more multipotent and also 

inducing cell proliferation and SOX9 upregulation [108].

Considering that Wnt and MAPK signals play critical roles in cartilage regeneration via 
crosstalk [109], FGF-2 pretreated stem cells exhibited an upregulation of secreted frizzled-

related protein 1 (SFRP1) and downregulation of pregnancy-specific beta-1-glycoprotein 1 

(PSG1), two typical Wnt signals, and upregulation of angiopoietin 1 (ANGPT1) and 

midkine (MDK), two upstream regulators of MAPK signaling [95], indicating that these two 

signals are also closely associated with the enhancement of chondrogenic potential in FGF-2 

expanded cells.

Decellularized ECM (dECM) preconditioning

Increasing evidence indicates that the culture medium of MSCs, which is called secretome 

or conditioned medium, contains the biological factors secreted by MSCs that could be used 

in regenerative medicine [110,111]. Furthermore, dECM deposited by stem cells becomes 

another promising approach to rejuvenate either stem cells or primary cells for 

chondrogenesis (Table 3) [112].

Evidence of cell proliferation and chondrogenic potential

In 2009, we found that dECM deposited by SDSCs dramatically enhanced porcine SDSC 

expansion (Fig. 1A/B) and subsequent chondrogenic differentiation in a pellet culture 

system (Fig. 1C/D/E) [113]. Later we reported that, compared to the negligible rejuvenation 
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effect of hypoxic preconditioning alone, FGF-2 and dECM preconditioning greatly 

enhanced porcine SDSC proliferation and chondrogenic potential (Fig. 2A/B) [43]. 

Compared to the culture substrate provided by a plastic flask, after six-day expansion, 

FGF-2 treatment resulted in a 2.65-fold increase in cell number while dECM treatment 

generated a 13.23-fold increase in cell number. The combined treatment of hypoxia, FGF-2, 

and dECM produced around a 35.81-fold increase in cell number (Fig. 2C). FGF-2 

preconditioning yielded SDSC pellets with higher chondrogenic and hypertrophic 

differentiation while dECM expanded cells yielded pellets with much lower hypertrophic 

marker expression (Fig. 2D/E/F). Enhanced chondrogenic potential of SDSCs rejuvenated 

by dECM preconditioning has also been demonstrated in an in vivo study in which dECM-

expanded SDSCs had better performance than plastic flask-expanded SDSCs in resurfacing 

partial-thickness cartilage defects of a minipig model via boosting type II collagen and 

sulfated GAG expression [114].

However, the rejuvenation effect of dECM on human adult stem cells, such as BMSCs [115] 

and SDSCs [116], is not as powerful as shown above for young porcine SDSCs [113], in 

terms of cell number increase of 2.51-fold (adult BMSCs) versus 2.35-fold (adult SDSCs) 

versus 17.5-fold (young SDSCs), respectively. Recent evidence indicates that the “aging” of 

dECM might influence the rejuvenation effect on adult stem cells [117]. A recent report 

demonstrated that dECM deposited by fetal SDSCs could better rejuvenate human adult 

SDSCs in both proliferation and chondrogenic potential [118]. Intriguingly, both fetal and 

adult dECM expanded SDSCs exhibited a decrease of MSC surface markers CD29, CD90, 

and CD105 in percentage but heavily at the median; an increase of stage-specific embryonic 

antigen-4 (SSEA4) both in percentage and at the median; and integrin β5 only in percentage. 

Consistent with the finding by Li et al. [118], Ng et al. found that adult human BMSCs were 

more proliferative (~1.6×) on fetal dECM than adult dECM and plastic flasks. However, the 

average Alcian blue staining for sulfated GAG on both fetal and adult dECMs were similar 

and higher than the plastic flask group but were not significantly different [119]. The authors 

stated that the lack of difference between the adult dECM and plastic flask groups in cell 

proliferation was likely due to more conducive plastic flasks used in this study compared to 

those used by others in previous literature [120,121]. Similarly, both adult and fetal dECM 

expanded BMSCs showed a decrease of surface markers CD90, CD105, and CD146 in 

percentage (not shown at the median) [119]. The correlation of known surface marker 

downregulation and MSC stemness needs to be further elucidated.

Evidence of anti-dedifferentiation and pro-redifferentiation potential

dECM expansion could rejuvenate not only adult stem cells but also primary chondrocytes. 

Pei and He found that dECM deposited by porcine SDSCs not only greatly enhanced 

porcine chondrocyte expansion but also delayed dedifferentiation and enhanced 

redifferentiation capacity up to passage 6 of expanded chondrocytes compared to expansion 

on plastic flasks where redifferentiation was retained only in the early passages [122]. 

Dedifferentiated or aged chondrocytes (from passage 4) [123,124] were found to regain their 

redifferentiation capacity with the aid of dECM expansion [122]. Similarly, Cha et al. found 

that the proliferation of rat primary chondrocytes grown on dECM was better than those 

grown on a plastic coverslip (control) or gelatin [125]. Passaged chondrocytes (passage 4) 
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cultivated on dECM acquired more synthesis of sulfated GAG, which is also reflected in the 

gene expression level; the dedifferentiating marker, COL1A1, was downregulated whereas 

the ratio between COL2A1 and COL1A1 and between ACAN and COL1A1, as an indicator 

of redifferentiation, was greatly boosted. This ex vivo expansion system also works for the 

rejuvenation of nucleus pulposus (NP) cells, another chondrocyte-like cell. There is 

increasing evidence to support that porcine NP cells expanded on dECM grew faster with a 

tiny size compared with those grown on plastic flasks; dECM pretreated NP cells also 

acquired a robust redifferentiation capacity [126,127].

Evidence of anti-oxidative and anti-inflammatory potential

Cartilage defects usually accompanied with posttraumatic inflammation present a challenge 

in cartilage repair and the biological constructs for implantation need to be able to survive 

this harsh environment [128]. Pei et al. found that expansion on dECM promoted the 

antioxidative and chondrogenic capacities of human adult SDSCs, slowing down the 

decrease of cell proliferation and the increase in apoptosis, and contributed SDSCs’ 

resistance to cell-cycle G1 arrest resulting from hydrogen peroxide [116]. Furthermore, 

dECM preconditioning protected chondrogenically induced human adult SDSCs from 

interleukin-1 beta (IL-1β) induced inflammatory stress; sb203580 (a p38 MAPK inhibitor) 

preconditioning promoted dECM rejuvenated human adult SDSCs’ ability against 

inflammation during chondrogenic induction [129].

Potential mechanisms

The mechanisms underlying dECM rejuvenation have not been elucidated. There is 

increasing evidence indicating that both chemical and physical stimulators in dECM play a 

critical role in the rejuvenation of expanded cells. He et al. found that the dECM deposited 

by SDSCs exhibited a nanosized 3D fibrillary structure as shown by scanning electron 

microscope (SEM) (Fig. 3A/C) with type I collagen as one of the essential structural 

proteins [113], which might contribute to a physical architecture that relays varied 

mechanical cues to their resident cells [130]. Furthermore, atomic force microscope (AFM) 

data suggested that SDSCs grown on rough dECM substrate exhibited greater height and 

more cell volume but lower Young’s moduli compared to those plated on smooth plastic 

flasks (Fig. 3B/D/E) [131,132]. This finding was in line with another report [118], in which 

dECM deposited by fetal SDSCs exhibited lower stiffness compared to that from adult 

SDSCs, which might be associated with the lower expression of elastin in fetal dECM. 

Interestingly, the stiffness of expanded SDSCs was in line with that of the culture substrate, 

indicating that lower elasticity in fetal dECM might be associated with enhancement of adult 

SDSCs’ proliferation and chondrogenic potential. This finding and others [133,134] support 

that matrix elasticity might contribute to lineage-specific differentiation.

Li et al. found that not only biomechanical impact but also chemical composition of dECM 

might play a role in promoting cell proliferation and differentiation potential [118]. 

Proteomics data (Table 4) showed that fetal dECM had advantageous expression of 

fibrilin-2, tenascin C, and clusterin over adult dECM. Both fibrillin-2 and tenascin C are 

actively involved in tissue regeneration [135–138] while a fair amount of clusterin found in 

fetal dECM might be responsible for less apoptosis detected in fetal dECM expanded adult 
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SDSCs since clusterin could inhibit apoptosis by interfacing with activated Bax [139]. On 

the other hand, adult dECM had more biglycan, decorin, dermatopontin, elastin, periotin, 

thrombospondin-1, and TGF-β1 than fetal dECM. Biglycan, decorin, and thrombospondin-1 

were reported to inhibit cell proliferation [140,141] while dermatopontin, periotin, and TGF-

β1 promoted cell differentiation [142–144], indicating that, compared to the action of fetal 

dECM on cell expansion, adult dECM contained extra matrix components preferring cell 

differentiation.

As critical pathways for chondrogenesis, non-typical changes of both MAPK and Wnt 

signals were reported in dECM mediated stem cell chondrogenesis [118]. The data showed 

that dECM preconditioning resulted in p-Erk downregulation in the cell expansion phase, 

upregulation in the condensation phase, and downregulation after 10-day chondrogenic 

induction. This trend was evident in those cells expanded using fetal dECM. The early 

downregulation of p-Erk expression was associated with a decline in cell senescence [145] 

but the later downregulation facilitated better chondrogenic differentiation because p-Erk 

signals during induction promoted chondrogenic differentiation at the early stage but 

inhibited it at the later stage [146]. The adaptation of p-Erk expression in expanded stem 

cells following dECM preconditioning and subsequent removal might be responsible for the 

rejuvenation in cell proliferation and chondrogenic differentiation. dECM pretreatment was 

also reported to downregulate Wnt3a, a typical canonical Wnt signal, while upregulating 

Wnt5a and Wnt11, two typical noncanonical signals, in expanded SDSCs [118]. This 

finding is contradictory to previous reports, in which Wnt3a stimulated MSC proliferation 

[147] while Wnt5a and Wnt11 mainly promoted cell migration and differentiation 

[148,149]. The contribution of dECM on stem cell proliferation and chondrogenic potential 

needs to be further elucidated.

Other factors for preconditioning

Two dimensional culture conditions for MSC expansion, including plating density and 

culture media and term, play a critical role in governing the chondrogenic potential of MSCs 

[150–152]. Low seeding density or formulation of the base medium also could promote 

progenitor cells’ chondrogenic potential [85,89,153]. For instance, Li et al. found that 

expansion at a low seeding density (30 cells/cm2) yielded human adult SDSCs with 

enhanced proliferation and chondrogenic differentiation capacity compared to those grown 

at a high seeding density (3000 cells/cm2); downregulation of Erk1/2 and c-Jun N-terminal 

kinases (Jnk) expression and upregulation of p38 MAPK level might be associated with the 

retained stemness in the cells expanded at low density [151]. However, there also exists a 

conflicting report. Neuhuber et al. found that the initial seeding density was not critical for 

retaining a well-defined, multipotent MSC population despite the fact that a plating density 

of 200 cells/cm2 favored rat BMSC growth compared to either 20 or 2000 cells/cm2 [154]. 

They also found that cell expansion from all seeding densities developed an increased 

proportion of flat cells over passaging.
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Conclusion and Perspectives

Finding straightforward and efficient strategies for promoting in vivo survival and benefiting 

differentiation of transplanted stem cells is important for the success of stem cell based 

tissue regeneration. Adult stem cells are promising sources for tissue regeneration but 

present challenges by becoming senescent during ex vivo expansion as well as having a 

harsh environment for transplantation. An increasing number of studies on preconditioning 

strategies to refine ex vivo expansion microenvironment for promoting engraftment [155], 

homing [156], and viability [157–159] after stem cell transplantation, particularly for cardiac 

tissue regeneration [155,159], have been published. Different from the above-mentioned 

strategies for cell preconditioning, this paper, for the first time, summarizes and assesses 

current efforts at altering the ex vivo microenvironment via hypoxia, soluble factors, and/or 

dECM to improve stem cell survival and chondrogenic potential post-transplantation.

Besides the potential mechanisms discussed in each section, epigenetic changes are also 

proposed to play a critical role in this microenvironment mediated cell rejuvenation rather 

than genetic manipulation (Fig. 4) [160]. For instance, hypoxic stress often results in 

changes of gene expression that are affiliated with adaptations in chromatin structure by 

histone modifying and chromatin remodeling complexes [161,162]. Hypoxia also triggers 

microRNAs in the regulation of vascular endothelial growth factor (VEGF) for angiogenesis, 

some of which are downstream effectors of HIFs [163]; induction of HIF-1α in hypoxic 

preconditioned stem cells caused upregulation of miR-210 and this cytoprotective effect of 

hypoxic preconditioning could be negated by inhibition of HIF-1α or miR-210 [164]. This 

evidence indicates that hypoxic stress can cause epigenetic adaptation that, in adult stem 

cells, is dedicated not only to maintain cell stemness but also to drive cell differentiation 

[160]. Unfortunately, there are few reports to elucidate the rejuvenation effect of 

environmental preconditioning on adult stem cell proliferation and chondrogenic potential. 

Still in its infancy, the study of epigenetic effect on stem cells’ rejuvenation deserves further 

in-depth investigation.
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Fig. 1. 
Effect of decellularized extracellular matrix (dECM) deposited by synovium-derived stem 

cells (SDSCs) on porcine SDSCs’ proliferation and chondrogenic differentiation. (A) Cell 

morphology five days after expansion on dECM and Plastic flasks; (B) Cell proliferation 

from passage 3 (P3) SDSCs grown on either dECM or Plastic flasks for two consecutive 

passages; (C) Alcian blue staining for sulfated GAG and immunostaining for type II 

collagen (scale bar: 800 mm) of 14-day chondrogenically induced SDSCs in a pellet culture 

system after two passages on dECM (P5.dECM) or Plastic flasks (P5.Plastic) with pre-

expansion SDSCs (P3.Plastic) as a control; (D) Biochemical analyses were used to detect 

DNA content per pellet and ratio of GAG to DNA; (E) TaqMan real-time polymerase chain 

reaction (PCR) was used to quantitatively assess chondrogenic markers - COL2A1 (type II 

collagen) and COL10A1 (type X collagen). * indicates a statistical difference (p<0.05). Data 

are shown as average ± SD for n=6 in biochemical analyses and n=5 in real-time PCR. 

Reprint with permission from He, F.; Chen, X.; Pei, M. Tissue Eng. Part A 2009, 15, 3809. 

Copyright (2009) Mary Ann Liebert, Inc. Publications.
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Fig. 2. 
Optimization of preconditioning strategies to rejuvenate stem cells’ chondrogenesis. (A) 

Synovium-derived stem cell (SDSC) morphology after five-day expansion on dECM (“E”) 

or Plastic flasks (“P”) in hypoxia (5% O2, “5”) or normoxia (21% O2, “21”) with or without 

10 ng/mL of fibroblast growth factor-2 (“F”). (B) Alcian blue (AB) staining for sulfated 

GAG and immunohistochemistry (IHC) staining for type II collagen (scale bar: 800 mm) of 

14-day chondrogenically induced SDSCs in a pellet culture system after one passaging 

culture with varied pretreatments. (C) Cell number increase after a six-day expansion with 
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initial cell number as 0.53 × 106 in one 175 cm2 flask. (D) Biochemical analyses after a 14-

day chondrogenic induction in a pellet culture system including DNA content per pellet 

(adjusted by day 0) and ratio of GAG to DNA. TaqMan real-time PCR analyses of 

chondrogenically induced pellets including chondrogenic markers [SOX9 (SRY (sex 

determining region Y)-box 9), ACAN (aggrecan), and COL2A1 (type II collagen)] (E) and 

hypertrophic markers [COL10A1 (type X collagen), MMP13 (matrix metalloproteinase 13), 

and ALP (alkaline phosphatase)] (F). 18S RNA was used as an internal control. Groups not 

connected by the same letter are significantly different (p < 0.05). Data are shown as average 

± SD for n=4. Reprint with permission from Li, J.; Pei, M. Tissue Eng. Part A 2011, 17, 703. 

Copyright (2011) Mary Ann Liebert, Inc. Publications.
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Fig. 3. 
Morphological characterization of culture substrates and expanded cells. Surface topography 

of the two substrates, Plastic (flasks) and dECM, was characterized using scanning electron 

microscope (SEM) (A) and atomic force microscope (AFM) (B). Scale bar for SEM (A): 20 

µm. Expanded SDSCs on either Plastic or dECM after fixation in glutaraldehyde were 

characterized using SEM (C) and AFM (D) for morphology and using AFM (E) for 

elasticity. Scale bar for SEM (C): 200 µm. Reprint with permission from Zhang, Y.; Li, J., 

Davis, M.E., et al. Acta Biomater 2015, 20, 39. Copyright (2015) Elsevier Publications.
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Fig. 4. 
The landscape view of epigenetic events during cartilage regeneration. Reprint with 

permission from Li, J., Ohliger, J., Pei, M. Stem Cell Dev. 2014, 23, 1178. Copyright (2014) 

Mary Ann Liebert, Inc. Publications.
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