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Introduction

In the U.S. and much of Europe, the development of extensive PM monitoring networks has 

enabled the successful characterization of historic PM exposure over large regions. However, 

in most countries of the world, monitoring networks do not exist. This lack of quantitative 

PM exposure information, particularly in Southwest Asia and Afghanistan where PM values 

are known to be elevated, limits the assessment of potential health effects, both in the native 

population and in previously deployed military personnel. There are reports of asthma in 

returning deployers as well as elevated rates of encounters for asthma/COPD and allied 

conditions relative to soldiers at U.S. bases (Szema et al. 2011; Szema et al. 2010; Abraham 

et al. 2012; Abraham et al. 2014).

Although several wealthier countries in the region such as Kuwait, Qatar, and the United 

Arab Emirates have established limited networks for monitoring PM10 and several gaseous 

pollutants since the early 2000s, there are no networks designed to provide comprehensive 

air pollution data throughout the entire region, as exists in the U.S. and Europe. In several 

countries, limited PM2.5 measurements began only over the last five years and employ 

sampling methods that are inadequate to collect particles during dust storms, which are 

common occurrences each year (NRC, 2010).
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In response to concerns about the respiratory effects of deployment in these regions, the 

Department of Defense (DoD) conducted the Enhanced Particulate Matter Surveillance 

Program (EPMSP) at military sites during 2006-2007 showing that mean concentrations of 

particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) ranged from 

approximately 35 to 145 μg/m3 (NRC, 2010). This is considerably higher than the annual 

national average encountered in the U.S. during the same period (~12 μg/m3) and exceeds 

the 1-year Military Exposure Guideline value (15 μg/m3) set by the U.S. Army Center for 

Health Promotion and Preventive Medicine (USEPA, 2016). This type information, albeit on 

a greater spatial and temporal scale, is critical to enabling causal inference.

Sources of PM near military bases in Southwest Asia and Afghanistan include windblown 

dust and dust storms, as well as local combustion sources such as open-pit refuse burning, 

compression ignition vehicles, aircraft engines, diesel electric generators, and local industry 

(IOM, 2011). This mix of pollution sources is different from that encountered in the U.S. 

and Europe, where most previous health studies have been conducted. Further, PM 

exposures in this region are orders of magnitude higher than those commonly found in the 

U.S., and last several months to several years depending on the length and numbers of 

deployments.

In a recent study, we established the relationship between visibility and PM2.5 in Southwest 

Asian and Afghanistan (Masri et al. 2015). This relationship with visibility is due to the light 

extinction (scattering and absorption) effects of particles with sizes similar to the 

wavelengths of visible light, which has been empirically shown in a number of studies (Burt, 

1961; Noll et al. 1968; Charlson, 1969; Waggoner and Weiss, 1980; Abbey et al. 1995). 

Though visibility is a useful surrogate of human exposures to ambient particles, 

measurements are spatially limited by the number of existing monitoring stations.

An alternate measurement of light extinction by particles in the atmosphere is aerosol optical 

depth (AOD), collected by satellite. AOD is a vertical integration measure of the total 

abundance of particles in the entire atmospheric column, in contrast to visibility which is a 

measure of the particle abundance near the ground. Satellite imagery of the earth's surface 

and atmosphere represents an important tool for air quality and pollution monitoring due to 

its extensive spatial coverage and repeated observations. Like visibility, AOD can be used to 

estimate ground level PM exposure. Our research team has previously developed methods 

for the application of high-resolution satellite data for exposure assessment and health 

effects studies (Kloog et al. 2011; Kloog et al. 2012; Lee et al. 2012; Chudnovsky 2013b; 

Kloog et al. 2014). Such work has enabled the reliable assessment of short- and long-term 

human exposures to PM2.5, allowing for the investigation of both the acute and chronic 

effects of ambient particles. Application of our exposure estimates include the assessment of 

the association of PM2.5 with both hospital admissions in New England and birth weight for 

all births in Massachusetts.

In the present study, we conducted a pilot assessment using previously collected AOD and 

visibility data in Iraq to model PM2.5 concentrations. Specifically, we used 1,845 paired 

daily airport visibility and AOD measurements (1×1 km resolution) collected in Iraq to 

develop a calibration model that will be used to convert AOD to ground visibility estimates 
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in the region. Using the relationship between visibility and PM2.5 from our previous work in 

the region, we estimated PM2.5 over an area of approximately 17,000 km2 in Iraq during a 

period of two years (2006 - 2007).

Methods

Iraq is a large desert country located at the northern end of the Persian Gulf, to the west of 

Iran and east of Syria. The country experiences summers that are hot and dry, extending for 

roughly four months, from June to September, and with temperatures often in excess of 38° 

(~100°F). Winters are long but mild, lasting from December to March, and with nighttime 

temperatures typically above freezing. Precipitation and humidity are low, with annual 

precipitation averaging less than 25 cm across most of the country. The general region is 

subject to Shamal winds, which generate intense dust storms, usually during the summer 

months of June and July (NOAA, 2009).

We selected a region in Iraq of approximately 17,000 km2 that includes Bagdad and Joint-

Base-Balad (JBB). This region was selected because of its high yet variable air pollution 

levels and the presence of U.S. military personnel, which gives relevance to understanding 

such variability and pollution concentrations (IOM, 2011). Additionally, the region is 

sufficiently large to encompass low population desert areas with fewer pollution sources, and 

in turn enable an understanding of the PM2.5 in the region.

Aerosol Optical Depth

AOD measurements were collected by the Moderate Resolution Imaging Spectroradiometer 

(MODIS), which sits on two Earth Observing System (EOS) satellites launched by the 

National Aeronautic and Space Administration (NASA); namely Terra, launched in 1999, 

and Aqua, launched in 2002. The MODIS satellite provides daily AOD measurements for 

the entire Earth. Daily observations were retrieved for the years 2006 and 2007 for the entire 

area of Iraq. Recently, NASA developed a new algorithm, Multi-Angle Implementation of 

Atmospheric Correction (MAIAC), to process MODIS data. MAIAC retrieves aerosol 

parameters over land at a high resolution of 1×1 km, as compared to previously reported 10 

km. Our research team has evaluated the first and second generation of MAIAC products 

and have applied them successfully to assess PM2.5 exposures and health effects in New 

England (Fleisch et al. 2014). From our analyses, we have determined that MAIAC data can 

also be used for arid (desert) environments with high surface reflectance such as Iraq.

Visibility Data

Visibility data were obtained from the U.S. Air Force 14th Weather Squadron and included 

seven sites across the study region and period. Visibility was measured continuously using 

either an AN/FMQ-19 Automatic Meteorological Station or a TMQ-53 Tactical 

Meteorological Observing System, and was reported hourly. Most sensors measure visibility 

from approximately 400 to 9,999 m. Maximum measurements exceeding this typical upper 

limit become less accurate, which can introduce error and affect the relationship between 

visibility and atmospheric particle mass. Measurements greater than this cutoff were 

therefore truncated to 9,999 m in this analysis. In order to generate daily averages for use in 
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model calibration, we averaged hourly measurements over 24-hour periods that coincided 

with daily AOD measurements. Rain and near-saturation periods, when relative humidity 

≥98%, were not included in the analysis. However, since this region is arid with low rainfall, 

these conditions were observed for only a small fraction of days (~4%).

Statistical Approach

To calibrate a model that uses AOD to predict visibility, we matched each of seven visibility-

monitoring stations with a corresponding 1×1 km AOD grid cell. Paired measurements were 

matched by selecting the AOD grid cell that contained the corresponding visibility station. 

In contrast to studies that use coarse resolution satellite data, our use of high resolution (1×1 

km) AOD measurements enabled more precise pairing of AOD with visibility, and therefore 

more accurate calibration of the AOD-visibility relationship. In total, 1,845 paired AOD-

visibility observations were used for model calibration, spanning a two-year period from 

January 2006 to Dec 2007. The locations of visibility monitoring stations are depicted in 

Figure 1. Visibility monitoring sites used in model calibration were located in both rural and 

urban areas, and contributed variable amounts of data for model calibration (not all stations 

contained 365 daily observations). In terms of total data used in model calibration, however, 

an approximately equal amount of rural (45%) and urban (55%) observations were 

represented. Using our AOD-visibility matched measurements, we applied a mixed-effects 

model using AOD measurements as predictors to establish a relationship between visibility 

and AOD.

In order to estimate visibility and convert these estimates to PM2.5 in each grid cell on each 

day, we conducted the prediction process in four stages. Before presenting each stage, we 

will first summarize the stages here. The Stage 1 model calibrates the AOD grid-level 

observations to the visibility monitoring data collected within 1 km of an AOD reading by 

regressing visibility monitoring data on AOD values. Since the relationship between AOD 

and visibility varies day to day (due to differences in mixing height, relative humidity, 

particle composition, vertical profiles, etc.) this calibration is performed on a daily basis. In 

Stage 2 we predict visibility concentrations in grid cells where no visibility monitoring 

exists but with available AOD measurements using the Stage 1 AOD-visibility relationship. 

This is achieved by applying the prediction equation obtained from the model fit in Stage 1 

to these additional AOD values. In Stage 3, we fit a model using predicted visibility from 

Stage 2 and spatial associations among visibility values on a given day to estimate visibility 

in cells where both visibility and AOD data is missing. To convert visibility to PM2.5 

concentrations in each grid cell, Stage 4 then applies coefficients of the relationship between 

visibility and PM2.5 demonstrated from previous work in the region. The four stages are 

applied to data at the 1 × 1 km grid cell level.

Stage 1

To predict visibility, we fit the following mixed-effects multiple linear regression model:
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(1)

where, VISij is the visibility measured at site i corresponding to grid cell i on day j; α and uj 

are the fixed and day-specific random intercepts, respectively; AODij is the AOD value in 

the grid cell i on day j; β1AOD and vjAOD are the fixed and day-specific random slopes for 

AOD; εij ~ N(0, σ2) is the error term at site i on day j; and Σ is the variance-covariance 

matrix for the day-specific random effects.

In this model, inverse AOD was used since AOD is a measure of particles in the atmospheric 

column, and the functional relationship between atmospheric particulate and visibility is 

known to be inverse. That is, as particulate concentrations increase (increasing AOD), 

visibility decreases. Since the relationship of AOD and visibility (surrogate for PM2.5) varies 

day to day, calibration was performed on a daily basis. Other covariates were tested such as 

season, weekday/weekend, elevation, wind direction, precipitation, and numerous land use 

variables (e.g., distance to oil fields, town centers, waterbodies, etc.), which were obtained 

either from the U.S. Air Force or ArcGIS®. Such terms, however, were either not 

statistically significant or did not improve model performance. After developing the model, 

predicted and measured daily visibility values were then assessed on a scatter plot.

For validation, we performed a 10-fold cross validation analysis. This was accomplished by 

randomly sorting our dataset and dividing it into 10 splits. The model, fit to 90% (nine 

splits) of the visibility data, was then used to predict visibility in the remaining 10% (one 

split). This process was repeated 10 times, with each iteration holding out a new 10% split of 

data. Model performance was examined by comparing predicted and measured visibility for 

each of the 10 CV trials. Specifically, R2 values were computed and tabulated for each trial 

along with the square root of the mean squared prediction errors (RMSPE). Further, we 

estimated the temporal R2 by regressing the predicted deltaVISij against the 

measureddeltaVISij, where predicted deltaVISij is the difference between the predicted VISij 

in a site corresponding to cell i on day j and its overall mean, and measured deltaVISij is 

defined similarly for the measured values. Lastly, we estimated the spatial R2 by regressing 

the site-specific predicted VIS means on the measured one.

Stage 2

To predict visibility for grid cells containing AOD but no visibility measurements, we used 

the calibrated coefficients and parameters fitted in Stage 1. This resulted in two yearly sets 

of visibility predictions for all day-AOD cell available combinations yet still no predictions 

in day-cell combinations with missing AOD data.

Stage 3

To predict visibility for grid cells that contain neither visibility nor AOD measurements 

(often due to cloud cover), we used the output of Stage 1 (visibility predictions) to predict 

daily visibility for all grid cells in the study domain. Specifically, we fit a Generalized 
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Additive Mixed Model (GAMM) with a smooth function of latitude and longitude (using the 

grid cell centroids) and a random intercept for each cell. This is similar to other established 

interpolation techniques, such as universal kriging, that use nearby grid cells to fill missing 

points. However, in our analysis we also regressed the daily visibility predictions on the 

average of those measured at the monitoring stations located within our study region. To 

allow for the visibility spatial patterns to vary with time, we fit a separate spatial surface for 

each two-month period of each year. This enabled our model to incorporate additional 

information about visibility values that classic interpolation techniques do not utilize. 

Specifically, we fit the following semiparametric regression model:

(2)

where PredVISij is the Stage 2 predicted visibility at grid cell i on a day j; MVISij is the 

mean of visibility values monitored at the sites in our study region for cell i on a day j; α and 

ui are the fixed and grid-cell specific random intercepts, respectively; β1 and vi are the fixed 

and random slopes, respectively; Xi,Yi are the latitude and longitude, respectively, of the 

centroid of grid cell i; and, s(Xi,Yi)k(j) is a smooth function of location (modeled by thin 

plate splines) specific to the two-month period k(j) in which day j falls, thus a separate 

spatial smooth was fit for each two-month period.

As with model calibration, visibility predictions here were validated using 10-fold cross 

validation. In this case, we randomly selected 10% of the data across all visibility 

monitoring sites (seven grid cells) to leave out of the Stage 3 model predictions. The 90% 

remaining data from the seven sites was then combined with all data from all other grid 

cells. This combined data set was then used to predict the 10% left out data from the seven 

monitoring sites. This process was repeated 10 times, with each iteration holding out a new 

10% split of monitoring data. Goodness of fit and model bias were then assessed by 

regressing predicted and measured visibility at the 10% left out data, and calculating the 

corresponding R2 values for each of the 10 separate iterations. As with Stage 1, temporal 

and spatial cross validation was also applied.

Stage 4

In our previous work, daily-integrated PM2.5 concentration data collected at several 

monitoring sites in Kuwait during the period 2004-2005 was used to calibrate a model for 

the relationship between PM2.5 and visibility, with relative humidity as a covariate (Masri et 

al. 2015). This study produced PM2.5 predictions that correlated well with observed averages 

(r2=0.84) and performed well through 10-fold internal cross validation. Further, results from 

mixed model regression in this study demonstrated that predictability did not depend on 

location within the region. To convert visibility to spatially- and temporally-resolved PM2.5 

concentrations in the current study, we used the calibration equation coefficients generated 

from this previous work. The prediction equation is as follows:
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(3)

where PredPM2.5ij is the predicted PM2.5 for cell i on a day j; PredVISij is the daily visibility 

predicted for cell i on a day j; RH2 is the square of relative humidity for cell i on day j; γo, 

γv, and γm are the coefficients estimated from our previous analysis, which are equal to 

+39.3691, +732372, and −0.00319, respectively (Masri et al. 2015). Grid- and day-specific 

PM2.5 predictions over varying periods were then calculated and a map of grid-cell specific 

averaged PM2.5 estimates over the entire study period was projected onto a map for visual 

representation.

Results

Figure 2 depicts the relationship between predicted and measured daily visibility. Each point 

represents a single day for a single station within one year. Importantly, there are only 1,845 

observations presented in the plot because visibility observations were available for only 

short periods at some of the visibility stations (not 365 days of the year). Regressing daily 

visibility resulted in a high r2 value of 0.87, indicating good model fit.

Table 1 presents results from stage 1 cross validation (CV) analysis. CV trials demonstrated 

good out-of-sample predictive ability, with a mean out-of-sample R2 value of 0.71 and range 

from 0.63 to 0.83. Overall, a significant association was found between visibility and AOD. 

Table 1 also presents results for spatial and temporal CV analyses. Results for the spatial 

analysis showed a high mean R2 of 0.87 (range 0.60-0.98). This demonstrates the ability of 

the model to predict well from site to site. Results for the temporal analysis showed an R2 of 

0.60 (range 0.51-0.73). The lower temporal R2 is likely due to our use of only two years of 

data. Results nonetheless demonstrate that predictions behave similarly to observations over 

time. Figure 3 shows predicted and measured visibility for each of the 10 CV trials. The 

resulting plot shows a high R2 of 0.85, further illustrating the high predictive power of the 

model.

Table 2 presents results from stage 3 cross validation (CV) analyses after predicting 

visibility where neither AOD nor visibility measurements are available. CV trials suggested 

a very good model performance, with a mean out-of-sample R2 value of 0.84 (range 

0.78-0.91). This is a good performance, particularly considering the absence of both AOD 

and visibility measurements for the days and grid cells being predicted. Table 2 also presents 

results for spatial and temporal CV analyses. The spatial analysis produced a high mean out-

of-sample R2 of 0.91 (range 0.69-0.99). Results for the temporal analysis were lower, but 

still good, with a mean out-of-sample R2 of 0.71 (range 0.56-0.84). Figure 3 shows average 

predicted and measured visibility for each of the 10 CV trials.

Prediction errors (RMSPE, root mean squared prediction errors) for CV analyses of both 

models 1 and 2 were low on average (791 and 580 m, respectively), corresponding to an 
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error of 9 and 7%, respectively, relative to the mean of visibility (~8,500 m) across CV trials. 

This indicates strong model performance.

Figure 4 illustrates the spatial pattern of PM2.5 predictions, with a high resolution of 1×1 

km, averaged over the two-year study period from 2006 to 2007. Major roadways as well as 

the city of Baghdad are labeled. The mean and median predicted PM2.5 concentrations for 

this study area were 45.4 and 39.3 μg/m3, respectively. The slightly skewed distribution of 

predicted concentrations is possibly due to episodic dust storms. In general, PM2.5 

concentrations ranged greatly between grid cells. The interquartile range of mean estimated 

PM2.5 concentrations was 14.6 μg/m3 (34.2 to 48.8 μg/m3) with a 10th and 90th percentile of 

28.8 and 66.7 μg/m3, respectively.

As seen in Figure 4, PM2.5 predictions are highest in and around Baghdad and Balad as well 

as along certain roadways, with concentrations in the range of 46.6 to 61.5 μg/m3. Joint Base 

Balad (JBB) military base had high PM2.5 concentrations, although not as high as those of 

neighboring city centers.

PM2.5 monthly predictions for each of the seven military airport sites and their averages 

across sites during the 24-month study period are shown in Figure 5. This figure 

demonstrates that predicted PM2.5 varied substantially by month and site. Monthly average 

predictions ranged from 32.7 to 63.5 μg/m3, with an overall mean of 45.4 μg/m3.

When looking at seasonal PM2.5 levels over the study period, summer had the highest 

predicted average, with a concentration of 51.8 μg/m3. This is consistent with seasonal 

patterns for this region, in which PM in summer is elevated due to seasonal Shamal winds. 

Averages across other seasons were markedly lower than summer and comparable to one 

another, with averages of 41.5, 43.7, and 44.6 μg/m3 for fall, spring, and winter, respectively. 

Mean predictions between the two study years were similar, with 2007 having a slightly 

higher average (47.6 μg/m3) compared to 2006 (43.3 μg/m3).

Over the 24-month study period, monthly average predictions across all sites ranged from 

29.8 to 69.9 μg/m3, with a mean and standard deviation of 46.0 and 7.8 μg/m3, respectively. 

When assessing inter-site variability for individual months, monthly mean concentrations 

were somewhat but not highly variable. Inter-site variability for fixed months ranged from 

0.60 to 9.9 μg/m3. For specific months, sites did not deviate greatly from the mean, with a 

mean standard deviation of 1.4 μg/m3 across all months. This suggests that location explains 

approximately 20% of the variability in monthly mean PM2.5 estimates observed for the 

sites in this study. This is shown clearly in Figure 5, where inter-month variability of 

predicted PM2.5 is high, while inter-site variability within individual months is relatively 

low.

Discussion

In previous studies, the AOD-PM2.5 relationship has been calibrated in order to produce 

spatial PM2.5 estimates (Yanosky et al. 2008; Liu et al. 2009; Lee et al. 2011; Kloog et al. 

2012). In Southwest Asia and Afghanistan, however, such PM2.5 measurements are mostly 

nonexistent. To overcome this limitation in the current study we employed novel 
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methodology using readily available airport visibility measurements to calibrate the AOD-

visibility relationship and predict visibility over space and time, resulting in monthly average 

predictions that were highly associated with observed averages (r2=0.94). In previous work, 

we established and cross-validated a relationship between visibility and PM2.5 in Kuwait. 

Utilizing this work in the current study, we were able to convert spatial visibility predictions 

into PM2.5 estimates.

Previous studies using satellite observations to predict PM2.5 concentrations typically predict 

with a relatively coarse (10×10 km) spatial resolution and often present moderate predictive 

power (Lee et al. 2011; Kloog et al. 2012; Yanosky et al. 2008; Liu et al. 2009). A key 

advantage to our study is the fine 1×1 km resolution of predictions. This helps to reduce 

exposure error. Additionally, our models yielded high predictive power, in contrast to many 

other prediction models which assumed that the AOD-PM2.5 relationship remains constants 

over time (Gryparis et al. 2009; Yanosky et al. 2008; Aguilera et al. 2007). These results 

demonstrate the feasibility of using our methods to assess historic PM2.5 concentrations in 

Southwest Asian and Afghanistan, information that was previously not available.

Multiple means of validating the calibration model were employed in this analysis. Internal 

cross validation results demonstrated the ability of the model to predict visibility well across 

randomly divided splits of data, with low prediction errors (~6%) on average. Additionally, 

roughly equal amounts of rural and urban observations were used in model calibration, 

which was important given the variability of pollution sources from both land use types.

Given that visibility monitors are restricted to finite maximum readings, a limitation in using 

visibility measurements is that they are inherently less accurate in cleaner atmospheres. For 

this reason, it may not be feasible to use visibility as an intermediate to relate AOD with 

PM2.5 mass in regions such as the U.S. where particulate levels are low. In the present study 

region, this is of little concern since the region is characterized by high concentrations of 

ambient PM2.5 (NRC, 2010). Additionally, use of visibility is particularly advantageous here 

given the absence of PM2.5 samplers in the study area and surrounding region. Through 

cross-validation, the model predicted well even towards the upper bound of visibility 

readings. Regarding precipitation, while excluding days with rain could overestimate PM 

exposure, this was of negligible concern in this study due to the low frequency of rain events 

in this region.

During the two-year period of this study, average predicted PM2.5 was 45.4 μg/m3. This 

estimate places Iraq in roughly the midrange of ambient PM2.5 levels relative to other 

countries in the region. For comparison, the World health Organization (WHO) reported 

PM2.5 in Lebanon (2010) and Saudi Arabia (2011) at 20 and 28 μg/m3, respectively, while 

Iran (2010) and Qatar (2012) had substantially higher reported PM2.5 at 102 and 93 μg/m3, 

respectively (WHO, 2014). Similarly, the DOD Enhanced Particulate Matter Surveillance 

Program reported average PM2.5 concentrations ranging from 33 to 117 μg/m3 across 15 

sites in Southwest Asia and Afghanistan, with an average concentration of approximately 70 

μg/m3 across all sites (DRI, 2008). The average PM2.5 prediction in the current study is 

similar to that reported in neighboring Jordan (48 μg/m3) and Kuwait (45 μg/m3) (Brown et 

al. 2008; WHO, 2014). PM2.5 predictions were also the highest during the summer months 

Masri et al. Page 9

J Air Waste Manag Assoc. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mostly due to episodic Shamal winds that generate severe dust storms. This pattern is 

consistent with previous PM studies in the area, including our previous work in Kuwait 

(NRC, 2010). In addition, consistency with previously reported measurements reinforces the 

quality of PM2.5 estimates. Annually averaged predictions in this study exceeded EPA (12 

μg/m3) and WHO (10 μg/m3) suggested annual standards.

We examined the spatial patterns of the two-year average PM2.5 estimates. Grid cells in and 

around Baghdad, Joint-Base-Ballad, and major roadways were characterized by the highest 

estimated PM2.5 levels (45-60 μg/m3). This is due to the presence of air pollution sources in 

these areas such as roadway traffic, industry, airports, and residential sources. Military bases 

often have additional sources from local diesel generators, heavy-duty vehicles, and open-pit 

waste incineration. Variability between sites was also high, with monthly averages differing 

by as much as ~30 μg/m3 between all sites over all months. Approximately 20% of between-

site variability over time was attributable to location, while 80% was attributable to month of 

year. Importantly, this study focused on a specific region in Iraq over a two-year period. It is 

likely that the variability in PM2.5 estimates would be even greater when assessing a larger 

geographic area and over a longer period.

At present, very little PM2.5 exposure data exists in Southwest Asia and Afghanistan and is 

not available historically. Our results demonstrate the feasibility of using airport visibility 

and AOD data calibrated to ground-level PM2.5 to estimated exposures in this region.
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Implication Statement

This study demonstrates the ability to utilize aerosol optical depth to successfully 

estimate visibility spatially and temporally in Southwest Asia and Afghanistan. This 

enables for the estimation of spatially resolved PM2.5 concentrations in the region. The 

ability to characterize PM2.5 concentrations in Southwest Asia and Afghanistan is highly 

important for epidemiologists investigating the relationship between chronic exposure to 

PM2.5 and respiratory diseases among military personnel deployed to the region. This 

information will better position policy makers to draft meaningful legislation relating to 

military health.

Masri et al. Page 13

J Air Waste Manag Assoc. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Map showing visibility monitoring stations in Iraq study region.
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Figure 2. 
Relationship between predicted and measured daily average visibility.
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Figure 3. 
Plot of predicted versus measured visibility averages for each of 10 CV trials.
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Figure 4. 
Spatial pattern of 1×1 km PM2.5 predictions averaged over two years (2006-2007).
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Figure 5. 
PM2.5 monthly predictions by site and across sites during the study period.
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Table 1

Prediction accuracy for 10-fold cross validation (CV) trials of Stage 1 calibration model.

Trial CV R2 CV R2 Spatial CV R2 Temporal RMSPE
a
 (m)

1 0.83 0.96 0.73 580.5

2 0.67 0.89 0.56 831.8

3 0.71 0.86 0.67 795.6

4 0.76 0.60 0.63 679.4

5 0.74 0.77 0.60 703.6

6 0.67 0.84 0.51 886.5

7 0.76 0.98 0.64 816.2

8 0.63 0.94 0.51 909.3

9 0.64 0.95 0.55 913.3

10 0.71 0.63 0.51 798.2

Mean 0.71 0.87 0.60 790.7

a
Root of the mean squared prediction errors.
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Table 2

Prediction accuracy for 10-fold cross validation (CV) of Stage 3 calibration model.

Site CV R2 CV R2 Spatial CV R2 Temporal RMSPE
a
 (m)

1 0.82 0.96 0.64 571.6

2 0.85 0.69 0.75 569.8

3 0.87 0.88 0.81 538.9

4 0.80 0.99 0.66 664.5

5 0.91 0.98 0.83 505.4

6 0.83 0.86 0.68 601.2

7 0.84 0.98 0.70 621.8

8 0.78 0.93 0.56 604.9

9 0.85 0.87 0.66 544.6

10 0.90 0.94 0.84 487.3

Mean 0.84 0.91 0.71 580.3

a
Root of the mean squared prediction errors.
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