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Abstract

Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature 

domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of 

choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR. ChAT 

immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, 

vertical and horizontal limbs of the diagonal band of Broca and the nucleus basalis of Meynert, 

medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III 

and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus and 

laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional 

cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers 

were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, 

anteroventral and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral 

and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select 

laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all 

ChAT-ir basal forebrain neurons were also p75NTR positive. The present findings indicate that the 

central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, 

the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative 

diseases where the cholinergic system is compromised.
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Introduction

The distribution of cholinergic neurons in the central nervous system has been examined in 

numerous mammalian species (Armstrong et al., 1983; Mesulam et al., 1983a; Vincent and 

Reiner, 1987; Everitt et al., 1988; Maley et al., 1988; Mufson and Cunningham, 1988; 

Kordower et al., 1989; Alonso and Amaral, 1995; Ichikawa et al., 1997; Varga et al., 2003; 

Maseko and Manger, 2007; Maseko et al., 2007; Bhagwandin et al., 2008; Limacher et al., 

2008; Gravett et al., 2009; Bux et al., 2010; Kruger et al., 2010, 2012; Pieters et al., 2010; 

Calvey et al., 2013; Maseko et al., 2013; Patzke et al., 2014; Calvey et al., 2015a, 2015b, 

2016; Dell et al., 2010, 2016a, 2016b, 2016c). These neurons play a key role in complex 

functions including learning, memory, attention, and sleep (Jouvet, 1972; Kodama and 

Honda, 1996; Hasselmo and McGaughy, 2004; Atri et al., 2004; Green et al., 2005; 

Klinkenberg et al., 2011). Cholinergic neurons are characterized by the presence of choline 

acetyltransferase (ChAT), the synthetic enzyme for the neurotransmitter acetylcholine 

(ACh), while its hydrolytic enzyme, acetylcholinesterase (AChE), is also present in 

cholinoceptive cells (Emson et al., 1979; Mesulam et al., 1984, Mufson et al., 1989; Woolf, 

1991). Cholinergic neurons in the mammalian basal forebrain are found within the medial 

septum (MS) and vertical limb of diagonal band of Broca (VDB), the horizontal limb of 

diagonal band of Broca (HDB) and the magnocellular nucleus basalis of Meynert/substantia 

innominata complex (NBM/SI), which correspond to the Ch1, Ch2, Ch3 and Ch4 

subregions, respectively (Mesulam et al., 1983b). The Ch4 complex has been subdivided 

into anteriomedial (Ch4am), intermediate dorsal (Ch4id) and ventral (Ch4iv), and posterior 

(Ch4p) subfields (Mesulam et al., 1983b; Liu et al., 2015). Ch1-2 neurons innervate the 

hippocampus, Ch3 the olfactory bulb and visual cortex (Mesulam et al., 1983b; Rye et al., 

1984), while Ch4 neurons provide the major cholinergic innervation to the cortical mantle 

and amygdala (Armstrong et al., 1983; Mesulam et al., 1983b; Saper, 1984; Kasa, 1986; 

Eckenstein et al., 1988; Brückner et al., 1992; Semba, 2000). Within the epithalamus 

cholinergic neurons are found within the medial habenula (Ch7) (Mesulam et al., 1986; 

Mufson and Cunningham, 1988), which innervates the interpeduncular nucleus (Woolf and 

Butcher, 1985; Woolf et al., 1990; Woolf, 1991). More caudally, cholinergic neurons are 

found in the pedunculopontine (Ch5), laterodorsal tegmental (Ch6) nuclei and parabigeminal 

nucleus (Ch8), which project to the thalamus and superior colliculus, respectively (Mesulam 

et al., 1986; Mufson et al., 1986). Cholinergic basal forebrain neurons also express the low 

affinity pan-neurotrophin p75NTR receptor for nerve growth factor (Mufson et al., 1989) and 

depending upon the mammalian species examined, the ACh inhibitor, galanin (GAL) 

(Fisone et al., 1987; Kordower and Mufson, 1990; Benzing et al., 1993a; Perez et al., 2001).

Despite the large number of studies of the cholinergic system in mammals, to our 

knowledge, no study has examined the central cholinergic system in the Goettingen 

domestic miniature pig, a member of the species Sus scrofa domesticus, and order 

Artiodactyla. However, cholinergic profiles have been evaluated in other members of this 

order including even-toed ungulates such as sheep (Ferreira et al., 2001), giraffe (Bux et al., 
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2010), river hippopotamus (Dell et al., 2016a), and cetaceans including the harbor porpoise 

(Dell et al., 2016b) and minke whale (Dell et al., 2016c). The Goettingen miniature pig is the 

result of crossbreeding the Minnesota miniature pig, the Vietnamese potbelly pig, and the 

German Landrace pig (Köhn et al., 2007; Simianer and Köhn, 2010). The miniature pig has 

a well-defined genetic background, and its organ physiology is similar to humans 

(Dolezalova et al., 2014). The pig brain is gyrencephalic with gray/white matter proportions 

closer to humans than the rodent (Howells et al., 2010). Additionally, swine are more cost-

effective than non-human primates and have a shorter gestation period (Dolezalova et al., 

2014) making the Goettingen miniature pig well-suited for human disease-related 

translational research including myocardial infarction and stroke (Schuleri et al., 2008; 

Dolezalova et al., 2014), Alzheimer’s (Kragh et al., 2009; Fjord-Larsen et al., 2009; 

Søndergaard et al., 2012; Jakobsen et al., 2013) and Parkinson’s (Mikkelsen et al., 1999; 

Glud et al., 2011) disease. The latter disorders are associated with cholinergic basal 

forebrain (CBF) neuronal degeneration (Mufson et al., 1991; Gilmor et al., 1999). The aim 

of the present study was to immunohistochemically define the distribution of cholinergic 

profiles within the brain of the Goettingen miniature pig, a potential animal model for 

studies of the cholinergic system during aging and disease.

Materials and Methods

Tissue Processing—In the current study, six sexually mature female Goettingen 

miniature pigs (4-month-old, 10kg mean body mass, 67g mean brain mass) were 

anesthetized with isoflurane (1–2%) prior to intubation, and maintained on the drug until the 

administration of an intravenous lethal injection of Beuthanasia-D (Merck Animal Health, 

Madison, NJ). Pigs were perfused under anesthesia via the carotid artery with 0.9% cold 

saline followed by Zamboni’s solution (consisting of picric acid and 4% paraformaldehyde) 

and brains were removed from the calvarium and post-fixed for 48 hours in the same 

fixative. Brains were cryoprotected in 30% sucrose, and sectioned in either the coronal or 

horizontal plane at 40 microns on a sliding freezing microtome. Tissue provided for this 

study extended from the frontal cortex to the level of the brain stem pontomesencephalic 

nuclei. The lower brain stem and medulla were not available for analysis. Sections were 

stored in a cryoprotectant solution (30% glycerol, 30% ethylene glycol, 40% phosphate 

buffer) at −20° C until processing for immunohistochemistry. The use of these animals and 

the indicated anesthesia/perfusion protocol was approved by the Animal Care and Use 

Committees of the Department of Neuroscience at Rush University, Chicago, IL and 

NsGene Inc, Providence, RI.

Antibody Characterization—Table 1 describes the characteristics of the primary 

antibodies used in the present study, including: an anti-choline acetyltransferase (ChAT) 

goat IgG antibody (1:1,000 dilution, Millipore, MA, AB144P, RRID: AB_2079751) raised 

against human placental ChAT (Hersh et al., 1978; Raghanti et al., 2008). According to the 

manufacturer western blot analysis of this antibody yields a single band at 70 kDa, and 

specifically stains cholinergic neurons (Mufson et al., 1989). Additionally, we used an anti-

low affinity neurotrophin receptor p75NTR rabbit IgG antibody raised against a glutathione 

S-transferase (GST) fusion protein corresponding to the intracellular domain (residues 274–
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425) of rat p75NTR (1:3,000 dilution, Millipore, 07-476, RRID: AB_310649) (Matusica et 

al., 2013); and a rabbit polyclonal anti-galanin (GAL) antibody (1:1,000 dilution, gift from 

Dr. E. Theodorsson, Sweden, RRID: AB_2314520), whose specificity has been reported 

previously (Theodorsson and Rugarn, 2000; Perez et al., 2001; Diez et al., 2003; Kelley et 

al., 2011) and reacts with the central and C-terminal part of GAL but does not recognize the 

N-terminus in a radioimmunoassay (Theodorsson and Rugarn, 2000). Each of these 

antibodies have been used extensively in immunocytochemical investigations of the 

mammalian brain (Mufson et al., 1989; Obata et al., 1999; Theodorsson et al., 2000; Diez et 

al., 2003; McKeon-O’Malley et al., 2003; Ikonomovic et al., 2007; Motts and Schofield, 

2009; Fu et al., 2010; Kelley et al., 2011).

ChAT, p75NTR and GAL Immunohistochemistry—Immunohistochemistry was 

performed as described previously (Mufson and Cuningham, 1988; Mufson et al., 1989; 

Benzing et al., 1993b; Perez et al., 2000). Briefly, sections were washed in phosphate buffer 

(3×10 minutes) and tris buffered saline (TBS, 3×10 minutes), to remove excess 

cryoprotectant, before a 20-minute incubation in 0.1 mol/L sodium metaperiodate (Sigma, St 

Louis, IL) in TBS to inactivate endogenous peroxidase activity. Tissue was then washed in a 

TBS solution containing 0.25% Triton X (ThermoFisher, Waltham, MA) (3×10 minutes), 

and placed in the same solution using 3% horse serum for 1 hour. Sections were then 

incubated with the appropriate primary antibodies (see Table 1) overnight in a 0.25% Triton 

X-100 and 1% horse serum solution. All washes and incubations were performed at room 

temperature on a shaker table. Sections were subsequently washed in TBS and 1% horse 

serum before incubation (3×10 minutes) with the appropriate biotinylated secondary 

antibody, horse anti-goat IgG, (1:200, Vector Laboratories, CA) or horse anti-rabbit IgG, 

(1:200, Vector), for one hour. After TBS washes, ChAT immunoreactivity was amplified by 

incubating the tissue using the Vectastain ABC kit (Vector) for 1 hour; rinsed in 0.2 mol/L 

sodium acetate, 1.0 mol/L imidazole buffer, pH 7.4; and developed in acetate-imidazole 

buffer containing 0.05% 3,3′-diaminobenzidine tetrahydrochloride (DAB, Sigma, St Louis, 

IL) and 0.0015% H2O2. Sections only immunostained for p75NTR or GAL were visualized 

with DAB and 1% nickel (II) ammonium sulfate hexahydrate and 0.0015% H2O2 resulting 

in a black reaction product. The histochemical reaction was terminated in acetate-imidazole 

buffer, tissue mounted on slides, dehydrated through graded alcohols (70%–95%–100%), 

cleared in xylene, and cover-slipped using DPX mounting medium (Biochemica Fluka, 

Buchs, Switzerland). The specificity of the secondary antibodies was determined by absence 

of immunocytochemical reaction in sections processed without the primary antibody. 

Additional sections were counterstained with cresyl violet to aid in cytoarchitectonic 

analysis. For each antibody, staining of all sections was performed at the same time to 

reduce batch-to-batch variability. A stereotaxic atlas of the pig brain was used for regional 

delineation (Félix et al., 1999), and abbreviations were taken from the atlas by Paxinos and 

colleagues (1999).

Immunofluorescence—Immunofluorescence was conducted on additional forebrain 

sections using a modification of a previously reported protocol (Oh et al., 2010). Briefly, 

sections were double labeled for ChAT (1:100) and p75NTR (1:300) overnight at room 

temperature, and then incubated for 1 hour using Cy2-conjugated donkey anti-rabbit (1:200, 
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Jackson ImmunoResearch, RRID: AB_2340612) and Cy3-conjugated donkey anti-goat IgG 

(1:200, Jackson ImmunoResearch, RRID: AB_2307351) as secondary antibodies. Cy2 and 

Cy3 fluorescence was detected using FITC (excitation light= 490 nm) and TRITC 

(excitation light= 550 nm) filters, respectively.

Charting the distribution of cholinergic neurons in the pig brain

Schematic drawings of the distribution of ChAT-ir profiles were outlined manually under 1× 

and 10× lenses (numerical aperture (NA) 0.04 and 0.25, respectively) with the aid of a Nikon 

Optiphot-2 microscope using the Neurolucida Neuron tracing program (MBF Bioscience, 

VT, RRID: SCR_001775). Chartings were adjusted and edited using the CorelDraw 

Graphics Suite X7 software (Corel Corporation, Ottawa, ON, Canada, RRID: SCR_014235). 

Cholinergic cell diameter was determined by manually outlining twenty ChAT-ir neurons 

from 4 separate sections containing each cholinergic subgroup using the Nikon NIS-element 

software (Nikon, Melville, NY, RRID: SCR_014329). Measurements are presented as mean 

diameter ± standard deviation. Immunohistochemistry and immunofluorescence were 

visualized with the aid of a Nikon Eclipse 80i microscope.

Results

Telencephalon

Cerebral cortex and Olfactory Tubercle—ChAT-ir fibers were observed throughout 

the cortical areas examined, including the cingulate, insular and piriform cortices (mean 

diameter: 16 ± 1.73 μm) (Fig. 1A–D). In the cingulate cortex small multipolar and bipolar 

ChAT positive neurons were found mainly in layer VI (Fig. 1A), whereas in the insular 

cortex cholinergic neurons were observed scattered within layers III and V (Fig. 1B) and 

within layer III of the piriform cortex (Fig. 1C). These cortical areas also displayed a few 

small, bipolar p75NTR-ir neurons distributed in a pattern similar to that seen for ChAT-ir 

neurons (Fig. 1E). Small, spindle shaped ChAT- and p75NTR-ir neurons were scattered 

throughout the more rostral aspect olfactory tubercle (Fig. 1F).

Striatum and Basal Forebrain—ChAT-ir perikarya were identified within the striatum 

(i.e., caudate and putamen) and in each CBF subfield (Fig. 2). The striatum displayed large 

multipolar ChAT-ir neurons and fibers (mean diameter: 32 ± 3.21 μm) (Fig. 3A, B), which 

were p75NTR immunonegative (Fig. 4A). Within the CBF, ChAT-ir neurons were found in 

the medial (MS, Ch1), VDB (Ch2)/HDB (Ch3), and the NBM (Ch4) (Figs. 2, 3A, C–E, F–

H). The lateral septum (LS) also displayed small spindle and multipolar ChAT-ir neurons 

(mean diameter: 24 ± 2.21 μm) in its lateroventral aspect (Figs. 2C, D, 3A, C). A few 

scattered ChAT-ir neurons were observed in the nucleus accumbens (Fig. 2A, B) and bed 

nucleus of the stria terminalis (Fig. 3F). Ch1 contained small bipolar and multipolar ChAT-ir 

neurons with processes directed dorsally and ventrally, forming an elongated cluster situated 

along the midline (mean diameter: 28 ± 1.56 μm) (Fig. 3A, D, F). Ch2 displayed medium-

sized, round or spindle-shaped ChAT-ir neurons (mean diameter: 30 ± 2.16 μm) (Figs. 2C, 

D, 3A, E), with larger neurons found more rostrally (Fig. 3E). Ch3 medium-sized 

cholinergic neurons (mean diameter: 31 ± 2.33 μm) were located ventral to the anterior 

commissure and lateral to Ch2 (Figs. 2C, D, 3A, F, G). More caudally, ChAT-ir somata were 
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seen within the Ch4 subfield ventral to the internal capsule and globus pallidus, which 

extended to the level of the anterior amygdala (Figs. 2C, D, 3F, H). At the level of the 

decussation of the anterior commissure ChAT-ir neurons within Ch4 (NBM/SI) appeared 

multipolar (mean diameter: 35 ± 2.10 μm) (Fig. 3H), with processes that curved ventrally 

around the globus pallidus, extending into the internal capsule (Fig. 3F). Although GAL-ir 

neurons were not observed in any of the CBF subgroups, numerous scattered GAL-ir fibers 

were seen surrounding neurons in the septum (Fig. 3I) and Ch4 (Fig. 3J). Dual 

immunofluorescence revealed that virtually all ChAT-ir neurons within the Ch subfields 

were p75NTR immunopositive (Fig. 4B–E).

Hippocampal Formation and Amygdala—The hippocampal formation contained 

ChAT-ir neurons and fibers (Fig. 5A–E). Scattered, small bipolar ChAT-ir neurons were 

found dorsal to the CA1 pyramidal cell layer, mainly in the caudal aspect of the 

hippocampus (Fig. 5B, inset), but not in the dentate gyrus. Although numerous fine, beaded 

ChAT-ir fibers were observed throughout the hippocampus and dentate gyrus (Fig. 5A–C), 

the densest collection of fibers was observed within the polymorphic and molecular layers of 

the dentate gyrus, stratum oriens, and CA1-3 pyramidal cell layers (Fig. 5B–E).

Although ChAT-ir neurons were not observed in the amygdala, ChAT-ir fibers were found 

throughout the anterior part of the basolateral, basomedial, and dorsolateral nuclei (Fig. 6A), 

with the heaviest concentration observed within the anterior aspects of the basolateral 

amygdaloid nucleus (Fig. 6A).

Diencephalon

Epithalamus—A group of small densely packed, oval-shaped ChAT-ir neurons were seen 

in the medial habenular nucleus (Ch7) (mean diameter: 15 ± 0.81 μm) (Fig. 6C, D). In 

contrast, only ChAT-ir fibers were observed in the lateral nucleus of the habenula, which 

coursed within the fasciculus retroflexus (Fig. 6C, open arrow), presumably projecting to the 

interpeduncular nucleus, which displayed a dense cholinergic innervation (Fig. 7C).

Thalamus—Several thalamic nuclei displayed ChAT-ir fibers but not positive neurons (Fig. 

6A, B). Rostrally, the medial and lateral portions of the anteroventral, and parateanial 

thalamic nuclei displayed intense ChAT-ir, while the central, periventricular and reticular 

thalamic nuclei displayed weak staining (Fig. 6B). The thalamic mediodorsal and 

laterodorsal nuclei were strongly ChAT-ir, followed by the ventrolateral nucleus (Fig. 6A). 

More caudally, ChAT-ir fibers were observed in rostral aspects of the anterior pretectal 

nucleus (Fig. 6G), but to a lesser degree more caudally at the level of the superior colliculus. 

ChAT-ir fibers were also observed in the lateral geniculate nucleus (Fig. 5A). The zona 

incerta contained small, spindle-shaped neurons. Ventromedial to the dorsolateral geniculate 

at the level of the medial habenula, a small group of faintly stained ChAT-ir neurons and 

fibers were observed in reticular thalamic territories.

Hypothalamus—Within the hypothalamus, weakly-stained small, oval shaped ChAT-ir 

neurons (mean diameter: 14 ± 1.13 μm) (Fig. 6E) were observed within the dorsal portion of 

the arcuate nucleus. A densely packed group of ChAT-ir neurons of similar shape and size 
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with extensive processes were seen within the medial arcuate nucleus (mean diameter: 12 

± 0.72 μm) (Fig. 6F). ChAT-ir fibers were also seen coursing within the external aspect of 

the median eminence.

Mesencephalon

Small spindle-shaped ChAT-ir perikarya and fibers were seen in the Edinger-Westphal 

nucleus (mean diameter: 21 ± 1.84 μm) (Fig. 7A, B), forming a dense cluster running 

parallel to the midline, ending caudal to the superior colliculus. Laterally, large multipolar 

ChAT-ir somata were found in the oculomotor nucleus (mean diameter: 35 ± 2.87 μm) (Fig. 

7A, B), giving rise to the III cranial nerve roots exiting at the level of the interpeduncular 

nucleus. ChAT-ir fibers, but not cells, were observed within the superficial layers of the 

superior colliculus in the intermediate gray, and intermediate optic layers (Fig. 7D).

Several ChAT-ir cell groups were observed within the tegmentum of the 

pontomesencephalon. ChAT-ir neurons in the pedunculopontine (Ch5) and laterodorsal 

tegmental (Ch6) nuclei were largely heteromorphic, ranging in appearance from pyramidal 

to fusiform to multipolar (Fig. 8A–C). ChAT positive neurons within Ch5 were slightly 

larger (mean diameter: 30 ± 2.70 μm) (Fig. 8B) and more spindle-shaped compared to Ch6 

(mean diameter: 27 ± 1.90 μm) (Fig. 8C). A cluster of small oval shaped ChAT-ir perikarya 

were observed within the parabigeminal nucleus (Ch8) (mean diameter: 18 ± 1.35 μm) (Fig. 

8A, D). A dense plexus of ChAT-ir fibers were found in close proximity to the 

parabigeminal nucleus (Fig. 8A, black arrows). Large ChAT-ir neurons (mean diameter: 38 

± 3.32 μm) and fibers were also observed in the trochlear nucleus (Fig. 7B).

Discussion

The present findings are the first detailed description of cholinergic profiles within the brain 

of the female Goettingen miniature pig, Sus scrofa domesticus. ChAT-ir neurons and fibers 

were observed within the telencephalon, diencephalon, and mesencephalon similar to other 

mammalian species (see Table 2).

Telencephalon

Cerebral Cortex—ACh is the major neuromodulatory neurotransmitter in the cortex and is 

thought to play an important role in learning, memory and attention (Callahan et al., 1993; 

Andrews et al., 1994; Muir et al., 1994; Hasselmo, 2006). The cortex of the Goettingen 

miniature pig displayed numerous ChAT-ir fibers similar to other mammals (e.g., humans, 

Mufson et al., 1989; Mesulam et al., 1992; nonhuman primates, Mrzljak and Goldman-

Rakic, 1993; Mesulam, 2004; Raghanti et al., 2008; rodents, Ichikawa and Hirata, 1986; 

Lysakowski et al., 1986; Mechawar et al., 2000). Small ChAT positive neurons were seen 

within the cingulate, insular and piriform cortices as described in some rodent species 

(Eckenstein and Baughman, 1984; Mufson and Cunningham, 1988; Mechawar et al., 2000; 

Bhagwandin et al., 2006; Consonni et al., 2009) including murid rodents (Kruger et al., 

2012) and the Hottentot golden mole (Calvey et al., 2013), but not in the BALB/c ByJ 

mouse (Kitt et al., 1994), guinea pig (Maley et al., 1988), monotremes (Manger et al., 2002) 

and most nonhuman primates (Mesulam et al., 1984; Everitt et al., 1988; Kordower et al., 
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1989). ChAT positive neurons in supragranular cortical layers (II–IV) have been reported in 

some rodent species (Eckenstein and Baughman, 1984; Mufson and Cunningham, 1988; 

Mechawar et al., 2000; Bhagwandin et al., 2006; Consonni et al., 2009), rabbit (Varga et al., 

2003), feline (Avendaño et al., 1996), fetal Macaca mulatta (Hendry et al., 1987) and to a 

lesser degree in humans (Kasashima et al., 1999). Unlike the miniature pig, ChAT–ir 

neurons were found within the somatosensory cortex and to a lesser extent in transitional 

and limbic cortices in murine species and rabbits (Varga et al., 2003; Consonni et al., 2009). 

These cholinergic perikarya have been classified as interneurons, which contain calretinin 

and vasoactive intestinal peptide (VIP) and are involved in local cortical modulatory 

functions (von Endelhardt et al., 2007). Whether intrinsic cortical neurons in the miniature 

pig express calretinin and VIP, as well as their functional role remain unknown. In contrast 

to the rodent and pig cortex, a few studies have reported ChAT positive pyramidal neurons in 

layers III and V in the human motor and secondary sensory cortex (Kasashima et al., 1999; 

Benagiano et al., 2003). This species difference in the type of cortical neurons requires 

further investigation to verify the existence of cholinergic neurons in the human cortex. On 

the other hand, the pig cingulate, insular, and piriform cortices contained p75NTR-ir fibers 

similar to that seen in the rodent (Jaffar et al., 2001), monkey, and human (Mrzljak and 

Goldman-Rakic, 1993) cortex. Perikarya containing p75NTR have also been identified in 

somatosensory and motor cortices in the adult macaque (Miller, 2000) and in medial 

temporal cortex and amygdala in the aged human and Alzheimer diseased brain (Mufson 

and Kordower, 1992) but not in the rat (Lee et al., 1998) or mouse (Perez et al., 2007) 

suggesting species differences in the cortical p75NTR cellular phenotype.

Olfactory tubercle, Striatum and Basal Forebrain—The olfactory tubercle of the 

miniature pig contained ChAT-ir neurons and fibers as described in other mammals (McGeer 

et al., 1982; Armstrong et al., 1983; Wahle and Meyer, 1986; Woolf, 1991; Varga et al., 

2003; Maseko et al., 2007; Bhagwandin et al., 2008; Limacher et al., 2008; Gravett et al., 

2009; Bux et al., 2010; Kruger et al., 2010; Pieters et al., 2010; Patzke et al., 2014; Calvey et 

al., 2015a, 2015b, 2016; Dell et al., 2010, 2016a, 2016b, 2016c). More caudally, large 

multipolar ChAT-ir neurons were located in the striatum of the miniature pig similar to other 

mammals (Sofroniew et al., 1982; Armstrong et al., 1983; Mesulam et al., 1984; Satoh and 

Fibiger, 1985; Mufson and Cunningham, 1988; Mufson et al., 1989; Woolf, 1991; Geula et 

al., 1993; Varga et al., 2003; Maseko et al., 2007; Bhagwandin et al., 2008; Limacher et al., 

2008; Gravett et al., 2009; Bux et al., 2010; Kruger et al., 2010; Pieters et al., 2010; Bajo et 

al., 2014; Patzke et al., 2014; Calvey et al., 2015a, 2015b, 2016; Dell et al., 2010, 2016a, 

2016b, 2016c). The major source of cholinergic striatal innervation is the large aspiny 

interneurons that comprise 1% of striatal neurons (Woolf and Butcher, 1981; Graveland and 

DiFiglia, 1985), which regulate intrastriatal local circuit activity (Galarraga et al., 1999; 

Koós and Tepper, 2002). These cholinergic neurons are not p75NTR-ir (Sobreviela et al., 

1994; Kordower et al., 1994, present study) and are related to the regulation of motoric 

function (Macintosh, 1941; Hebb and Silver, 1961; Woolf et al., 1984).

ChAT-ir neurons were observed in the MS/VDB (Ch1/Ch2) and HDB (Ch3). The MS/VDB 

complex projects to the hippocampus, entorhinal, cingulate and retrosplenial cortices in 

many mammals (Mesulam et al., 1983a; Irle and Markowitsch, 1984; Woolf et al., 1984; 
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Amaral and Kurz, 1985), while the HDB projects to the olfactory bulb and visual cortex 

(Mesulam et al., 1983a; Woolf et al., 1984). The human HDB consists of a few cholinergic 

neurons (Mesulam et al., 1983a) suggesting a diminished functional role compared to other 

mammals. We also observed lightly immunoreactive cholinergic neurons within the lateral 

septum of the miniature pig, as reported in the rat (Kimura et al., 1990), raccoon (Brauer et 

al., 1999) and monkey (Kimura et al., 1990).

More caudally, Ch4 (NBM/SI) displayed ChAT-ir neurons extending from the crossing of 

the anterior commissure to the level of the lateral geniculate nucleus as well as a few 

scattered somata embedded within the internal capsule (termed interstitial cholinergic 

neurons), globus pallidus, and anterior regions of the amygdala; (Mesulam et al., 1983). 

These neurons share the magnocellular hyperchromic morphology observed in other 

mammals (Mesulam et al., 1983a, 1983b; Woolf, 1991; Varga et al., 2003). In rodents, and 

monotremes (the oldest mammalian group) a homologous NBM/SI cell group is found 

adjacent to the globus pallidus (Mesulam et al., 1983b; Manger et al., 2002) similar to other 

mammalian species (Woolf, 1991; Varga et al., 2003; Descarries et al., 2004; Maseko et al., 

2007; Bhagwandin et al., 2008; Limacher et al., 2008; Gravett et al., 2009; Bux et al., 2010; 

Kruger et al., 2010; Pieters et al., 2010; Patzke et al., 2014; Calvey et al., 2015a, 2015b, 

2016; Dell et al., 2010, 2016a, 2016b, 2016c; see Table 2). Interestingly, the NBM/SI 

displays the greatest degree of subfield differentiation in monkeys, great apes (Benzing et 

al., 1993a) and humans (Gorry, 1963; Mesulam et al., 1983a; Saper and Chelimsky, 1984; 

Mesulam and Geula, 1988), compared to other mammals (Mesulam et al., 1983b) including 

the miniature pig (present findings). However, in sheep, the complexity of this region is 

intermediate between rodents and humans, four subsectors are found including the anterior, 

intermedioventral, intermediodorsal and posterior subfields but not an anterolateral or 

medial subfield (Ferreira et al., 2001). Thus Ch4 (NBM/SI) intricacy among species may be 

associated with a gain in neocortical chemoanatomical and functional complexity (Howells 

et al., 2010; Lui et al., 2011). In addition to innervating neocortical areas (Mesulam et al., 

1983a), cholinergic Ch4 neurons also send a dense projection to the basal nucleus of the 

amygdala (Woolf, 1991). In this regard, extensive cholinergic innervation was seen in the 

basolateral and basomedial amygdaloid nuclei in the miniature pig similar to that observed 

in the rat, golden mole (Calvey et al., 2013), monkey (Woolf and Butcher, 1982; Amaral and 

Bassett, 1989) and human (Mufson et al., 1989; Benzing et al., 1993b). Although, only 

ChAT-ir fibers are found in the amygdala of most mammals including the minipig, a recent 

report revealed ChAT-ir neurons in the amygdala of the golden mole (Calvey et al., 2013).

We observed that the majority of neurons within the CBF of the miniature pig co-express the 

p75NTR similar to other mammals (Hefti et al., 1986; Mesulam et al., 1989; Mufson et al., 

1989; Kordower et al., 1989; Higgins and Mufson, 1989; Hefti and Mash, 1989; Ferreira et 

al., 2001). The p75NTR receptor plays a key role in regulating the trophic status of CBF 

neurons (Kramer et al., 1999). Of interest was our observation that CBF neurons in the 

miniature pig were GAL immunonegative, while in rodents (Melander et al., 1985; Perez et 

al., 2001) and monkeys (Melander and Staines, 1986; Walker et al., 1989; Kordower and 

Mufson, 1990; Kordower et al., 1992) these neurons were GAL positive. However, GAL-ir 

fibers in the miniature pig were seen in close proximity to cholinergic neurons more similar 

to humans (Chan-Palay, 1988; Kordower and Mufson, 1990; Mufson et al., 1993) and great 
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apes (Benzing et al., 1993a). We have suggested that the separation from intraneuronal GAL 

within cholinergic neurons to extra-neuronal innervation may relate to a greater control over 

cholinergic cellular activity in humans and great apes (Mufson et al., 2005; Counts et al., 

2010).

Epithalamus, Thalamus, and Hypothalamus—In the epithalamus of the Goettingen 

miniature pig, ChAT-ir profiles were found in the medial habenular nucleus, fasciculus 

retroflexus and interpeduncular nucleus as described in other mammals (Woolf and Butcher, 

1985; Mesulam et al., 1986; Mufson and Cunningham, 1988; Butcher et al., 1992; Oh et al., 

1992; Manger et al., 2002; Kruger et al., 2012; Maseko et al., 2013). Tract tracing studies in 

mammals have shown that the medial habenula provides the main source of cholinergic 

innervation via the fasciculus retroflexus to the interpeduncular nucleus (Woolf and Butcher, 

1985; Woolf et al., 1990; Woolf, 1991). The functional role of this dense cholinergic 

innervation remains to be investigated.

ChAT-ir neurons were virtually absent from the thalamic nuclei of the miniature pig (see 

Table 2), although they have been reported in the centromedian nucleus of the dorsal 

thalamus in the river hippopotamus (Dell et al., 2016a), an animal related to the pig, and in 

the paracentral thalamic nucleus of the macaque monkey (Rico and Cavada, 1998). 

Numerous cholinergic fibers were observed in the anteroventral, parateanial, mediodorsal, 

and laterodorsal thalamic nuclei as well as in the reticular nucleus in the miniature pig 

(present study) as reported previously in mammals (Hallanger et al., 1987; Levey et al., 

1987; Schafer et al., 1998). In addition, ChAT positive fibers were found in the anterior 

pretectal nucleus, lateral geniculate nucleus, as well as in the subthalamic nucleus as 

previously described in the Goettingen minipig (Larsen et al., 2004). Neuroanatomical tract-

tracing studies in the rat have demonstrated that the cholinergic neurons located in 

pedunculopontine tegmental nucleus innervate the thalamic anterior, laterodorsal, central 

medial, and mediodorsal thalamic nuclei as well as the lateral geniculate nucleus (Mufson et 

al., 1986; Hallanger et al., 1987; Fitzpatrick et al., 1988; Smith et al., 1988). Retrograde 

tracing studies have revealed that the cholinergic laterodorsal tegmental nucleus also projects 

to several thalamic nuclei and the pretectum (Satoh and Fibiger et al., 1986). Whether 

similar projections exist in the pig remains to be determined. The functional significance of 

these observations in the pig are not clear, but cholinergic pedunculopontine neurons have 

been suggested to play a role in regulating wakefulness and sleep-wake transitions (Brown et 

al., 2012), perhaps via its thalamic innervation.

Unlike the rat (Rao et al., 1987) and other vertebrates (Mason et al., 1983; Ekstrom, 1987; 

Tago et al., 1987), the hypothalamus of the miniature pig contained ChAT positive neurons 

only within the neurosecretory arcuate nucleus. Hypothalamic ChAT-ir fibers were observed 

coursing in the external portion of the median eminence in the minipig. Several mammals 

related to the miniature pig including the river hippopotamus (Dell et al., 2016a), the 

harbour porpoise (Dell et al., 2016b), and the minke whale (Dell et al., 2016c) display three 

separate ChAT positive hypothalamic cell groups located lateral, dorsal and ventral to the 

third ventricle. These cholinergic neuronal groups could be homologous to the arcuate nuclei 

in other mammals including the minipig (Table 2). Since arcuate neurons release 

hypophysiotropic hormones from terminals located within the median eminence via the 
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hypophysial portal system into the anterior portion of the pituitary gland, it is likely that the 

cholinergic arcuate system regulates pituitary hormone release (Scott and Pepe, 1987). 

Although the physiological function of ACh in the neurosecretory system is unclear, perhaps 

it plays a role in the liberation of hormones acting as an autocrine signal (Wessler and 

Kirkpatrick, 2008).

Mesencephalon—ChAT-ir neurons were found within the Edinger-Westphal nucleus, the 

motor nuclei of the oculomotor (IIIn) and trochlear (IVn) cranial nerves. Cholinergic 

neurons of cranial nerves III, IV, and VI innervate the extraocular eye musculature and the 

levator palpebrae muscle (Warwick, 1953), while the Edinger-Westphal nucleus is 

considered the source of preganglionic input to the ciliary ganglion (Strassman et al., 1987). 

Cranial nerve motor neurons are some of the largest cholinergic cells in the brain and exhibit 

multiple thick processes in the rodent, feline, and primate brain (Strassman et al., 1987; 

Woolf, 1991), a pattern mirrored in the miniature pig. Cholinergic neurons in the motor 

cranial nerve nuclei are a persistent trait in mammalian vertebrates (Armstrong et al., 1983; 

Mesulam et al., 1983a; Vincent and Reiner, 1987; Everitt et al., 1988; Maley et al., 1988; 

Mufson and Cunningham, 1988; Kordower et al., 1989; Alonso and Amaral, 1995; Ichikawa 

et al., 1997; Varga et al., 2003; Maseko and Manger, 2007; Maseko et al., 2007; Bhagwandin 

et al., 2008; Limacher et al., 2008; Gravett et al., 2009; Bux et al., 2010; Kruger et al., 2010, 

2012; Pieters et al., 2010; Calvey et al., 2013; Maseko et al., 2013; Patzke et al., 2014; 

Calvey et al., 2015a, 2015b, 2016; Dell et al., 2010, 2016a, 2016b, 2016c) suggesting similar 

biological actions.

Similar to other mammalian-vertebrates (Armstrong et al., 1983; Mesulam et al., 1983b, 

1984; Mufson et al., 1986; Mufson et al., 1988; Mesulam et al., 1989; Ichikawa and Hirata, 

1990; Woolf et al., 1990; Lavoie and Parent, 1994; Bhagwandin et al., 2008; Limacher et al., 

2008; Gravett et al., 2009; Bux et al., 2010; Kruger et al., 2010; Motts and Schofield, 2010; 

Pieters et al., 2010; Kruger et al., 2012; Maseko et al., 2013; Patzke et al., 2014; Calvey et 

al., 2015a, 2015b, 2016; Dell et al., 2010, 2016a, 2016b, 2016c), ChAT positive neurons 

were seen in the pedunculopontine (Ch5), and laterodorsal tegmental (Ch6) nuclei in the 

miniature pig, which provide cholinergic innervation to the thalamus (Hallanger et al., 1987; 

Woolf et al., 1990; Motts and Schofield, 2010). Like other mammals, porcine ChAT-ir 

perikarya within Ch5 and Ch6 are morphologically heterogeneous and relatively large, 

second only to neurons of the Ch4 complex (Mesulam et al., 1989). Cholinergic 

immunoreactive neurons within the pontomesencephalon subfields of other members of 

Artiodactyla display morphological differences compared to the miniature pig. For example, 

in the male giraffe, cholinergic neurons within the lateral tegmental nucleus (Ch6) are larger 

than those found in the pedunculopontine nucleus (Ch5) (Bux et al., 2010), which is 

opposite to what we observed for the minipig. In the river hippopotamus, Ch6 is separated 

into magnocellular and parvocellular subdivisions (Dell et al., 2016). Whereas, Ch5 and Ch6 

are divided into parvocellular and magnocellular subdivisions in the rock hyrax (Gravett et 

al., 2009). By contrast, the cholinergic parabigeminal nucleus consists of small and oval-

shaped perikarya (Mufson et al., 1986; Mufson et al., 1988; Mufson and Cunningham, 1988; 

Henderson, 1989; Woolf et al., 1990; Maseko and Manger, 2007; Maseko et al., 2007; 

Bhagwandin et al., 2008; Limacher et al., 2008; Gravett et al., 2009; Bux et al., 2010; 
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Kruger et al., 2010; Pieters et al., 2010; Patzke et al., 2014; Calvey et al., 2015a, 2015b, 

2016; Dell et al., 2010, 2016a, 2016b, 2016c), which project to the superficial layers of the 

superior colliculus (Beninato and Spencer, 1986; Mufson et al., 1986; Henderson, 1989). No 

cholinergic cells were observed in the superior colliculus of the miniature pig similar to 

other mammalian species (Woolf, 1991; Manger et al., 2002).

Conclusions

The present study provides the first chemoanatomical distribution of cholinergic neurons and 

fibers in select regions of the Goettingen miniature pig brain. Cholinergic neurons were 

found in the cortex, hippocampus, striatum, MS, LS, VDB/HDB, NBM, medial habenula, 

pedunculopontine and laterodorsal tegmental nuclei, parabigeminal nucleus, and cranial 

nerve nuclei. In addition, cholinergic fibers displayed a laminar distribution in the cortex and 

hippocampus and were seen in the thalamus. The present observations provide detailed 

information showing that the organization of central cholinergic systems within the 

miniature pig brain are comparable to most other mammalian species (Table 2), suggesting 

that the miniature pig may be an appropriate model for the study of the central cholinergic 

system in various neurological disorders.
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Abbreviations

3V third ventricle

aca anterior part of the anterior commissure

Acb accumbens nucleus

APT anterior pretectal nucleus

ArcD arcuate nucleus, dorsal part

ArcM arcuate nucleus, medial part

AVL lateral part of the anteroventral nucleus of the thalamus

AVM medial part of the anteroventral nucleus of the thalamus

BLA basolateral amygdaloid nucleus, anterior part

BMA basomedial amygdaloid nucleus, anterior part

BST bed nucleus of the stria terminalis

CA1 field CA1 of hippocampus
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CA3 field CA3 of hippocampus

cc corpus callosum

Cd caudate

IIIn oculomotor nucleus (OCN)

IIIr third cranial nerve root

IVn trochlear nucleus

IVr fourth cranial nerve root

cp cerebral peduncle

DG dentate gyrus

DLG dorsal lateral geniculate nucleus

DS dorsal septum

eml external medullary lamina

EW Edinger-Westphal nucleus

f fornix

fi fimbria hippocampus

fr fasciculus retroflexus

gcc genu of the corpus callosum

GP globus pallidus

GrDG granular layer of the dentate gyrus

HDB horizontal limb of the diagonal band of Broca

ic internal capsule

InG intermediate gray layer of the superior colliculus

InWh intermediate white layer of the superior colliculus

IP interpeduncular nucleus

LaDL lateral amygdaloid nucleus, dorsolateral part

lcj islands of Calleja

LD laterodorsal thalamic nucleus

LDT laterodorsal tegmental nucleus

LHb lateral habenular nucleus
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LMol lacunosum moleculare layer of the hippocampus

lo lateral olfactory tract

LSD dorsal part of the lateral septal nucleus

LSV ventral part of the lateral septal nucleus

LV lateral ventricle

MD mediodorsal thalamic nucleus

MHb medial habenular nucleus

mlf medial longitudinal fasciculus

Mol molecular layer of the dentate gyrus

MS medial septal nucleus

mt mammillothalamic tract

NBM nucleus basalis of Meynert

Op optic layer of the superior colliculus

Or oriens layer of the hippocampus

ot optic tract

PB parabigeminal nucleus

Pi piriform cortex

Po posterior thalamic nuclear group

PoDG polymorphic layer of the dentate gyrus

PPN pedunculopontine tegmental nucleus

PT parateanial thalamic nucleus

Pu putamen

PVA paraventricular thalamic nucleus

Py pyramidal cell layer of the hippocampus

Rad stratum radiatum of the hippocampus

Re reuniens thalamic nucleus

Rt reticular thalamic nucleus

SC superior colliculus

SI substantia innominata
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sm stria medullaris of the thalamus

Str striatum

SuG superficial gray layer of the superior colliculus

Tu olfactory tubercle

VDB vertical limb of the diagonal band of Broca

VL ventrolateral thalamic nucleus

VLG ventral lateral geniculate

VM ventral posteromedial thalamic nucleus

VP ventral posterolateral thalamic nucleus

ZI zona incerta

Zo zonal layer of the superior colliculus
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Figure 1. 
ChAT-ir profiles in the cortex and olfactory tubercle of Sus scrofa domesticus: ChAT-ir 

multipolar neurons (black arrows) within layers V and VI of the cingulate cortex (A), layers 

III and V of insular cortex (B), and layer III of the piriform cortex (C). Varicose ChAT-ir 

fibers within piriform cortex (black arrows) (D). P75NTR-ir neuron and fibers (black arrows) 

in the cingulate cortex (E). ChAT-ir neurons and neuropil within the olfactory tubercle (F). 

Tissue in panels A-C and F were counterstained with cresyl violet. Scale bar: 100 μm in A, 

B, and C; 25 μm in D, E, F. Insets: 40x A, B, C.
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Figure 2. 
Schematic drawings of coronal sections (A-D) of the telencephalon of Sus scrofa domesticus 
depicting the distribution of ChAT-ir perikarya (black dots). Scale: 0.5 cm A, B, C, D.
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Figure 3. 
A–B. ChAT-ir perikarya and neuropil within the striatum and basal forebrain of Sus scrofa 
domesticus. ChAT-ir neurons (black arrows) and neuropil within the putamen (Pu), medial 

septum (MS), vertical and horizontal diagonal band (VDB, HDB), and lateral septum (LS) 

(A). High-power photomicrographs showing multipolar ChAT-ir neurons in the Pu (B), LS 

(C), MS (D), and bipolar VDB (E) neurons. Caudal section showing ChAT-ir profiles in the 

LS, MS, bed nucleus of the stria terminalis (BST, black arrow), and the nucleus basalis of 

Meynert (NBM) (F). High-power photomicrographs of multipolar HDB (G) and NBM (H) 
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neurons and GAL-ir fibers surrounding a neuron within the MS (I) and in the NBM (J). 

Scale: 1000 μm A, F; 25 μm B-E, G-J.
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Figure 4. 
Immunofluorescent photomicrographs of ChAT (magenta), p75NTR (green) and merged 

(white) neurons and fibers in the striatum (A), MS (B, C), VDB (D), and NBM (E) of Sus 
scrofa domesticus. Note that virtually all ChAT-ir neurons and fibers are p75NTR positive in 

all basal forebrain cell groups, while striatal neurons were only ChAT immunopositive. 

Scale: 250 μm A, B; 25 μm C, D, E.
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Figure 5. 
Photomicrographs showing the distribution of ChAT-ir profiles in the hippocampus and 

thalamus of Sus scrofa domesticus. Coronal sections (A, B) showing ChAT-ir labeling in the 

dorsal and temporal aspects of the hippocampal formation and dentate gyrus (DG) and 

thalamic nuclei. Insert in B shows a cholinergic bipolar hippocampal neuron. Low (C) and 

high power (D, E) photomicrographs of a Nissl counterstained section showing ChAT-ir 

fibers within the polymorphic (C, D) and molecular layer (C, E) of the dentate gyrus. Scale 

1000 μm A, B; 100 μm C.
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Figure 6. 
Photomicrographs showing ChAT-ir profiles in the epithalamus, thalamus, hypothalamus 

and amygdala of Sus scrofa domesticus. ChAT-ir fibers within the caudal (A) and rostral 

thalamus and amygdala (B; see text for detailed description). ChAT-ir profiles within the 

lateral (LHb) and medial (MHb) (black arrow) habenular nuclei and fasciculus retroflexus 

(fr; open arrow) (C) and cholinergic neurons within the MHb nucleus (D). ChAT-ir neurons 

and fibers within the dorsal (E) and medial (F) arcuate nuclei and neuropil staining within 

the anterior pretectal nucleus (APT) (G). Scale: 500 μm A; 1000 μm C, D, G; 25 μm E, F.
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Figure 7. 
Photomicrographs of ChAT-ir profiles in the mesencephalon. Coronal section showing 

ChAT-ir neurons within the Edinger-Westphal (EW) and oculomotor nuclei and third cranial 

nerve rootlets (black arrows) (A). Low-power photomicrograph of a horizontal section 

showing the Edinger-Westphal, third (IIIn) and fourth (IVn) cranial nerve nuclei (B). 

Horizontal section showing swirling ChAT-ir fibers in the central portion of the 

interpeduncular nucleus (IP, C). Low-power photomicrograph (D) of ChAT-ir fibers within 

the superficial laminae of the superior colliculus. Scale: 250 μm A; 1000 μm B; 500 μm C, 

D. Anatomic orientation: R= rostral, C= caudal, L= lateral, M= medial.
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Figure 8. 
Photomicrographs of the pontomesencephalic cholinergic cell groups of Sus scrofa 
domesticus. ChAT-ir neurons and fibers (A, black arrows) of the parabigeminal (PB), 

pedunculopontine nucleus (PPN), and the laterodorsal tegmental nucleus (LDT). ChAT-ir 

neurons and fibers within the PPN (B), LDT (C) and PB (D). Scale: 1000 μm A; 25 μm B, 

C, D. Anatomic orientation: R= rostral, C= caudal, L= lateral, M= medial.
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Table 1

Summary of Antibodies Used

Antigen Description of Immunogen
Source, Host 

Species, Cat. #, 
RRID

Dilution

Choline acetyltransferase (ChAT) Human placental Choline acetyltransferase

Millipore, goat 
polyclonal, Cat# 

AB144P, 
RRID:AB_2079751

Immunohistochemistry: 1:1,000 
Immunofluorescence: 1:100

Low affinity neurotrophin 
receptor (p75NTR)

GST fusion protein corresponding to the 
intracellular domain (residues 274–425) of rat 

p75 neurotrophin receptor

Millipore, rabbit 
polyclonal, Cat# 

07-476, 
RRID:AB_310649

Immunohistochemistry: 1:3,000 
Immunofluorescence: 1:300

Galanin (GAL)

Synthetic peptide: 
GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-

amide (rat Galanin 1–29) coupled to BSA via 
carbodiimide

Gift from E. 
Theodorsson, rabbit 

polyclonal, 
RatGal4, 

RRID:AB_2314520

Immunohistochemistry : 1:1,000
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