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Abstract

In light of the clinical evidence implicating dopamine in schizophrenia, and the prominent 

hypotheses put forth regarding alterations in dopaminergic transmission in this disease, molecular 

imaging has been used to examine multiple aspects of the dopaminergic system. Here we review 

the imaging methods used and compare the findings across the different molecular targets. 

Findings have converged to suggest early dysregulation in the striatum, especially in the rostral 

caudate, manifesting as excess synthesis and release. Recent data showed deficit extending to most 

cortical regions, and even to other extrastriatal subcortical regions not previously considered to be 

“hypodopaminergic” in schizophrenia. These findings yield a new topography for the 

dopaminergic dysregulation in schizophrenia. In this review we discuss the dopaminergic 

innervation within the individual projection fields to provide a topographical map of this dual 

dysregulation and explore potential cellular and circuit based mechanisms for brain region-

dependent alterations in dopaminergic parameters. This refined knowledge is essential to better 

guide translational studies and efforts in early drug development.
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I. Historical perspective on dopamine research in schizophrenia

Dopamine (DA) has been a focus of schizophrenia research for decades, yielding two prior 

conceptual formulations for dopamine’s involvement in schizophrenia. In 1966 Rossum and 

colleagues proposed a state of excess dopaminergic stimulation in patients with 

schizophrenia (SZ) (1), substantiated later by the discovery of the D2 receptor binding 

profiles of antipsychotics and the psychotogenic effects of DA agonists (2–4). This was later 

reformulated as an imbalance between excess subcortical DA and a deficit in cortical DA, in 

light of evidence suggesting a prefrontal cortical deficit in schizophrenia and the prominent 

role of DA in mediating prefrontal-dependent cognitive processes (5, 6). The availability of 

imaging tools to measure aspects of dopaminergic transmission in vivo allowed testing of 

these formulations in patients. Improved scanner technology enabled better anatomical 

resolution. Earlier detection and awareness of the prodromal phase of the disease (7, 8) 

resulted in testing earlier stages of the illness (9–11), while stress paradigms (12, 13) 

allowed probing responsiveness of the system to a relevant risk factor for the disease (14, 

15), together yielding a replicable set of findings across labs documenting excess 

presynaptic dopaminergic transmission in the striatum, confirming the original formulation. 

Furthermore, data from our lab provided new evidence for a cortical DA deficit (16), 

supporting the second formulation, but also expanding it to multiple extrastriatal regions not 

previously considered to be “hypodopaminergic” in schizophrenia. A new topographical 

mapping of DA dysregulation in schizophrenia is the topic of this review. We will describe 

the imaging methods used to examine dopaminergic indices, and findings in SZ. We will 

then review dopaminergic innervation and its imaging-relevant targets within individual 

projection fields to provide a topographical map of the findings and suggest potential 

mechanisms for brain region-dependent DA dysregulation in schizophrenia. Finally, we 

discuss future directions.

II. Methodology for imaging the dopamine system

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography 

(SPECT) have been used to measure dopamine-related parameters via administration of 

radioligands that bind to receptors, transporters or other target molecules, or alternatively, 

trace a metabolic pathway. For radioligands that reversibly bind to receptors, the most 

commonly derived parameter is the binding potential (BP) (17, 18), which is proportional to 

BAVAIL/KD, where BAVAIL is the concentration of the target molecule available for binding 

to the radiotracer and KD is the equilibrium dissociation constant of tracer for the target. 

There are several versions of BP, depending on which concentration of tracer is used as a 

reference value. For the frequently used BPND, (Figure 1B–D), the reference is the 

nondisplaceable compartment, comprised of the sum of the free plus nonspecifically-bound 

radiotracer in brain; BPND = fND*BAVAIL/KD, where fND is the free fraction of the 

nondisplaceable radiotracer concentration. BPND is an indicator of target molecule 

availability, based on the assumption that KD and fND are not different across groups. 

BAVAIL, as opposed to the total target concentration BMAX, accounts for the masking of 

some of the targets by the binding of endogenous ligands. BPND is also the ratio of 

specifically-bound to nondisplaceable radiotracer concentrations at equilibrium, thus 
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representing the associated signal-to-noise ratio (see reference 17 for complete definitions). 

A BPND lower than 0.5, i.e. signal lower than half of background, is considered too low to 

provide meaningful information.

Tracers with moderate affinity for dopamine-D2-like receptors (D2 and D3, referred to from 

here on as D2), such as [11C]raclopride and [123I]IBZM, provide reliable BPND in the 

striatum (Figure 1D). [18F]fallypride has an order of magnitude higher affinity (19, 20) and 

provides reliable quantification in striatum, thalamus, midbrain, hippocampus, amygdala and 

temporal cortex. Higher affinity tracers such as [11C]FLB457 (21) or [123I]epidipride (22) 

can be used to quantify D2 density in cortex, although their equilibration is prohibitively 

slow for quantification in striatum. Pharmacologically, all of these tracers are antagonists. 

[11C]-(+)-PHNO is a D3 preferring agonist (23–25). Tracers for D1-like receptors (D1 and 

D5, hereafter D1) include [11C]NNC112 and [11C]SCH23390 (26, 27). Both have been used 

to quantify D1 in cortex and striatum, although [11C]SCH23390’s BPND is below 0.5 in 

cortex.

Tracers for D2 receptors are sensitive to changes in the concentration of DA through 

competitive interaction. Pharmacological challenges that increase synaptic DA, such as 

concomitant release and reuptake blockade by amphetamine, or reuptake blockade by 

methylphenidate, decrease BPND; whereas depletion paradigms that reduce baseline synaptic 

DA, such as blockade of tyrosine hydroxylase activity with alpha-methylparatyrosine (α-

MPT), increase BPND. These effects can be quantified as ΔBPND, the percent change of 

BPND across conditions (Figure 1E,F). D2 ligand displacement by challenge-induced DA 

release occurs at the subset of D2 receptors that are in close proximity to DA release sites 

(28–32). This has led to the postulation that net change in tracer binding at these 

perisynaptic receptors may comprise the PET “DA release” signal (33), which refers to our 

PET measurement of intrasynaptic DA levels, either evoked (due to amphetamine 

administration) or basal (measured with the depletion paradigm).

[18F]DOPA is a substrate for amino acid decarboxylase (AADC), which catalyzes L-

Dihydroxyphenylalanine (DOPA) into DA (34). In terminals containing AADC, [18F]DOPA 

is converted to 6-fluorodopamine ([18F]6-FDA), a substrate for vesicular monoamine 

transporter 2 (VMAT2), which loads DA into vesicles (Figure 1A). [18F]6-FDA cycles 

through exocytosis, reuptake through the DA transporter (DAT), and reloading into vesicles. 

This is generally treated as an irreversible process. The outcome measure is Kin, the steady-

state uptake rate constant of the tracer, characterizing [18F]6-FDA formation when the 

concentration of [18F]DOPA in arterial plasma and in brain are at a hypothetical steady-state. 

Kin indicates the capacity for DA synthesis. A related outcome measure is Ki
cer which is the 

steady state uptake rate (Kin) relative to cerebellum concentration of [18F]DOPA, rather than 

the arterial plasma concentration, but studies utilizing Ki
cer require the implicit assumption 

that concentration of [18F]DOPA in the cerebellum does not differ between groups.

[18F]DOPA quantification is complicated by formation in the periphery of the radiolabeled 

metabolite 3-O-methyl-FDOPA ([18F]OMFD) due to catechol-O-methyl transferase 

(COMT) activity (35); pretreatment with entacapone can reduce this effect. In addition, the 

irreversibility of [18F]DOPA uptake is an idealization, as [18F]6-FDA is a substrate for both 
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monoamine oxidase (MAO) and COMT, and metabolites diffuse out of the brain, affecting 

measurement of Kin. Some models account for this washout with an estimated parameter 

called kloss (35, 36).

[18F]DOPA Kin can be measured in striatum but extrastriatal Kin is lower and more difficult 

to measure. In substantia nigra (SN), Kin is approximately half as large as in striatum and, in 

cortex, too low to be interpretable (37).

Transporters have also been imaged using [11C]DTBZ for VMAT2 (38) (Figure 1B), 

[11C]PE2I for DAT (Figure 1C) in striatal and extrastriatal regions using PET, and 

[123I]βCIT (39) for striatal DAT using SPECT.

III. Imaging the dopamine system in schizophrenia

We review here findings from studies that used molecular neuroimaging to investigate the 

DA system in vivo in schizophrenia - first in striatum, then in extrastriatal regions, with a 

focus on cortex and midbrain (see Supplemental Table S1).

III.A. Striatum

III.A.1. Presynaptic—Higher striatal [18F]DOPA was first reported in psychosis related to 

epilepsy and schizophrenia (40). Seven studies replicated this finding in schizophrenia (9, 

41–47), while two did not (48, 49), and subsequent meta-analyses confirmed the finding (50, 

51). Using D2 radiotracers and a psychostimulant challenge, four studies showed higher 

release in the striatum of antipsychotic-free (Rx-free) patients compared to healthy controls 

(HC) (52–55). Excess DA release correlated with transient stimulant-induced worsening of 

psychotic symptoms in patients, and was observed at disease onset and during exacerbations, 

but not during periods of remission (56). Furthermore, baseline synaptic DA assessed with a 

depletion paradigm (57) were enhanced in striatum in schizophrenia (SZ), and were 

correlated with amphetamine-induced release in a cohort of antipsychotic-naïve (Rx-naïve) 

patients (58). Using a higher-resolution scanner and more sophisticated region-of-interest 

(ROI) analysis methods to identify the striatal substructures, we later demonstrated that 

excess striatal DA was most prominent in the rostral caudate (59). In the associative striatum 

(AST), which contains the rostral caudate, rostral putamen and post-commissural caudate, 

the effect size was 0.70, compared to 0.14 in the limbic striatum (LST or VST, ventral 

striatum), and 0.34 in the sensorimotor striatum (SMST, posterior putamen). This excess 

does not seem to be related to excess dopaminergic innervation as VMAT2 (60, 61) and DAT 

(62–72) were normal.

III.A.2. Postsynaptic—Several studies have examined striatal D2 availability. A meta-

analysis of 23 studies showed small elevation and greater variability in SZ. When analysis 

was limited to Rx-naïve patients, SZ and HC did not differ (51), suggesting that D2 increases 

in striatum in SZ may be due to prior antipsychotic treatment. Striatal D1 availability is also 

normal in SZ (27, 73–75).

Further support for antipsychotic-induced upregulation of striatal D2 derives from α-MPT 

studies (57–59), which provide a direct measure of “true” D2 density by unmasking the 
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fraction of receptors bound by endogenous DA. A new analysis of these previously 

published studies shows that unmasked BPND is higher (by 10–20%) in previously-

medicated, but not Rx-naïve patients, compared to HC (Table 1) in striatum (57–59) and in 

rostral caudate (59). In contrast, in the same cohorts, α-MPT-induced ΔBPNDs showed that 

striatal DA levels are 65–120% higher in both Rx-naïve and previously-medicated patients 

compared to HC. This suggests that striatal dopaminergic hyperactivity is present regardless 

of prior antipsychotic treatment and thus a more reliable index of DA dysregulation than 

receptor upregulation.

III.A.3. Clinical correlates of the striatal findings—The striatal dopaminergic 

hyperactivity in schizophrenia is associated with the psychotic symptoms of the illness. It 

was shown to extend to physiological conditions under psychosocial stress and to be most 

enhanced in AST and SMST in Rx-naïve patients and in the prodrome (14). Elevated striatal 

[18F]DOPA uptake also precedes the onset (76), correlates with greater severity of 

prodromal symptoms and neuropsychological impairment, predicts conversion and, in both 

the prodrome and SZ, relates negatively to prefrontal cortical activation during cognitive 

tasks in (43, 77, but also see 78). It is also predominant in the AST (79, 80).

Furthermore, excess striatal DA predicts treatment response of psychosis to antipsychotics 

(58) and is higher in antipsychotic-responsive patients (81).

SZ (82) and individuals at clinical high risk for schizophrenia (CHR) (11) with comorbid 

substance use display a blunted striatal dopamine release. However, despite this presynaptic 

blunting, D2 receptors remain supersensitive to stimulation, leading to psychosis. This 

suggests two distinct alterations in psychosis: excess presynaptic release in striatum as well 

as a functional supersensitivity of striatal D2.

III.B. Cortex

III.B.1. Presynaptic—Using [11C]FLB457 we showed significant blunting of DA release 

throughout the cortex in SZ. DA release in the dorsolateral prefrontal cortex (DLPFC) was 

significantly positively associated with working memory-related BOLD activation, 

suggesting a relationship between blunted release and deficits of frontal cortical function 

(16). [18F]DOPA (45–48) reports in the cortex are uninterpretable (37).

III.B.2. Postsynaptic—D2 availability in SZ is normal in prefrontal (16, 83–85), occipital 

(16, 84), parietal (16, 84), entorhinal (86), anterior cingulate (16, 83, 87) (except for (84)), 

and insular (16, 86) cortices. A meta-analysis (excluding (16)) found no differences in 

temporal cortex (88). One study reported lower binding in uncus (87) while another did not 

(16).

Studies of prefrontal cortical D1 availability in SZ yielded inconsistent results of increases 

(74, 75) and decreases (27), compared to HC (Supplemental Table S1). To reconcile these 

findings, both D1 tracers were examined in the same subjects (89, 90) and showed similar 

alteration using either tracer, suggesting cohort-related effects rather than tracer differences. 

Prior exposure to antipsychotics may explain some of these discrepancies, as higher D1 
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levels were observed only in Rx-naïve patients, and duration of Rx-free interval positively 

correlated with higher binding in previously-treated patients (75).

III.C. Extrastriatal subcortical regions and midbrain

III.C.1. Presynaptic—[18F]DOPA uptake in SZ is normal in thalamus (47) and entorhinal 

cortex (47), but enhanced in amygdala (46) and midbrain (46, 91). In midbrain, one study 

reported higher [18F]DOPA utilization (K) and turnover (kloss), while Kin was numerically 

lower (46). Another reported higher Ki
cer in the midbrain, which correlated with symptom 

severity in SZ (91) and predicted conversion in CHR (92). We measured significant blunting 

of amphetamine-induced DA release measured by [11C]FLB457 displacement in 

extrastriatal subcortical regions including midbrain (16). Thus, for the amygdala and 

midbrain, PET indices of presynaptic DA synthesis/turnover and amphetamine-evoked DA 

release seem discrepant. If this discrepancy is indeed true, it may suggest elevated enzymatic 

activity in the presence of lower cytoplasmic and vesicular pools of DA in midbrain in SZ 

(see discussion below).

Using [11C]PE2I, one study reported higher DAT in the thalamus but not in SN (72). 

However, the small sample size and low BPND suggest caution in interpreting this study. 

VMAT2 was normal in extrastriatal regions (61) except for ventral midbrain, where an 

increase was reported (93); however as BPND was below 0.5, this finding should also be 

considered with caution.

III.C.2. Postsynaptic—Of the nine studies in thalamus (16, 84–87, 94–97), only one 

((94), which overlaps with (98)) found lower D2 in SZ, and meta-analysis (88) was negative. 

Likewise, no differences were found in globus pallidus (97), amygdala (16, 86, 87), 

entorhinal cortex (16, 86) or hippocampus (84, 86, 87). In SN, normal (16, 86, 97, 99), 

higher (87) and lower (96) D2 were reported; and meta-analysis (88) was negative.

No differences in D1 availability have been observed in extrastriatal subcortical ROIs (see 

Supplemental Table S1).

III.D. Summary of imaging findings

In summary, three main dopaminergic alterations have emerged in schizophrenia:

1. DA synthesis and release capacity are increased in the striatum (51).

2. Although needing replication, DA release capacity in prefrontal cortical 

and other extrastriatal regions is decreased (16).

3. There is subregional heterogeneity in the DA dysregulation within the 

striatum. The rostral caudate and the AST in general, show lower DA 

release capacity than the SMST in HC (100), but not in SZ due to a 

prominent increase in the AST (9, 14, 101). Supportive evidence for the 

prominent role of DA dysregulation in AST also derives from studies in 

prodrome (9, 14).
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4. Postsynaptic receptors and transporters do not show a reliably detectable 

altered expression either in the striatum or in extrastriatal regions of the 

brain in SZ.

IV. Topography and synaptic characteristics of dopaminergic projections

To understand the abnormal PET DA signal in SZ, we will consider the regional anatomical 

factors that may affect it. Here we review the complex topography and chemical 

neuroanatomy of DA systems underlying PET indices of basal and evoked DA release.

DA projections comprise the retrorubral field (RRF)(A8), substantia nigra (SN)(A9) and 

ventral tegmental area (VTA)(A10) (102–104) (Figure 2). These have different intrinsic 

properties and afferents regulating spike activity; synthesis, release or reuptake of DA; and 

postsynaptic effects (102–105) (Figure 3). “Dorsal tier” DA neurons, a band along the dorsal 

SN pars compacta (SNc) and contiguous regions of VTA and RRF, project to cerebral 

cortex, ventromedial striatum, pallidum, “extended amygdala”, and thalamus. The “ventral 

tier” neurons, including the densocellular region of the SNc and DA cell columns within the 

pars reticulata (SNr), project to the striatum. The SMST receives a dense projection, with 

high density of DA release sites (105), accounting for the higher PET DA release signal, and 

highest levels of DAT, exerting tighter spatiotemporal regulation of DA diffusion compared 

to other subregions. The VST, innervated by VTA and medial SNc DA neurons, has lower 

DA release potential and lower levels of DAT and D2 autoreceptors (106, 107). The AST 

receives a mosaic of dorsal and ventral tier neurons.

The SMST, AST and VST also differ in glutamatergic, cholinergic, and other local (e.g. 

opioidergic) modulation of DA release, due to neurochemically distinct compartments 

within each of these subregions, called patch (or striosome) and matrix. These refer to a 

“mosaic” pattern of grouping of neurons that have differential neurochemical characteristics 

and specific connections to cortex and other brain regions (Figure 4). In the SMST, the 

ventral tier DA neurons innervate both the mu opioid receptor and substance P rich ‘patch’ 

and the enkephalin rich ‘matrix’ compartments; while in the AST, ventral tier innervation is 

selective to patches. This has implications for DA modulation of cortical afferents, as 

patches receive projections from limbic (e.g. amygdala) and paralimbic cortical areas (e.g. 

orbitofrontal cortex); whereas the matrix receives input from other prefrontal cortical regions 

such as DLPFC.

IV.A. Striatal organization

The topography of DA projections interfaces with regional and subcellular localization of 

DA receptors (Figure 3), which have 5–20-fold higher density in striatum compared to other 

regions (28, 86, 102–104, 108–111). Post-synaptic D1 and D2 are segregated onto different 

subpopulations of projection neurons and expressed on striatal interneurons. Cholinergic 

interneurons express D2-like receptors that mediate fast synaptic events and locally regulate 

DA release (105, 112). Taken together, ultrastructural and electrophysiological experiments 

indicate that D2-like receptors are positioned preferentially to mediate DA effects on 

striatopallidal projection neurons and cholinergic interneurons (28, 113). As with DA inputs, 

DA receptors and modulators of DA release show distinct patch-matrix distributions in AST 

Weinstein et al. Page 7

Biol Psychiatry. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and SMST: patches are richer in D1 receptors, lack parvalbumin-expressing interneurons, 

and show a paucity of cholinergic innervation as indexed by acetylcholinesterase fiber 

staining (104). Adding to this complexity, neuromodulators differentially affect DA release 

and projection neuron activity across the patch-matrix organization: e.g. substance P 

facilitates DA release within patch center, decreases it at patch-matrix border and has no 

effect in matrix; while enkephalin selectively boosts patch projection output via delta opioid-

mediated disinhibitory mechanisms (114, 115).

IV.B. Extrastriatal organization

Extrastriatal regions including cortex are innervated predominantly by the dorsal tier DA 

system (Figure 2), which is poor in transporter and D2 autoreceptors (102–104). In contrast 

to low innervation densities in rodents, primates have a dense and extensive cortical DA 

innervation (116). However, sparse cortical DAT expression suggests a low incidence of DA 

release sites (107). Moreover, low D2 density and heterogeneous synaptology and DA 

receptor topography (28) are all consistent with the smaller PET DA release signal in 

extrastriatal regions. In cortex, D2 are evenly distributed across projection neurons and fast-

spiking interneurons (28, 117). Thus, tracer displacement at D2 on fast-spiking interneurons 

may contribute more to the PET DA release signal in the cortex than in the striatum.

To summarize, spatiotemporal regulation of DA release and localization of D2-like receptors 

varies considerably across regions and adds complexity to the interpretation of regional and 

disease-related variation in the PET DA release signal (Figure 3).

V. Discussion

The literature reviewed here shows that: 1) stimulant-induced presynaptic DA release is 

decreased in most brain regions in schizophrenia (16), with exception of the striatum where 

it is enhanced, especially in the rostral caudate (59); 2) in this region, the excess is not 

observed under conditions of substance abuse despite psychosis (11, 82); 3) alterations in 

expression levels of receptors and transporters are less reliably observed (51, 88), which 

does not exclude an alteration in function of these receptors in schizophrenia since even 

under conditions of low DA tone, as in comorbidity with addiction, blocking striatal D2 

remains therapeutic and stimulating striatal D2 is psychotogenic (82); 4) antipsychotic 

exposure results in upregulation of striatal D2 (51) and may induce down-regulation, or 

normalization, of cortical D1 (75); and 5) the global nature of the presynaptic DA 

dysregulation is likely to massively alter information processing in multiple domains and 

result in the global symptomatology that we observe in SZ, although the specific 

mechanisms that mediate the formation of abnormal learning (118) and symptoms are 

currently unknown.

It remains to be seen whether extrastriatal DA deficits occur in the same subjects who 

display striatal DA upregulation, thus yielding a ‘dual dysregulation’ of DA alteration, as 

proposed in the reformulation of the DA hypothesis of schizophrenia (5, 6). From this 

perspective, studies using stimulant challenge and those using [18F]DOPA have provided 

convergent results in striatum, but not in extrastriatal regions. However, when investigators 

included metabolism of [18F]6-FDA (kloss) (46) in their model, they observed higher kloss in 
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the amygdala and midbrain in SZ, indicating a possible state of lower intracellular DA tone; 

excessive washout of DA is consistent with the lower evoked release that we observed. This 

provides one potential mechanism to reconcile these findings and to support our observation 

of extrastriatal DA release deficits. The finding of increased Ki
cer (91) on the other hand, is 

potentially susceptible to group differences in cerebellar concentration of [18F]DOPA. 

Additional support to our finding of cortical and midbrain deficit derives from the 

postmortem observations of reduced tyrosine hydroxylase (TH) (119, 120), however high 

TH (91) and high (121) or normal (122) TH mRNA have also been reported. More research 

is needed to understand these discrepancies.

Since one of the main findings in SZ is dysregulation of presynaptic DA function, we have 

reviewed the multifactorial regulation of DA release and its detection with PET. The AST is 

of particular interest. In HC, the PET DA release signal in the AST is lower than in the 

SMST (9, 14, 59); whereas in SZ, it is increased to levels similar to the SMST. We speculate 

that in the healthy brain, subregional differences may reflect differences in DA innervation, 

regulation of DA release, and/or distributions of perisynaptic D2-like receptors. The 

difference in the patch/matrix ratio between the AST and SMST could also reflect and/or 

contribute to lower spontaneous DA release in AST (105, 123, 124). For example, given the 

low cholinergic innervation of patches, ACh-augmentation of DA release may be lower in 

this compartment, and thus relatively lower in the patch-enriched AST. We could postulate 

that, in schizophrenia, a disruption of brain development leads to abnormal or incomplete 

development of the AST, consistent with structural imaging studies showing lower caudate 

volume in early-stage, unmedicated patients with SZ relative to HC (104, 125). A 

developmental disruption leading to altered differentiation of AST from SMST and/or lower 

patch/matrix compartmentalization in the AST might lead to abnormalities in the patterning 

of DA and other inputs to the AST, DA interactions with acetylcholine and other striatal 

neurotransmitters (104, 105), and DA modulation of cortical inputs to the AST (126). 

Testing these ideas requires updating the existing postmortem literature (125) with studies 

applying modern labeling and imaging methods to render the 3-dimensional 

chemoarchitecture of the striatal complex in healthy humans and patients with 

schizophrenia. Additional models that consider regional and subregional variation in DA 

synaptology and modulation of DA release across striatal subcompartments are also needed.

The mechanisms underlying cortical deficits in the PET DA release signal in schizophrenia 

remain to be determined, but given the distribution of D2 receptors, may involve changes in 

DA signaling at a variety of neuronal populations including cortical interneurons. The 

generalized and profound deficits in extrastriatal DA release raise an important therapeutic 

challenge for the field, as currently approved antipsychotics do not remedy this deficit or the 

resultant low stimulation of extrastriatal dopaminergic receptors. This generalized deficit is 

also consistent with the multi-domain functional manifestations of the illness, ranging from 

deficits in social cognition to executive function and motivation.

While higher DA may be linked to better cognition in a non-schizophrenic brain (127–130), 

in schizophrenia, higher DA may have a dysfunctional impact either because of its 

modulatory role on an already abnormal circuitry or because of intrinsic aberrant dynamics 

of DA cell firing patterns.
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While this literature does not provide mechanistic understanding of the dysfunction, it has 

provided a refined topographical knowledge that can be used in translational studies and in 

drug development. There is unfortunately limited knowledge at this point regarding the 

specific alterations in the multiple cellular components that could mediate the altered PET 

DA signal in schizophrenia. We have reviewed above and discussed a few “suspect” cellular 

mechanisms. These need to be formally tested in postmortem tissue, in animal models that 

show DA dysregulation, and in cellular systems such as induced Pluripotent Stem Cells 

(iPSCs) from patients who show abnormal DA PET signal, to isolate specific components 

that may be involved. Once those are defined they can be used in drug development as 

specific targets for novel therapies. Our review highlights the urgent need for this cellular 

work to be carried out in tandem with imaging in patients.
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Figure 1. Dopaminergic Imaging Targets
Schematic of imaging methods used to measure aspects of the dopamine (DA) system in 

vivo. Graphic depicts progression of DA from synthesis (A), storage (B), to release (E,F), 

then either reuptake by dopamine transporter (DAT, C) or binding to receptor (D). Imaging 

targets and related paradigms are described in accompanying text.
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Figure 2. Topography of dopaminergic innervation and receptor distribution
Schematic representation of distributions of dopamine D1 and D2 receptors (left 
hemispheres) and patterns of dopaminergic innervations (right hemispheres) in select 

primate (left panel) and rodent (right panel) brain regions. Left hemispheres: Brown and 
black squares depict D1 and D2 receptors, respectively. Throughout the primate and rodent 

brain, D1 receptors (D1) are present at a higher density than D2 receptors (D2). The striatum, 

and in particular the caudate-putamen, has the highest densities of dopamine (DA) receptors. 

DA receptors are also present in medium-to-low densities in the cortex, pallidum and 

midbrain. Receptor densities are relatively low in thalamus, amygdala and hippocampus. See 

text for details. Right hemispheres: Topographical distribution of DA cell bodies (filled 
circles) and their terminals (lines). In the primate panel, red circles represent DA cell bodies 

in the VTA with terminals in the cortex, striatum (in particular the ventral part), pallidum, 

thalamus and amygdala. The VTA dopaminergic cellular organization is better characterized 
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in the rodent where discrete VTA cell groups project to the cortex (red), nucleus accumbens 

(dark green) and amygdala (orange). In the primate, SN dorsal tier cell group (light green) 

projects to the cortex and ventral striatum, as well as the pallidum, thalamus and amygdala. 

The rodent brain in contrast has a low density of these dorsal tier neurons. The SN ventral 

tier groups (SN compacta densocellular part (dark blue) and fingers (light blue)) project 

heavily and topographically to caudate-putamen with medium/low innervations of cortex, 

ventral striatum, thalamus and amygdala. See text for further details.
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Figure 3. Topography of dopamine release findings in schizophrenia compared to controls
Schematic representations of DA release characteristics in the cortex (top), striatum (middle) 

and midbrain (bottom) in healthy controls (HC) and patients with schizophrenia (SZ) based 

on imaging findings in patients. DA neuron cell bodies, terminals and transmitters are 

depicted in red. Color gradients depict DA terminal densities. Cortex: The cortex receives 

sparse dopaminergic innervation that is poor in dopamine D2 receptors (D2) and transporter 

expression. This sculpts D2 displacement measurement, which is low in the cortex. In 

schizophrenia there is evidence for reduced cortical DA release. See text for details. 

Striatum: DA and cortical neuron terminals (green) are shown innervating medium spiny 
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neuron spines (orange). Also shown are local cholinergic (blue) and GABAergic (brown) 

interneuron populations forming the striatal microcircuitry. There is considerable 

heterogeneity in DA release across striatal regions, e.g. dopaminergic innervation of ventral 

striatum (VST, also referred to as LST) is relatively sparse and is derived from dorsal tier 

cell groups that are poor in D2 and DAT. In contrast the sensorimotor striatum (SMST) 

receives dense dopaminergic inputs mostly from the ventral tier DA neurons that are rich in 

D2 and DAT. A greater number of synapse sites in the ventral striatum and high levels of D2 

and DAT in SMST may account for high D2 displacement in these regions. Compared to 

VST and SMST, stimulant induced D2 displacement is low in the associative striatum 

(AST). In schizophrenia, DA release is increased across substriatal divisions due to a 

prominent increase in the AST. Midbrain: Shown are DA cell bodies, local GABAergic 

interneurons (brown) and D1 medium spiny neuron terminals (yellow). While there is 

heterogeneity in the level of expression of D2 receptors and DAT (e.g. dorsal tier and 

especially medial VTA neurons have low D2 and DAT levels), imaging studies showing 

subregional analysis of D2 displacement are lacking. However, in SZ there is a reduced 

stimulant-induced D2 displacement.
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Figure 4. Striatal patch-matrix connectome
Schematic representation of striatal patch-matrix connectome. Afferents: The cortex 

topographically projects to the striatum. Within the cortex deeper cortical layers innervate 

striatal patches (dark brown) whereas the surrounding matrix (light brown) is innervated by 

superficial cortical layers (light brown). Within the midbrain, the dorsal tier (orange and 
yellow) innervates the matrix, as do the non-dopaminergic cells (dark green) from the same 

region. Patch innervation from the midbrain is mostly derived from the ventral tier cell 

groups (dark blue). Non-dopaminergic (presumably GABAergic) projection neurons within 

the SNr innervate the striatal matrix complex. Efferents: Striatal patch neurons (maroon) 

mostly project to ventral tier DA cells. These include both D1 receptor expressing medium 

spiny neurons and other striatal projection neurons. Striatal projection neurons within the 
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matrix project to both DA and non-dopaminergic populations within the dorsal tier and 

GABAergic populations in the SNr. See text for further details.
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