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Abstract

Type 1 diabetes mellitus (T1DM) results from immune cell-mediated reductions in function and 

mass of the insulin-producing β-cells within the pancreatic islets. While the initial trigger(s) that 

initiates the autoimmune process is unknown, there is a leukocytic infiltration that precedes islet β-

cell death and dysfunction. Herein, we demonstrate that genes encoding the chemokines CXCL9, 

10, and 11 are primary response genes in pancreatic β-cells and are also elevated as part of the 

inflammatory response in mouse, rat, and human islets. We further established that STAT1 

participates in the transcriptional control of these genes in response to the pro-inflammatory 

cytokines IL-1β and IFN-γ. STAT1 is phosphorylated within five minutes after β-cell exposure to 

IFN-γ, with subsequent occupancy at proximal and distal response elements within the Cxcl9 and 

Cxcl11 gene promoters. This increase in STAT1 binding is coupled to the rapid appearance of 

chemokine transcript. Moreover, circulating levels of chemokines that activate CXCR3 are 

elevated in non-obese diabetic (NOD) mice, consistent with clinical findings in human diabetes. 

We also report herein that mice with genetic deletion of CXCR3 (receptor for ligands CXCL9, 10, 

and 11) exhibit a delay in diabetes development after being injected with multiple low doses of 

streptozotocin. Therefore, we conclude that production of CXCL9, 10, and 11 from islet β-cells 

controls leukocyte migration and activity into pancreatic tissue, which ultimately influences islet 

β-cell mass and function.
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Introduction

Reductions in function and/or mass of the pancreatic islet β-cells result in the clinical 

presentation of T1DM and T2DM (1, 2). Despite outwardly distinct etiologies, both T1DM 

and T2DM arise via inflammation-based events that alter pancreatic tissue function as well 

as the quantity of insulin-positive cells. The pro-inflammatory cytokines IL-1β and IFN-γ 
contribute to islet inflammation via transcriptional reprogramming events that include the 

production of chemokines (3–7). Chemokine receptors direct leukocyte migration to sites of 

inflammation and alter leukocytic activity via interactions with specific ligands (8). Ligand-

mediated stimulation of individual chemokine receptors also controls precise aspects of 

immune cell action, including integrin expression and cytokine production (9). Thus, 

synthesis and release of chemokines by either islet β-cells, leukocytes, or both cell types 

contributes to T1DM, T2DM, rejection of transplanted islets, as well as other diseases with 

inflammatory components (10, 11, 6).

Development of T1DM is postulated to arise by selective autoimmune-mediated dysfunction 

and destruction of pancreatic islet β-cells (12, 13). This process has been studied extensively 

in non-obese diabetic (NOD) mice, a polygenic mouse model that spontaneously develops 

diabetes with many representative features of the human disease (14, 15). In addition, mice 

injected with multiple low doses of streptozotocin (MLDS) also develop diabetes associated 

with inflammatory activity and decreased islet β-cell mass. Both the NOD and MLDS 

mouse models display islet inflammation (16) and recruitment of T-lymphocytes into 

pancreatic tissue (17). Notably, one of major receptors responsible for directing migration of 

T-cell populations is CXCR3 (18).

CXCR3 is enriched on activated T cells, memory T cells and NK cells. CD4+ and CD8+ T-

cells are responsive to the chemokine ligands CXCL9, CXCL10, and CXCL11 via the 

CXCR3 receptor (19, 18). In addition, CXCR3 ligands heighten T-cell receptor signaling 

during priming via activation of specific intracellular signaling events (20). Moreover, 

CXCR3 activation increases the production of IFN-γ, a cytokine that promotes macrophage 

activation, production of IL-1, islet inflammatory responses, and diabetes development (21, 

22). Thus, the effects of pro-inflammatory cytokines (e.g., IL-1β, IFN-γ, etc.), coupled with 

CXCR3 activation by specific chemokine ligands, together may be responsible for a positive 

feedback mechanism ensuring repeated exposure of leukocytes, such as effector CD8+ T 

cells, to specific antigens relevant for onset of T1DM. The long-term effect of chemokine-

mediated priming, recruitment, and activation of leukocytic infiltrates appears to be 

destructive pro-inflammatory events within pancreatic islets.

IFN-γ, through the JAK-STAT pathway, participates in the regulated transcription of 

multiple genes controlling inflammation (23, 7). Moreover, IL-1β and IFN-γ synergize to 

induce the expression of specific genes in pancreatic β-cells, including those encoding the 

inducible nitric oxide synthase and the chemokine CXCL10 (24–26). The signal-specific 

phosphorylation of STAT1 by IFNs supports dimerization and enhanced transcriptional 

activity at precise genomic response elements (27). Our in silico analysis revealed 

enrichment in STAT1 binding sites within the promoters of the Cxcl9, Cxcl10, and Cxcl11 
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genes. While the molecular mechanisms underlying the transcriptional regulation of the 

Cxcl10 gene have been reported (25), the signaling events controlling expression of Cxcl9 

and Cxcl11 chemokine-encoding genes in pancreatic β-cells have not been characterized. 

Therefore, in the present study, we report the molecular determinants required for signal-

specific activation of genes encoding CXCR3 ligands and the impact of global genetic 

deletion of CXCR3 during diabetes induced by MLDS.

Experimental Procedures

Cell Culture, Islet Isolation and Reagents

The INS-1-derived rat insulinoma cells have been described previously (28, 29). These cell 

lines were cultured in RPMI-1640 (Sigma; St. Louis, MO) with 10% fetal bovine serum 

(FBS; Life Technologies Co., Carlsbad, CA). Seven week old female BALB/c (#000651) 

and 3, 7, and 8 week old NOD (#001976) mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and allowed to acclimate to the photoperiod (12-hour light/12-

hour dark) and temperature conditions (22 ± 1°C) of the animal facility for a minimum of 

one week. After acclimation, the mice were euthanized by CO2 asphyxiation followed by 

cervical dislocation and pancreata were harvested for histological and immunohistochemical 

analyses. In a separate cohort of 10 week old male and 4, 8, and 12 week old female NOD 

(#001976) mice, islets were isolated as previously described (30). Rat islets were isolated 

according to previously published protocols (31). Human islets from three different donors 

were obtained through Lonza (Basel, Switzerland). IL-1β and IFN-γ was purchased from 

Peprotech (Rocky Hill, NJ). Cycloheximide was from Sigma. The JAK inhibitor was from 

EMD Millipore (Billerica, MA). Recombinant adenoviruses expressing β-galactosidase, 

5xNF-κB-luciferase, and IκBα super-repressor have all been described (32). We have 

previously described the generation of recombinant adenoviruses expressing STAT1 mutants 

Y701F (33), S727A, S727T and the double mutant Y701F/S727A (25).

Diabetes induction by multiple low doses of streptozotocin (MLDS)

Eight week old CXCR3−/− (#005796) and CXCR3+/+ (#000664; C57BL/6) mice were 

purchased from The Jackson Laboratory (Bar Harbor, ME) and allowed to acclimate to the 

animal facility for seven days prior to the beginning of the MLDS protocol. Mice were 

provided access to Harlan Teklad Laboratory Diet 8640 (Madison, WI) and water ad libitum 
throughout the study. Streptozotocin (S0130; STZ) was purchased from Sigma Aldrich (St. 

Louis, MO) and suspended in sterile sodium citrate buffer (0.1M, pH 4.5). At 9 weeks of 

age, the mice were weighed and randomly sorted into four groups: Vehicle CXCR3−/−, 

Vehicle CXCR3+/+, MLDS CXCR3−/−, and MLDS CXCR3+/+. During days 1–5, the 

treatment groups were administered a sterile intraperitoneal (i.p.) STZ injection (40 mg 

STZ / kg body weight). The vehicle control groups were administered an equal volume of 

sterile sodium citrate by i.p. injection every day for five consecutive days. Body weight and 

a tail vein blood sample were taken once a day during the injection period to measure blood 

glucose. Blood glucose was measured using the ACCU-CHEK Aviva PLUS Glucometer 

(Roche Diagnostics, Indianapolis, IN). During days 6–22, body weight was measured and a 

tail vein blood sample was taken twice a week to measure blood glucose. On day 23, mice 

were euthanized by CO2 asphyxiation followed by cervical dislocation and pancreata were 
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harvested for histological and immunohistochemical analyses. Heart punctures were 

performed to obtain a final serum sample. In a separate study, 12 week old male C57BL/6J 

mice, obtained from The Jackson Laboratory, were given STZ by i.p. injection (40 mg / kg 

body weight) for five consecutive days followed by isolation of islets three and six days after 

the final injection. Our procedure for isolation of mouse islets has been described (30). 

Approximately one hundred islets from each mouse were used for RNA isolation. All 

protocols and procedures were approved by the University of Tennessee Institutional Care 

and Use Committees.

Pancreatic Islet Histology

After fixation in 10% neutral buffered formalin (NBF) for 24–48 hrs, pancreata were 

embedded in paraffin and 5 μm sections collected on positively charged slides. 

Immunohistochemical detection of insulin was performed on a Leica Bond-Max (Leica 

Biosystems, Melbourne, Australia) using the Bond Polymer Refine detection kit. Antibodies 

used were guinea pig anti-insulin (1:800, #18-0067, Invitrogen, Grand Island, NY) followed 

by 30 min with HRP-conjugated rabbit anti-guinea pig (1:800, A5545, Sigma, Saint Louis, 

MO). The anti-CD3 antibody was from Abcam (ab5690). Stained sections were imaged 

using a Hamamatsu NanoZoomer digital slide scanner at 20x resolution. For determination 

of insulin positive area, three-four mice per group were used and at least two sections from 

each mouse were cut, separated by ~200 μm. These sections were analyzed and quantified 

using a custom application within Visiopharm VIS software version 5.0.5.

Transfection of siRNA Duplexes

Silencer select siRNA duplexes (STAT1: s129043 and s129044 and silencer negative control 

no. 1: AM4611) from Life Technologies were transfected into 832/13 cells using 

DharmaFECT Transfection Reagent 1 (Thermo Scientific) according to the manufacturer’s 

protocol.

RNA Isolation, cDNA synthesis and Real-time RT-PCR

Isolation of total RNA, cDNA synthesis and real-time RT-PCR have been previously 

described (34, 33). For all transcripts studied, the relative mRNA abundance was normalized 

to that of the housekeeping gene ribosomal S9. Approximately 100 islets per mouse were 

used for RNA isolation. Primers used in RT-PCR reactions were designed using Primer3Plus 

software and are available upon request.

Isolation of Protein and Immunoblot Analysis

Whole cell lysates were prepared using M-PER (Thermo Fisher Scientific) supplemented 

with protease and phosphatase inhibitor cocktails (Thermo Fisher Scientific). The protein 

concentration of the lysate was determined using the bicinchoninic acid (BCA) assay 

(Thermo Fisher Scientific) and immunoblotting was performed as previously described (25). 

Antibodies used for the detection of tubulin and total STAT1 were all from Cell Signaling.
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ELISA

Serum levels of CXCL9, CXCL10, and CXCL11 were detected using the mouse CXCL9 

Quantikine ELISA kit (Cat # MCX900), CXCL10 Quantikine ELISA kit (Cat # MCX100) 

and the mouse CXCL11 DuoSet ELISA kit (Cat # DY572), all from R&D Systems 

(Minneapolis, MN) using the protocol provided by the manufacturer. Serum levels of insulin 

were detected using the Ultrasensitive Mouse Insulin ELISA kit (Cat # 10-1249-01) from 

Mercodia (Uppsala, Sweden) according to their recommended procedures.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation assays and data analysis were as previously described (25). 

Antibodies used for immunoprecipitation of STAT1 and PO4-Y701 STAT1 were from Cell 

Signaling (Danvers, MA). Normal rabbit and mouse serum (IgG) were from Sigma. Primer 

sequences used to amplify genomic DNA were designed using Primer3Plus software and are 

available upon request.

Statistics

One-way ANOVA, followed by Tukey post-hoc correction, or Student t test was performed 

using GraphPad Prism 6 with corresponding p values indicated in the individual figure 

legends.

Results

The CXCR3 activating chemokines CXCL9, CXCL10, and CXCL11 are elevated in mouse, 
rat, and human islets during inflammation

The NOD mouse spontaneously develops diabetes with characteristics similar to the human 

disease (14, 15). Using islets isolated from 10 week old female NOD mice, we determined 

that expression of the Cxcl9, Cxcl10, and Cxcl11 genes are elevated 430, 10.9 and 4.3-fold, 

respectively, when compared to age-matched BALB/c controls (Figure 1A). We further note 

that islets from female NOD mice have elevated levels of chemokine gene expression 

relative to the age-matched male NOD mice (Figure 1A), consistent with the observations of 

accelerated immune cell influx into pancreatic tissue in the females of this model of T1DM 

(35). Next, we exposed isolated rat islets to IL-1β, IFN-γ, or a combination of these 

cytokines, and measured the expression of Cxcl9 and Cxcl11 genes. Cxcl9 is most 

responsive to IFN-γ, with a 376-fold increase in expression over control (untreated) islets 

(Figure 1B). Cxcl9 is largely unresponsive to IL-1β alone but its expression is 

synergistically enhanced when both IL-1β and IFN-γ are present (5908-fold; Figure 1B). 

The Cxcl11 gene was induced 46-fold by IL-1β, 8.7-fold by IFN-γ, and 215-fold in the 

presence of both cytokines (Figure 1C). The synergistic expression of the Cxcl9 and Cxcl11 

genes by the combination of IL-1β and IFN-γ is consistent with the regulated expression of 

the Cxcl10 gene by these cytokines (25). This synergistic induction of genes encoding 

CXCR3 ligands is maintained when human islets are exposed to combinations of IL-1β and 

IFN-γ (Figure 1D–F).

Burke et al. Page 5

Biofactors. Author manuscript; available in PMC 2017 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Infiltration of T-lymphocytes into the pancreatic islets of NOD mice occurs prior to onset of 
hyperglycemia and is associated with enhanced levels of CXCL9 in serum

Blood glucose levels from female NOD mice at ages 4, 8, and 12 weeks were under 200 

mg/dL and did not differ by age (Figure 2A). Similarly, body weights were not different 

between age matched (8 week old) BALB/c and NOD mice (Figure 2B). NOD mice gained 

weight with age as expected for healthy animals. Next, we measured CD3+ cell infiltration 

into the pancreatic tissue. BALB/c mice were completely free of CD3+ infiltrates (Figure 

2C; far left panel), consistent with expectations for healthy islet tissue. While we note that a 

few islets from NOD mice at 4 weeks of age showed low to moderate CD3+ 

immunoreactivity (9 CD3+ islets/131 total islets; 7%), the majority of islets were free from 

lymphocytic invasion at this age (Figure 2C; panel second from left and data not shown). 

However, by 8 and 12 weeks of age, marked infiltration of CD3+ cells was apparent in the 

female NOD pancreas (34% and 57% CD3+, respectively), with many islets showing either 

peri-insulitis or were invasively infiltrated (Figure 2C; second from right and far right 

panels). By contrast, we observed no evidence of CD3+ staining in C57BL/6J mice (not 

shown), consistent with our observations using BALB/c mice. Staining for CXCL9 in 

pancreatic islets indicated co-localization with the insulin-positive cells but not the leukocyte 

population (not shown). Using female NOD mice, we next measured serum levels of 

CXCL9 and CXCL10 at 4, 8, and 12 weeks of age. The increase in CD3+ cell infiltration in 

female NOD mice is congruent with elevated levels of circulating CXCL9 and CXCL10 

(compare with 10 week old male NOD mice; Figure 2D and 2E). Finally, we note that 

CXCL10 (Figure 2E) circulates at high levels early while CXCL9 follows the opposite 

pattern (Figure 2D) and both chemokines circulated in larger quantities in female NOD mice 

relative to male NOD mice. Serum levels of CXCL11 were undetectable in all strains of 

mice (data not shown).

The CXCL9, CXCL10, and CXCL11 genes are increased by pro-inflammatory cytokines and 
are primary response genes in β-cells

In 832/13 rat insulinoma cells, maximal expression of the Cxcl9, Cxcl10, and Cxcl11 genes 

occurred within 3–4 h (Figures 3A–C). IFN-γ robustly potentiated the IL-1β response for all 

three genes in 832/13 cells; comparable results were obtained using INS-1E rat insulinoma 

cells (not shown). Next, we investigated whether the cytokine-dependent induction of the 

Cxcl9, Cxcl10 and Cxcl11 genes required de novo protein synthesis (indicating secondary 

response genes) or whether these genes are truly primary response genes in β-cells. 

Cycloheximide completely blunted production of luciferase protein production driven by a 

5xNF-κB promoter in response to IL-1β stimulation (data not shown), indicating the 

effectiveness of the chemical as a translational inhibitor to disrupt protein synthesis. By 

contrast, the cytokine-dependent expression of Cxcl9, Cxcl10, and Cxcl11 was largely 

unperturbed in the presence of cycloheximide (Figure 3 D–F). Because cytokine-mediated 

upregulation of these chemokine genes did not require de novo protein synthesis, we 

conclude that they are primary response genes in pancreatic β-cells exposed to these specific 

inflammatory stimuli.
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JAK activation and STAT1 signaling are required for cytokine-mediated activation of genes 
encoding CXCR3 ligands

To determine how IFN-γ potently induces the Cxcl9 and Cxcl11 genes, we investigated the 

JAK-STAT pathway. We observed rapid phosphorylation of STAT1 (within 5 min) after 

exposure to IFN-γ (Figure 4A). We then used pharmacological inhibition of JAK1 and 

siRNA-mediated targeting of STAT1 to investigate signaling events relevant to transcription. 

Pharmacological inhibition of JAK1 reduced the ability of IFN-γ to potentiate the IL-1β–

mediated induction of the Cxcl9 gene by 29 and 93% at 10 and 100 nM, respectively (Figure 

4B). IFN-γ-mediated potentiation of the Cxcl11 gene was blunted by 49% with 100 nM 

JAK inhibitor (JAKi; Figure 4C). To directly examine STAT1 involvement, we used siRNA 

duplexes targeted against STAT1 mRNA. Using two different siRNA targeting sequences, 

we observed 86 and 88 % decreases in the IFN-γ mediated potentiation of the Cxcl9 gene 

(Figure 4D). Additionally, reductions in STAT1 abundance decreased the IFN-γ mediated 

potentiation of the Cxcl11 gene by 50 and 58% (Figure 4E). Cumulatively, these data 

indicate a requirement for the JAK1 and STAT1 proteins for maximal IFN-γ – stimulated 

expression of the Cxcl9 and Cxcl11 genes. These findings are also consistent with what has 

been reported previously for the Cxcl10 gene (25).

STAT1 phosphorylation at Y701, but not S727, is required for maximal cytokine-dependent 
activation of the Cxcl9 and Cxcl11 genes

Phosphorylation of STAT1 (Y701 and S727) is required for the expression of a variety of 

genes in many different cell types (36, 25, 26). To determine the importance of these sites 

for cytokine-mediated regulation of the Cxcl9 and Cxcl11 genes, we examined transcript 

abundance for Cxcl9 and Cxcl11 following adenoviral expression of either wild-type or 

phospho-mutant STAT1 proteins. Similar STAT1 protein levels were detected in response to 

overexpression of each recombinant wild-type and mutant STAT1 construct (Figure 5A). 

IFN-γ-mediated potentiation of the Cxcl9 gene is enhanced by STAT1 overexpression; this 

effect was not significantly diminished in the presence of the S727A or a more conservative 

S727T mutation within STAT1 (Fig. 5B). By contrast, removal of the tyrosine 

phosphoacceptor site at position 701 (Y701F) impairs the STAT1-dependent augmentation 

in response to IFN-γ (Figure 5B). The reduced expression of Cxcl9 observed with the 

STAT1 Y701F mutant is similar to the phenotype observed with the double mutation (DM; 

Y701F/S727A; Figure 5B).

In addition, overexpression of STAT1 also enhanced the IFN-γ-mediated potentiation of the 

Cxcl11 gene (2.6-fold to 4.2-fold; Figure 5C). Similar to results observed for Cxcl9, the 

Cxcl11 gene requires phosphorylation of STAT1 at Tyr701, but not Ser727, to support its 

expression in response to IFN-γ (Figure 5C). In isolated rat islets, the Y701F/ S727A 

mutant also decreased expression of the Cxcl9 (Figure 5D) and Cxcl11 (Figure 5E) genes by 

84 and 61%, respectively. Taken together, the data in Figures 4 and 5 indicate that tyrosine 

phosphorylation of STAT1 supports cytokine-mediated induction of the Cxcl9 and Cxcl11 

genes, which is congruent with regulation of the Cxcl10 gene (25).
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Phosphorylated STAT1 is recruited to the Cxcl9 and Cxcl11 promoters in response to IFN-γ

Because of the requirement for STAT1 to support transcription of the Cxcl9, Cxcl10, and 

Cxcl11 genes in response to IFN-γ [see ref. (25) and Figures 4 and 5], we performed in 
silico analyses of the genomic response elements present upstream of the Cxcl9 and Cxcl11 

coding regions to identify potential DNA sequences responsible for gene activation. Two 

putative IFN-γ-activated sequences (GAS) sites were identified in the promoters of each 

gene (see schematic). Therefore, we used chromatin immunoprecipitation assays to 

investigate the occupancy of STAT1 at each of these sites in response to IFN-γ. Proximal 

and distal GAS elements in the Cxcl9 (Figure 6A and B left panels) and Cxcl11 (Figure 6C 

and D left panels) promoters are indicated by the arrows in the schematic diagrams. STAT1 

was detected at the Cxcl9 proximal (pGAS) and distal (dGAS) sites in the unstimulated state 

(value set at 1), with a clear increase in STAT1 ChIP signal in response to IFN-γ (Figures 

6A and B middle panels). Similar results were seen on the Cxcl11 proximal (pGAS) and 

distal (dGAS) sites (Figures 6C and D middle panels).

We subsequently examined the occupancy of STAT1 phosphorylated at Tyr701 at the 

promoters of the Cxcl9 and Cxcl11 genes. We observed an increase in phosphorylated 

STAT1Y701 occupancy at both the proximal (pGAS) and distal (dGAS) GAS elements in the 

Cxcl9 promoter at 5, 10, 15, 30 and 60 min stimulation with IFN-γ(Figure 6A and B right 

panels). Similar enhancements in STAT1PO4-Y701 were detected at the proximal (pGAS) and 

distal (dGAS) GAS elements within the Cxcl11 promoter (Figure 6B and C right panels). 

These binding events are also congruent with the timing of STAT1 phosphorylation at 

Tyr701 (Figure 4A) and with appearance of transcript accumulation one hour after exposure 

to IFN-γ (Figure 3).

Genetic Deletion of CXCR3 Delays Onset of Hyperglycemia in vivo

CXCR3 ligands are produced in mouse, rat, and human islets in response to inflammatory 

signaling events [see Figures 1 and 3 in this study and refs (5, 25)]. Therefore, mice with 

genetic homozygous deletion of CXCR3 were monitored for onset of hyperglycemia after 

MLDS injection. Wild-type (CXCR3+/+) mice developed elevated blood glucose levels (239 

mg/dL) within 7 days after the last STZ injection (shown as day 12 in Figure 7A) while 

blood glucose levels for CXCR3 −/− mice averaged 191 mg/dL (Figure 7A). Eleven days 

after the last STZ injection, CXCR3+/+ mice had blood glucose levels averaging 276 mg/dL 

compared with 230 mg/dL for CXCR3−/− mice (shown as day 16 in Figure 7A). Overall 

results showing percent of mice diabetic at glucose threshold levels of either 225 mg/dL or 

250 mg/dL on two separate occasions are shown in Table 1. Circulating insulin levels at the 

end of the study were decreased in both STZ-injected groups (Figure 7B), consistent with 

the eventual onset of hyperglycemia in each group (Figure 7A). Pancreatic islet histology 

revealed a marked diminution in insulin positive cell area in both STZ-injected groups, 

consistent with a reduction in the pancreatic β-cell population (Figure 7C). Interestingly, 

there were 2.28-fold more insulin-positive cells in the CXCR3−/− mice treated with MLDS 

versus the CXCR3+/+ mice at the end of the study period (Figure 7D; compared black bar to 

black bar). We further found that MLDS is associated with increased pancreatic islet 

expression of the Cxcl9 and Cxcl10 genes within three days after the final injection (Figures 

7D and E), which is prior to onset of hyperglycemia. In addition, the islet expression levels 
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of Cxcl9, but not Cxcl10, remained elevated seven days after the final injection. This 

increase in islet expression of CXCR3 ligands is analogous to transcript elevations observed 

in NOD mice, which develop spontaneous autoimmune diabetes, and also consistent with 

isolated rat and human islets exposed to IL-1β and IFN-γ (Figure 1).

DISCUSSION

Islet β-cell destruction leading to T1DM is a leukocyte driven process with an unknown 

initial trigger (37). Experimentally, diabetes can be induced by multiple low doses of 

streptozotocin (MLDS), which generates sufficient islet β-cell damage to produce the onset 

of hyperglycemia. We show for the first time that the MLDS procedure induces the early 

expression of CXCR3 ligands within pancreatic islets (within 3 and 6 days; see Figures 7D 

and 7E). We therefore reasoned that if chemokine-mediated lymphocyte recruitment was 

directly responsible for alterations in islet β-cell mass and function, the production of 

ligands within pancreatic islets should occur prior to the onset of hyperglycemia.

Indeed, we found that islets isolated from both NOD mice and mice receiving MLDS 

displayed elevations in chemokine expression relevant to T-cell recruitment prior to the 
development of overt hyperglycemia (e.g., Cxcl9 and Cxcl10; see Figure 1A, Figure 7D, and 

Figure 7E). As a proof of principle in human tissues, higher levels of CD8+ T cell infiltration 

into islets, that were also hyper-expressing MHC-I, were found in a male cadaveric donor 

positive for two autoantibodies (38). Importantly, this individual was not yet diabetic, which 

would fit our model of β-cell production of chemokines mediating the infiltration of immune 

cells into pancreatic tissue prior to diabetes onset.

In addition, clonal β-cell lines, as well as mouse, rat, and human islets exposed to IFN-γ or a 

combination of IL-1β and IFN-γ display increased expression of the genes encoding the 

CXCR3 ligands CXCL9, CXCL10, and CXCL11 (Figure 1 and Figure 3). Furthermore, part 

of the inflammatory response attributed to ageing includes increased expression of CXCL9 

in pancreatic islets (39). We suspect that this elevated chemokine response in the pancreas 

occurs across species as an early signaling event to regulate immune cell activity within 

pancreatic tissue.

In the present study, we report that genetic deletion of CXCR3 slowed the onset, but did not 

prevent hyperglycemia induced by MLDS (Figure 7A). This in vivo result is consistent with 

the enhanced production of CXCR3 chemokines within pancreatic islets in response to 

inflammatory signals (Figures 1, 7D, and 7E). Collectively, the observations from isolated 

islets and the genetic deletion of CXCR3 are congruent with chemokine ligands engaging 

the cognate receptor (CXCR3) as part of the immunological process driving the onset of 

hyperglycemia. These results are also consistent with a reduction in diabetes in a viral model 

of islet β-cell destruction (40), showcasing a potential broad utility for CXCR3 inhibition to 

protect β-cells against inflammation-mediated events.

The reasons for incomplete protection against diabetes development upon CXCR3 deletion 

are not known at this time. However, redundancy in the chemokine system is at least a 

partial explanation for the phenotype shown herein as T-cells respond to many signals 
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beyond those activating the CXCR3 receptor. These include ligands activating the CCR4, 

CCR5, CCR6, and CCR7 receptors (41). Several of these chemokine receptors are linked to 

either autoimmune-mediated, obesity-associated, or both forms of diabetes (42–45, 30). In 

addition, combination therapies, such as anti-CD3 plus anti-CXCL10, are more effective at 

suppressing inflammatory responses that contribute to hyperglycemia than individual 

therapeutic interventions (46). Thus, targeting of more than one chemokine receptor or 

leukocyte subtype may be a better overall therapeutic strategy than selectively targeting a 

single receptor.

Enhanced activity of macrophages during the MLDS course of study could also contribute to 

a decline in insulin-positive cell mass via increased superoxide production (47). Activated 

macrophages produce and secrete IL-1β (48), a pro-inflammatory cytokine detrimental to 

islet β-cells (49, 6). Importantly, β-cell exposure to IL-1β decreases glucose-stimulated 

insulin secretion concomitant with elevations in chemokine synthesis and release (50). 

Moreover, NOD mice with NLRP3 deficiency have reduced incidence of hyperglycemia 

(51), at least in part due to decreased T-cell infiltration along with reduced IFN-γ 
production. Thus, decreased circulating insulin and increased chemokine production are two 

processes associated with diabetes development, indicating the importance of cytokine 

processing and signaling for autoimmune disease onset. Because CXCR3 is capable of 

activating macrophages in other experimental systems (52), it is possible that deletion of 

CXCR3 also reduces the resident macrophage contribution to islet inflammation, reducing 

the severity of MLDS-induced hyperglycemia.

Our results are consistent with those reported using mice deficient in the IFN-γ receptor, 

which display reduced CD4+ T-cell-mediated destruction of islet β-cells (53). However, 

IFN-γ receptor deletion would be expected to provide a much broader basis for protection 

against the pathological consequences of inflammation when compared with targeting a 

single chemokine receptor (e.g., CXCR3). In our view, protection against diabetes by a 

reduction in signaling through the IFN-γ receptor would be due to decreased activation of 

many genes involved in inflammation, whereas CXCR3 deletion would ostensibly remove 

only the contribution from its cognate ligands (e.g., CXCL9, CXCL10, etc.).

On the other hand, enhanced islet expression of CXCL10 [an IFN-γ inducible, bona fide 

STAT1 target gene (25)] directly promotes leukocytic infiltration into pancreatic islets and 

subsequently contributes to acceleration of diabetes onset after viral infection (54). 

Collectively, the data presented herein are consistent with IFN-γ activation of STAT1 target 

genes in β-cells, which includes the synthesis and secretion of chemokines (e.g., CXCR3 

ligands). The marked upregulation of chemokine production and secretion from β-cells 

enhances immune cell infiltration into pancreatic tissue, consistent with previous 

observations (55). The islet β-cell is therefore a source of chemoattractant molecules 

supporting leukocytic infiltration into the pancreas prior to the onset of hyperglycemia.

In summary, the data presented herein reflects rapid and robust production of chemokines 

capable of recruiting CXCR3+ cells after islet β-cell exposure to pro-inflammatory stimuli. 

These events occur prior to onset of hyperglycemia in both NOD mice and C57BL/6J mice 

injected with MLDS. Deletion of CXCR3 affords only partial protection against 
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inflammation-mediated losses in islet β-cell mass. We interpret these data to indicate that 

targeting a single chemokine receptor, such as CXCR3, may be insufficient to fully prevent 

immune cell-mediated losses in islet β-cell mass and function. Further work is required to 

fully delineate the role of chemokine receptors, and associated primary response genes 

encoding chemokine receptor ligands, during leukocyte-mediated alterations in islet β-cell 

mass and function.
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Figure 1. The CXCR3 activating chemokines CXCL9, CXCL10, and CXCL11 are elevated in 
mouse, rat, and human islets during inflammation
A. Cxcl9, Cxcl10 and Cxcl11 transcript levels were measured in islets isolated from 10 week 

old male (n = 4) and female NOD mice (n = 5). Data are expressed relative to age-matched 

BALB/c control mice (n = 7). **p<0.01, *p<0.05. B–F. Islets from Wistar rats (B, C; n = 4 

per group) or human islets (D–F; n =3 per group) were untreated (NT) or stimulated with 10 

ng/mL IL-1β, 100 U/mL IFN-γ or both cytokines for 3 h. B–F. Relative mRNA abundance 

of CXCL9 (B, D), CXCL10 (E) and CXCL11 (C, F) was determined by RT-PCR. 

***p<0.001 vs. NT, **p<0.01 vs. NT, *p<0.05 vs. NT.
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Figure 2. Infiltration of T-lymphocytes into the pancreatic islets of NOD mice occurs prior to 
onset of hyperglycemia but is consistent with enhanced levels of CXCL9 and CXCL10 in serum
A–C. Blood glucose (A), body weight (B) and CD3+ staining (C) were assessed in 8 week 

old female BALB/c and 4, 8, and 12 week old female NOD mice. D,E. Serum CXCL9 (D) 
and CXCL10 (E) levels were determined in both male and female NOD mice (n = 4 mice 

per group). **p<0.01 vs. male, *p<0.05 vs. male.
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Figure 3. Expression of the Cxcl9, Cxcl10 and Cxcl11 genes is increased in a cytokine-dependent 
manner in rat β-cell lines
A–C. 832/13 rat insulinoma cells were stimulated with 1 ng/mL IL-1β or IL-1β plus 100 

U/mL IFN-γ for the indicated times (NT; no treatment). D–F. 832/13 cells were pretreated 

for 1 h with either DMSO or 0.5 μg/mL Cycloheximide (CHX). Cells were subsequently 

exposed to IL-1β (1 ng/mL) or the combination of IL-1β and IFN-γ (100 U/mL) for 2 h. 

Cellular mRNA levels of Cxcl9 (A, D), Cxcl10 (B, E) and Cxcl11 (C, F) were detected by 

RT-PCR. n.s. = not significant vs respective treatment in DMSO control group. Data are 

shown as means ± SEM from three independent experiments.
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Figure 4. The JAK- STAT1 signaling pathway is required for cytokine-mediated activation of the 
Cxcl9 and Cxcl11 genes
A. 832/13 cells were exposed to 100 U/mL IFN-γ for the indicated times. PO4-STAT1Y701 

and total STAT1 protein abundance were determined by immunoblotting. B, C. 832/13 cells 

were pre-treated for 1 h with increasing concentrations of JAKi (1 nM, 10 nM, 100 nM), 

followed by a 3 h stimulation with IL-1β alone (1 ng/mL) or IL-1β plus 100 U/mL IFN-γ. 

***p<0.001 vs. DMSO (black bar), *p<0.05 vs. DMSO (black bar). D, E. 832/13 cells were 

transfected with two siRNA duplexes targeting STAT1 using a scrambled siRNA sequence 

duplex as a control. 48 h post- transfection cells were cultured for 3 h with 1 ng/ml IL-1β or 

IL-1β plus 100 U/ml IFN-γ. ***p<0.001 vs. siScramble (black bar), *p<0.05 vs. siScramble 
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(black bar). Cxcl9 (B, D) and Cxcl11 (C, E) mRNA levels were quantified. Data are 

represented as means ± SEM from three independent experiments. The immunoblot in A 

was repeated on two separate occasions.
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Figure 5. STAT1 phosphorylation at Y701, but not S727, is required for maximal cytokine-
dependent activation of the Cxcl9 and Cxcl11 genes
A. 832/13 cells were transduced with adenoviruses encoding either βGAL, wild-type STAT1 

(WT), STAT1Y701F, STAT1S727A, STAT1Y701F/S727A (DM; double mutant) or STAT1S727T. 

STAT1 abundance was determined by immunoblotting. B, C. 832/13 cells were transduced 

with the adenoviruses indicated in (A); 24 h post-transduction cells were stimulated for 3 h 

with either IL-1β (1 ng/mL) alone or IL-1β plus IFN-γ (100 U/mL). *p<0.05, #p<0.1. D, E. 

Rat islets were transduced with the indicated adenoviruses. 24 h post-transduction cells were 

stimulated with both IL-1β (10 ng/mL) and IFN-γ (100 U/mL) for 3 h. ***p<0.001, 

**p<0.01. Relative mRNA abundance of Cxcl9 (B, D) and Cxcl11 (C, E) was determined by 
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RT-PCR. Date are expressed as means ± SEM from 3 (B, C) or 2 (D, E) individual 

experiments. The immunoblot in A was repeated on two individual occasions.
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Figure 6. Phosphorylated STAT1 is recruited to the Cxcl9 and Cxcl11 promoters in response to 
IFN-γ
Schematic representation of distal and proximal GAS sites in the Cxcl9 and Cxcl11 

promoters are shown (left panels). Arrows are the diagrammatic depiction of PCR 

amplicons. A–D. 832/13 cells were stimulated with 100 U/mL IFN-γ for either 20 mins 

(middle panels) or a time course (right panels). ChIP assays were performed to determine 

relative occupancy of total STAT1 (middle panels) and PO4-STAT1Y701 (right panels) on the 

Cxcl9 proximal (A) and distal promoter (B), and on the Cxcl11 proximal (C) and distal (D) 
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promoter. ***p<0.001 vs. NT, **p<0.01 vs. NT, *p<0.05 vs. NT. Data are expressed as 

means ± SEM from 3–4 individual experiments.
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Figure 7. Genetic Deletion of CXCR3 Delays Onset of Hyperglycemia Induced by Multiple Low 
Doses of Streptozotocin
A. Blood glucose levels in control (CXCR3+/+) and CXCR3 knockout (CXCR3−/−) mice 

were monitored for 23 days after starting the MLDS protocol (n = 9 per group). *p<0.05 vs. 

CXCR3−/− on respective days. B. Serum insulin levels were measured 23 days after 

initiation of MLDS protocol. C. Insulin positive area from formalin-fixed, paraffin-

embedded pancreatic tissue was quantified (n = 9 per group). D, E. C57BL/6J mice were 

injected with STZ for 5 consecutive days. Islets were isolated at 3 and 6 days following the 

last injection, and transcript levels of Cxcl9 (D) and Cxcl10 (E) were determined by qPCR. 

***p<0.001 (C), *p<0.05 (D), #p<0.1 (E), Φ, p<0.05 vs. CXCR3+/+ (C).
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