
Despite new medical and surgical interventions, age-
related macular degeneration (AMD) remains the leading 
cause of irreversible blindness in patients older than 65 
years in developed countries [1]. The majority (about 90%) 
of patients suffer from dry AMD that is, in the early stage, 
characterized by the thickening of and structural changes 
in Bruch’s membrane, basal laminar deposits (drusen), and 
lipofuscin accumulation in the RPE. In the advanced stage, 
dry AMD is characterized by geographic atrophy and chorio-
capillaris degeneration. The remaining patients suffer from 
exudative (neovascular) AMD characterized by choroidal 
neovascularization (CNV) and subretinal edema. Geographic 
atrophy, CNV, and edema are associated with photoreceptor 
damage resulting in progressive loss of visual acuity [2].

The pathogenesis of AMD is still incompletely under-
stood. AMD is caused by age-dependent functional impair-
ment and degeneration of RPE cells, and by a decrease in 
the choroidal blood flow; both result in hypoglycemia and 
hypoxia of the outer retina. A major function of the RPE 
is phagocytosis and digestion of membrane discs that are 

shed from the tips of photoreceptor outer segments [3]. The 
discs contain high amounts of peroxidized lipids and protein 
adducts that are formed due to oxidative stress resulting from 
light exposure, the high oxygen consumption of photorecep-
tors, and the high polyunsaturated fatty acid content of photo-
receptor membranes [4,5]. The age-dependent dysregulation 
of protein and lipid recycling and degradation pathways in 
RPE cells [6,7] impairs the regular degradation of peroxi-
dized photoreceptor lipoproteins; this impairment results 
in lipofuscin accumulation in RPE cells and deposition of 
drusen in Bruch’s membrane [8,9]. Accumulated lipopro-
teins constitute a hydrophobic barrier that adversely affects 
the transport of oxygen and nutrients from the choriocapil-
laris to the photoreceptors [10]. The resulting hypoglycemia 
and hypoxia of the outer retina induce overproduction of 
angiogenic factors by the RPE that stimulate the growth of 
choroidal vessels and increase the permeability of the outer 
blood–retinal barrier [10]. The toxic effects of peroxidized 
photoreceptor waste products and the decline in cellular 
clearance systems also cause chronic local inflammation 
associated with complement-mediated RPE cell injury, for 
example [5,9-12]. In addition to local inflammation, AMD is 
associated with systemic inflammation [13-16].

Vascular endothelial growth factor (VEGF) is the most 
relevant angiogenic factor induced by retinal hypoxia [17]. 
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In addition to glial cells and invading macrophages, RPE 
cells are an important source of VEGF in the outer retina 
[18]. The efficiency of the clinical use of anti-VEGF agents 
in the treatment of CNV [19] underlines the important role 
of VEGF in pathological neovascularization. However, in 
more than half of patients visual acuity does not improve 
after anti-VEGF therapy, and about 10% of patients do not 
respond to treatment [20]. Therefore, it was suggested that in 
addition to VEGF, further angiogenic factors are required to 
promote the development of CNV [10,21]. Such angiogenic 
factors produced by the RPE are, for example, placental 
growth factor (PlGF), platelet-derived growth factor (PDGF), 
basic fibroblast growth factor (bFGF), heparin-binding 
epidermal growth factor-like growth factor (HB-EGF), and 
transforming growth factor-β (TGF-β) [10,22-27]. In addi-
tion, inflammatory and immune mediators (for example, 
complement proteins that accumulate in drusen and induce 
expression of VEGF in RPE cells) play a pathogenic role in 
CNV [9].

In addition to advanced age, race, and genetic factors, 
such as complement gene polymorphisms [28], lifestyle 
factors are associated with the risk of AMD. These factors 
include sunlight exposure, cigarette smoking, and nutri-
tion [29]. Low levels of nutritional antioxidants and fat-rich 
nutrition increase the risk of AMD [1,30]. Plasma lipids, 
such as cholesterol and triglycerides, accumulate in Bruch’s 
membrane and contribute to drusen formation [31,32]. 
Obesity is associated with AMD [33,34], possibly because 
obesity induces oxidative damage and systemic vascular 
inflammation.

AMD was suggested to represent an ocular manifestation 
of a systemic disease process [14]. Associations have been 
reported between AMD and hypertension, cardiovascular 
disease, cerebrovascular disease, dyslipidemia, chronic 
kidney disease, and neurodegenerative disorders [14]. Cardio-
vascular disease and AMD share common risk factors, such as 
atherosclerosis, systemic markers of inflammation, cigarette 
smoking, and hyperlipidemia [35-37]. An important aspect of 
cardiovascular disease is hypertension. Systemic hyperten-
sion confers increased risk of AMD. The association between 
high blood pressure and AMD has been well documented in 
various population-based studies [36,38-40]. Some studies 
described an association between neovascular AMD and 
hypertension, but not geographic atrophy [29,33,34,41,42]. 
The shared risk factors suggest that cardiovascular disease 
plays an etiological role in the development of AMD [34]. 
In the present article, we direct attention to two nutritional 
factors that may affect directly and indirectly (via the effect 
on blood pressure) the development of AMD: the intake of 

dietary salt (sodium chloride) and drinking water. Altera-
tions in salt and water consumption may offer nutritional 
approaches to prevent age-related retinal disorders, such as 
AMD.

Hypertension: Systemic hypertension affects a large propor-
tion of the adult population and is a significant cause of 
morbidity worldwide. It was reported that 27% of adult 
Americans suffer hypertension (≥140/90  mmHg or use 
of antihypertensive medications) and another 31% suffer 
prehypertension (120–139/80–89 mmHg, no medication) 
[43]. Among adults older than 50 years, the lifetime risk of 
developing hypertension approaches 90% [44].

Blood pressure is proportional to cardiac output and 
vascular resistance to blood f low. Hypertension mainly 
results from an increase in the blood volume caused by 
increased osmotic pressure of the plasma (plasma osmo-
lality); the expansion of the blood volume induces increases 
in cardiac output and in peripheral vascular resistance (Figure 
1) [45-47]. Blood pressure increases with age [48] because of 
various age-related alterations. For example, plasma osmo-
larity increases [49], and arterial walls become less elastic; 
the latter is caused by arteriosclerosis and atheromatosis. 
AMD is associated with increased systemic arterial stiffness 
[37].

Blood pressure can be lowered by decreases in cardiac 
output, vascular smooth muscle tonus, and plasma osmolality. 
This can be achieved with antihypertensive medications 
and with lifestyle modifications, such as increased physical 
activity, weight loss, and dietary alterations, including the 
Dietary Approaches to Stop Hypertension (DASH) diet (low-
fat foods rich in fruits and vegetables and reduced in satu-
rated fat and cholesterol), and moderation of alcohol intake 
[50,51]. Plasma osmolality can be decreased by reducing salt 
intake, increasing potassium intake, and increasing water 
consumption.

Plasma osmolality and hypertension: The role of salt intake: 
Plasma osmolality depends on the levels of glucose, lipids, 
and ions. Elevated plasma glucose frequently occurs during 
the postprandial phases and is common among elderly indi-
viduals because of the high prevalence of glucose intolerance 
[52,53]. However, the most relevant factor that determines 
plasma osmolality is the plasma salt level which is dependent 
on the balance between salt intake and excretion (Figure 1) 
[51,54]. Consumption of dietary salt is one cause of the age-
related increase in blood pressure [48].

High intake of dietary salt is a main risk factor of cardio-
vascular disease. There is a linear relationship between salt 
consumption and blood pressure; however, the relationship 
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between salt intake and the incidence of cardiovascular 
disease is nonlinear [54]. The optimal range of daily salt 
consumption is 2–3 g sodium/d, corresponding to about 5–8 g 
salt/d; higher and lower values increase the risk of cardiovas-
cular disease [54]. Low salt consumption (<4 g/d) has various 
adverse consequences, such as increased insulin resistance, 
increased aldosterone secretion (which stimulates sodium 

reabsorption), activation of the renin-angiotensin system, 
and increased sympathetic nerve activity; all of these effects 
increase blood pressure [55]. Human societies differ in levels 
of salt consumption. There are populations with moderate 
salt intake, such as in North America (about 5–8 g/d), Great 
Britain (about 9 g/d), and Germany (about 6–9 g/d), and 
populations with high salt consumption, such as in Finland 

Figure 1. Factors that influence arterial blood pressure. Blood pressure is proportional to cardiac output and the total peripheral resistance. 
The latter is dependent on the stiffness of the arterial walls and the level of arteriolar constriction. High intake of dietary salt causes a 
rise in extracellular (including plasma) osmolality during the postprandial phases. The elevation of extracellular osmolality results in an 
increase in the extracellular fluid (including blood) volume by various mechanisms: osmotic movement of cellular water to extracellular 
fluids, stimulation of the thirst center resulting in increased fluid intake, stimulation of renal salt excretion, and secretion of vasopressin that 
produces increased renal water retention. All of these mechanisms reduce the plasma salt level. The blood volume expansion increases cardiac 
output and induces arteriolar constriction (to prevent tissue overperfusion); both result in hypertension. The level of arteriolar constriction 
is regulated by the activities of vasoconstrictory (stretch, sympathetic activity, angiotensin II, epinephrine, vasopression, endothelin, etc.) 
and vasodilatory factors (acetylcholine, NO, etc.). Peripheral resistance increases with age mainly because the resistance vessels become 
thicker, stiffer, and narrowed due to arteriosclerosis (the replacement of the medial muscle fibers and intima by collagen) and atheromatosis 
(the deposition of lipids in vascular walls resulting in vascular inflammation and endothelial dysfunction). High salt also increases the blood 
pressure independent of blood volume expansion by direct effects on arterial smooth muscles, cardiac myocytes, hypothalamic control of 
blood pressure, and the local renin-angiotensin system. The blood pressure–raising effect of dietary salt increases with age mainly because 
of renal malfunction, which impairs salt excretion, and vascular alterations, such as arteriolar stiffening and decreased endothelial NO 
production. In addition, baseline plasma osmolality increases with age. The scheme shows the transition between an artery and an arteriole 
that controls tissue perfusion. In salt-resistant individuals, an increase in plasma osmolality induces a dilation of the artery (which prevents 
hypertension) while tissue perfusion remains constant due to arteriolar vasoconstrictory autoregulation. Age-related vessel stiffening impairs 
vessel dilation and contributes to the development of salt sensitivity of blood pressure.
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(about 11 g/d), South Korea (about 12 g/d), and Japan (about 
14 g/d) [54]. The main source of salt in the diet (about 70%) is 
from processed foods [56]. In developed countries, the intake 
of dietary salt increased rapidly in the past along with the 
consumption of processed foods. Increased salt consump-
tion may also represent an environmental risk factor for the 
progression of AMD [57].

Salt sensitivity of blood pressure: Human subjects differ 
in salt sensitivity of blood pressure. There are salt-resistant 
individuals; in these subjects, salt-induced variations in blood 
volume do not cause changes in plasma osmolality and blood 
pressure [47]. Salt resistance is mediated by effective renal 
salt excretion and endothelial production of vasodilatory 
nitric oxide (NO) [58,59]. Salt excretion restores normal blood 
volume within hours or days [47]. However, in salt-sensitive 
individuals, even small changes in plasma salt levels induce 
abnormal changes in blood pressure due to renal malfunction 
and impairment of endothelial NO production [60]. Thirty 
to fifty percent of hypertensive individuals, but also many 
normotensive individuals, are salt-sensitive [61,62]. Salt sensi-
tivity of blood pressure increases with age [63].

Blood pressure–lowering minerals: In spite of the evidence 
that high salt intake is associated with hypertension, it was 
suggested that low consumption of minerals that reduce 
blood pressure (potassium, calcium, magnesium, phosphorus, 
bicarbonate) is a more important factor that induces hyperten-
sion; the blood pressure–lowering effect of these minerals is 
in part mediated by stimulation of renal salt excretion [64,65]. 
Potassium intake is inversely related to blood pressure [66]. 
The decreased content of blood pressure–lowering minerals 
is a characteristic of modern processed foods [67].

Dietary salt: Blood pressure–independent tissue damage: 
Excess salt also has direct harmful effects on tissues and 
vasculature, independent of blood pressure. The blood 
pressure–independent effects of high salt result in vascular 
remodeling, including thickening, stiffening, and narrowing 
of resistance arteries, and vascular fibrosis and inflamma-
tion [68,69]. Salt-induced vascular changes are mediated by 
various mechanisms, including stimulation of aldosterone 
synthesis [70] and oxidative stress [58]. High salt causes 
cellular perturbations, such as DNA double-strand breaks, 
oxidation of DNA and proteins, disruption of the mitochon-
drial structure and function, cytoskeletal alterations, and 
apoptotic cell death [71,72]. By inducing oxidative stress in 
RPE cells, high salt may also contribute to the development 
of AMD.

Plasma osmolality and hypertension: Role of water intake: 
Insufficient water intake increases the plasma salt level and 
osmolality. The baseline plasma osmolality increases, and the 

total body water decreases with age [49,73]. Body water defi-
cits are common in elderly individuals [74,75]. Among hospi-
talized patients and long-term care residents, prevalences of 
body dehydration as high as 80% have been reported [76]. 
Reduced water intake in aged individuals is a result of various 
factors, including decreased thirst sensation, poor appetite, 
decreased kidney function and vasopressin effectiveness, 
illness, disability, use of medications (e.g., diuretics), social 
isolation, and cognitive disorders [74]. Body dehydration is 
associated with chronic disease and functional impairment, 
including neurologic complications ranging from lethargy to 
coma, renal failure, cardiovascular disease, cataract, and dry 
eye [77-80].

Retinal effects of hypertension: Systemic hypertension has 
widespread effects in the sensory retina. Elevated blood 
pressure induces retinal vascular changes, including hyper-
tensive retinopathy, choroidopathy, and optic neuropathy, 
and is associated with increased risks of further vascular 
complications, such as retinal vein and artery occlusion, 
arteriolar macroaneurysm, and embolic events [81,82]. 
Hypertensive retinopathy, a sign of systemic vascular disease 
[81], is common and seen in nearly 10% of the general adult 
nondiabetic population [83]. Arteriolar narrowing, the earliest 
manifestation of hypertensive retinopathy [82], is caused by 
functional (loss of NO-mediated vasodilation) and structural 
changes (arteriosclerosis) [84,85]. The resulting retinal malp-
erfusion may contribute to degeneration of retinal neurons 
and photoreceptors [86].

Hypertension confers increased risk of glaucoma and 
is the main secondary risk factor of diabetic retinopathy 
[87]. Control of blood pressure reduces the risk of diabetic 
retinopathy and prevents microvascular complications inde-
pendent of glycemia [88]. Systemic hypertension also confers 
increased risk of AMD. Hypertension may also contribute 
to age-related structural changes in Bruch’s membrane [40]. 
However, antihypertensive medications do not alter the risk of 
AMD [41,89]. Several studies even described that the use of 
antihypertensive medications is associated with an increased 
incidence of AMD [90-92]. Differences between retinal and 
choroidal regulation of vessel perfusion [93] may explain the 
different associations between the use of antihypertensive 
medications and the risks of diabetic retinopathy and AMD.

Effects of hypertension on choroidal vasculature: Hyper-
tension increases the risk of AMD via effects on choroidal 
circulation. Age- and AMD-related reduction in choroidal 
blood f low and the increase in choroidal blood velocity 
result from atrophy of the choriocapillaris and decreased 
parasympathetic perfusion regulation [94-98]. Among 
patients with AMD, there is a direct association between 
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blood pressure and choroidal blood velocity [99]. Inadequate 
choroidal perfusion can lead to hypoglycemia and hypoxia 
of the overlying RPE [100] and is associated with focal RPE 
hyperpigmentation, drusen formation, and development of 
CNV [99,101,102]. Choroidal blood flow is also reduced in 
diabetic retinopathy [103].

Choroidal vascular disease in AMD is caused by hyper-
tension and additional conditions that drive vascular inflam-
mation, such as obesity and complement-induced endothelial 
injury [104]. Patients with hypertensive AMD display a 
more severe decrease in choroidal blood flow compared with 
normotensive patients [99]. Inadequate choroidal blood flow 
was found in patients with a history of systemic hypertension; 
both parameters do not correlate with actual blood pressure 
when antihypertensive medications are used, suggesting 
that hypertension in the past produces chronic effects on the 
choroidal vasculature [99].

The cellular mechanisms by which hypertension 
increases the risk of AMD are little understood. Systemic 
hypertension increases retinal inflammation [105], and hyper-
tension is associated with mechanical stress on vascular and 
retinal cells [106]. Raised choroidal blood velocity increases 
endothelial shear stress that induces fibrinoid necrosis of 
choroidal arterioles, oxidative stress, and vascular inflam-
mation [58,82,107]. Mechanical stress induces expression of 
VEGF in retinal endothelial and RPE cells [106,108]. Because 
VEGF is the most relevant angiogenic factor in the retina 
[17], hypertension-induced mechanical stress will facilitate 
the development of neovascular retinal disorders. AMD is 
associated with a decrease in the expression of NO synthases 
in choroidal arteries and RPE; lower production of NO 
increases vasoconstriction and reduces choroidal blood flow 
[109]. Whether the AMD-related decrease in NO synthase 
expression is facilitated by high salt as in renal endothelia 
[58] remains to be clarified.

Retinal effects of osmotic stress: Retinal osmotic stress due to 
raised plasma osmolality is common in elder and hypertensive 
individuals. In diabetes, osmotic stress mainly results from 
hyperglycemia that entails increased systemic osmolality and 
intracellular sorbitol accumulation [53,110]. Osmotic stress 
has adverse effects on the retina. High plasma osmolality 
decreases the standing potential of the eye [111] that origi-
nates from the RPE [112]. The standing potential is reduced 
in retinal diseases that are associated with altered integrity of 
the RPE, such as chorioretinal dystrophies and diabetic reti-
nopathy [113,114]. High extracellular osmolality also causes 
decreases in the electroretinogram b-wave and oscillatory 
potential [115], alters the membrane potential, resistance, 
and gene expression of the RPE [116,117], induces transmitter 

release from synaptic terminals [118], and increases the adhe-
sion of neutrophils to vascular endothelia [119] that represents 
an early step of vascular injury in diabetic retinopathy [120]. 
Exudative AMD is associated with a breakdown of the outer 
blood–retinal barrier constituted by the RPE [2]. Osmotic 
conditions regulate the tightness of this barrier. High osmo-
lality at the basal side of the RPE induces a breakdown of the 
barrier, while low osmolality increases the tightness of the 
barrier [121]. Mannitol infusion in human subjects increases 
plasma osmolality and results in opening of the blood–brain 
and blood–retinal barriers [122].

Retinal effects of high salt: High salt consumption has various 
effects in the retina. In treatment-resistant hypertensive 
patients, salt consumption increases the wall thickness of 
retinal arterioles independent of blood pressure [123]. In salt-
sensitive rats, high salt consumption induces retinal arteriolar 
spasm and ischemia [124].

Osmotic gradients between the retina and the blood are 
resolved by glial and RPE cells via mediating transmembrane 
ion and water fluxes [3,125]. Transmembrane water transport 
is facilitated and directed by aquaporin (AQP) water channels 
[126,127]. AQPs are a family of proteins that facilitate the 
bidirectional movement of water across membranes in depen-
dence on the osmotic gradient and hydrostatic pressure [128]. 
High salt loading in rats results in retinal glial cell activation, 
intracellular edema, and mitochondrial swelling in retinal 
ganglion and glial cells, and increased expression of AQP1 
in glial membranes [129]. Similar alterations in glial AQP 
expression have been observed in experimental ischemic and 
diabetic retinopathies [130,131]. High salt intake aggravates 
the changes in glial AQP expression associated with diabetic 
retinopathy independent of the blood pressure [132]. It is 
likely that alterations in the expression of additional AQP 
subtypes, for example, of AQP11 that is upregulated in retinal 
inflammation [133], may be implicated in the salt- and high 
osmolarity-induced responses of glial and RPE cells.

Systemic hypertension aggravates experimental diabetic 
retinopathy by increasing angiotensin II and sympathetic 
activities [134]. A low-salt diet modulates the retinal renin-
angiotensin-aldosterone system that prevents experimental 
ischemic retinopathy and reduces vascular leakage and 
production of angiogenic and inflammatory factors, such 
as VEGF [135]. However, in human subjects, the use of 
angiotensin converting enzyme inhibitors is associated with 
a higher risk of AMD [90,91].

High salt: Induction of angiogenic growth factors in RPE 
cells: The development of CNV is stimulated by angiogenic 
factors [10]. The expression of VEGF, TGF-β, and bFGF is 
elevated in retinal tissues and CNV membranes of patients 
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with AMD [136,137]. High extracellular osmolality may 
facilitate the development of neovascular AMD via direct 
effects on the RPE. Whether salt-induced high extracellular 
osmolality induces angiogenic factor expression in RPE cells 
has been recently investigated in cultured cells. High salt 
activates RPE cells, as indicated by the activation of mitogen-
activated protein kinase (MAPK) pathways (Figure 2A) [57]. 
This is associated with increased expression of various angio-
genic growth factor genes, including the VEGF, bFGF, PlGF, 
and HB-EGF genes (Figure 2B,C) [57,138,139]. The time-
dependency of VEGF gene expression is different between 
salt- and sucrose-induced high osmolality (Figure 2B,C) [57]. 
This suggests that high salt induces VEGF expression by two 
different mechanisms: via the increase in extracellular osmo-
lality and by alteration of the transmembrane sodium chloride 
gradient. High salt also induces secretion of VEGF, bFGF, and 
PlGF proteins from RPE cells [57,138,139]. The salt-induced 
expression of VEGF, bFGF, and HB-EGF is dependent on 
autocrine or paracrine activation of growth factor receptors, 
such as TGF-β and FGF receptors [139]. This suggests that 

high salt also induces a release of TGF-β and FGF from the 
cells. The expression of the VEGF gene induced by hypoxia 
and high salt is not additive (Figure 3A) [57]; this suggests 
that high extracellular salt may stimulate the expression of 
VEGF in RPE cells to a similar degree as hypoxia. Triam-
cinolone acetonide, an anti-inflammatory steroid clinically 
used for the rapid resolution of retinal edema, completely 
inhibits the salt-induced expression and secretion of VEGF in 
RPE cells [57]. Because a decrease in extracellular osmolality 
results in downregulation of VEGF and PlGF gene expression 
[57,138], the production of VEGF and PlGF in RPE cells is 
directly related to extracellular osmolality.

High salt: Induction of AQP5 in RPE cells: The development 
of retinal edema is an important vision-threatening condi-
tion of exudative AMD [140]. Normally, RPE cells clear the 
excess fluid from the subretinal space [3] by transcellular 
transport of ions and water; water transport is facilitated by 
AQP water channels [126]. The higher permeability of the 
outer blood–retinal barrier induced, for example, by VEGF 

Figure 2. High extracellular osmo-
lality activates human RPE cells in 
vitro and stimulates gene expression 
of angiogenic factors. A: Western 
blot analysis shows that the addi-
tion of 100 mM salt (NaCl) to the 
culture medium for 20 min induces 
increased phosphorylation levels 
of p38 mitogen-activated protein 
kinase (MAPK) and extracellular 
signal-regulated kinase (ERK) 1/2 
proteins. Phosphorylation of p38 
MAPK and ERK1/2 is not stimu-
lated by chemical hypoxia (induced 
by addition of 150 µM CoCl2) for 20 
min. Amounts of total proteins are 
shown above; amounts of phosphor-
ylated proteins are shown below. B, 
C: Relative mRNA levels of growth 
factors in cells cultured in media 
with high osmolality for 2, 6, and 
24 h. High osmolality was induced 
by the addition of 100 mM sucrose 
(B) and 100 mM salt (C), respec-
tively, to the culture medium. EGF 
= epidermal growth factor; HGF = 
hepatocyte growth factor. *p<0.05 
vs. isoosmotic control. Modified 
after Hollborn et al. [57,138] and 
Veltmann et al. [139]. 
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allows increased fluid flux from choroidal vessels into the 
subretinal space. The fluid clearance capacity of RPE cells 
can be exceeded when excess blood-derived fluid enters the 
subretinal space and when the cells alter the expression of ion 
channels, transporters, and AQPs. RPE cells freshly isolated 
from human post-mortem donor eyes contain gene transcripts 
of various AQP subtypes; high salt induces expression of the 
AQP3, AQP5, and AQP8 genes in RPE cells [57]. Throughout 

the body, AQP5 plays an important role in transporting water 
across epithelia. In RPE cells, the expression of the AQP5 
gene is directly related to extracellular osmolality; AQP5 gene 
expression is increased by high osmolality and decreased by 
low osmolality [57]. AQP5 gene expression in RPE cells is 
also reduced under hypoxic conditions and in the presence of 
blood serum [57]. Triamcinolone acetonide does not prevent 
high salt-induced expression of AQP5 [57].

Figure 3. High osmolality-induced 
expression of transcription factors 
in RPE cells. A: Chemical hypoxia 
(induced by the addition of 150 µM 
CoCl2) and high salt (+ 100 mM 
NaCl) do not additively increase 
the expression of the VEGF gene. 
B: High osmolality, induced by the 
addition of 100 mM salt (NaCl) 
or 100 mM sucrose to the culture 
medium, induces gene expression 
of hypoxia-inducible factor-1 alpha 
(HIF-1α). Low osmolality (Low 
Osm; 60% osmolality) has no effect. 
C: High osmolality increases, and 
low osmolality decreases, the gene 
expression of nuclear factor of acti-
vated T cell 5 (NFAT5). Hypoxia 
(1% O2) has no effect. Inset: The 
NFAT5 protein level in RPE cells 
determined with western blot anal-
ysis. High salt increases and low 
osmolality decreases the cellular 
NFAT5 protein level. Hypoxia 
(+ 150 µM CoCl2) has no effect. 
*p<0.05 vs. control. Modified after 
Hollborn et al. [57].
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High salt: Activation of transcription factors in RPE cells: 
Hypoxia and high salt induce non-additive expression of 
the VEGF gene (Figure 3A), suggesting the involvement of 
common mechanisms of transcriptional activation of the 
VEGF gene under both conditions [57]. Cellular adaptation 
to hypoxia is mainly mediated by transcriptional activation 
of target genes by the hypoxia-inducible factor-1 (HIF-1) 
resulting in increased production of proteins that improve 
oxygen and nutrient supply [141]. These genes include VEGF, 
glucose transporter, and erythropoietin genes [142]. HIF-1 
also triggers the expression of inducible NO synthase [143]; 
NO induces vasodilation but also causes nitrosative stress 
and may contribute to photoreceptor degeneration [144]. HIF-
1-induced transcriptional activation of VEGF plays a critical 
role in the development of experimental CNV [145].

High extracellular salt induces increased transcriptional 
activation of HIF-1α in RPE cells (Figure 3B) [57]. Inhibi-
tion of HIF-1 activity decreases salt-induced transcription of 
the VEGF gene by approximately 50% and abrogates almost 
completely salt-induced secretion of VEGF from RPE cells 
[57]. The salt-induced transcriptional activation of AQP5 is, 
in part, dependent on the activity of nuclear factor kappa 
beta (NF-κB) activity, but not on HIF-1 [57]. NF-κB is the 
main transcription factor that regulates the gene expression 
of proteins involved in inflammatory cell responses.

Normally, high extracellular osmolality causes water 
flux from cells resulting in cell shrinkage, an early event 
of apoptotic cell death [146]. However, cells possess several 
adaptive mechanisms that allow them to survive in osmotic 
stress by restoration of the osmotic balance. Cellular survival 
under high-salt conditions is initially maintained by activa-
tion of ion transport systems and thereafter by intracellular 
accumulation of small organic osmolytes and increased abun-
dance of heat shock proteins and AQPs [71,72]. The classical 
cellular response to high extracellular osmolality involves the 
transcription of target genes by the nuclear factor of activated 
T cell 5 (NFAT5), also known as tonicity-responsive enhancer 
binding protein (TonEBP/OREBP) [72]. This transcription 
factor has a large C-terminal region that harbors a high 
osmolality-sensitive transactivation domain. NFAT5 binds to 
the tonicity responsive enhancer elements (TonEs) in the 5′ 
region of the target genes. The target genes of NFAT5 include 
genes for enzymes and transporters that are implicated in 
intracellular accumulation of organic osmolytes, such as 
sorbitol, myo-inositol, betaine, and taurine (aldose reductase, 
myo-inositol transporter 1, taurine transporter, etc.) [53,72]. 
Additional target genes of NFAT5 in various cell systems are 
heat shock protein 70–2, tumor necrosis factor-α, and water 
channels AQP1 and AQP2 [53,72].

In RPE cells, the expression of NFAT5 is directly related 
to the level of extracellular osmolality; that is, high osmolality 
increases and low osmolality decreases the gene and protein 
expression of NFAT5 (Figure 3C) [57]. High osmolality also 
induces DNA binding of the NFAT5 protein [57]. Hypoxia 
has no effect on the expression of NFAT5 (Figure 3C) [57]. 
Knockdown of NFAT5 expression with siRNA reduces salt-
induced transcription of the VEGF, PlGF, bFGF, and AQP5 
genes, and salt-induced secretion of VEGF and bFGF from 
RPE cells [57,138,139]. The data suggest that the transcrip-
tional activity of NFAT5 is critical for salt-induced induction 
of VEGF and other angiogenic factors in RPE cells. Whether 
in addition to these transcription factors, additional mecha-
nisms of gene transcription contribute to the effects of high 
salt in RPE cells (e.g., transcription induced by the increase 
in the intracellular sodium concentration [147]) remains to 
be determined.

Aldose reductase, which produces sorbitol from glucose, 
is a prototypical NFAT5 target gene [148]. Intracellular accu-
mulation of sorbitol is a main pathogenic factor of diabetic 
retinopathy [149]. In the retinas of diabetic mice and in RPE 
cells stimulated with high glucose, NFAT5 activity induces 
(directly or indirectly) the expression of various genes, 
including aldose reductase and protein kinase Cδ, and the 
proapoptotic protein Bax, while NFAT5 decreases the expres-
sion of the antiapoptotic protein Bcl2; these data suggest that 
NFAT5 activity is involved in retinal degeneration under 
hyperglycemic conditions [150]. However, under high-salt 
conditions, production of sorbitol protects RPE cells from 
death [151], suggesting that intracellular sorbitol accumu-
lation may also have protective effects. The contradictory 
effects of sorbitol production on cell viability in dependence 
on the strength or duration of osmotic imbalances may 
explain the limited benefits of aldose reductase inhibitors in 
the treatment of diabetic retinopathy [152].

High salt: Priming of the NLRP3 inflammasome: Chronic 
inflammation is a key factor that contributes to the develop-
ment of AMD [13,15,16]. High salt was shown to increase the 
production of inflammatory factors, such as interleukin (IL)-6 
and monocyte chemoattractant protein-1 (MCP-1) by RPE 
cells [153]. Generally, inflammatory processes are activated 
by cytosolic protein-signaling complexes, termed inflam-
masomes, which drive proteolytic activation of caspase-1 
and maturation of the inflammatory cytokines IL-1β and 
IL-18 [154]. Activation of the NLRP3 inflammasome in 
RPE cells is implicated in mediating RPE cell degeneration 
in geographic atrophy [155] and may also promote neovas-
cular AMD pathologies, such as RPE barrier breakdown and 
CNV [156]. In RPE cells, salt-induced osmotic stress induces 
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priming and transient activation of the NLRP3 inflamma-
some, as well as expression and activation of inflammatory 
enzymes, such as phospholipases A2 and cyclooxygenases 
[157] (data not shown). Thus, high-salt consumption may 
aggravate the development of AMD by stimulation of local 
inflammation. Salt-induced priming of the NLRP3 inflam-
masome in RPE cells is, in part, mediated by the activities 
of HIF-1 and NFAT5 [157]. Full salt-induced expression of 
NFAT5 is dependent on the release of ATP and autocrine 
and paracrine activation of purinergic receptors, such as P2Y1 
and P2X7 (data not shown). The latter may contribute to the 
degeneration of the RPE in geographic atrophy [155]. RPE-
derived ATP may also promote photoreceptor degeneration 
[158], a characteristic of AMD, as well as microvascular cell 
death [159], a hallmark of diabetic retinopathy.

Summary and conclusions: Various studies showed an asso-
ciation between systemic hypertension and the risk of AMD. 
Hypertension aggravates the age-dependent degeneration 
of the choroidal vasculature, which reduces choroidal blood 
flow [99]. Choroidal ischemia and the resulting outer retinal 
hypoxia promote angiogenic factor production in the RPE and 
the development of CNV. However, it was shown that the use 
of antihypertensive medications does not confer a decreased 
risk of AMD [41,89]; this suggests that additional factors 
associated with hypertension are also relevant for the patho-
genesis of AMD. The main factor that induces acute hyper-
tension is the elevation of the plasma salt level that results 
from intake of dietary salt and impaired renal salt excretion 
[45,46,51,54]. Because high salt causes cellular perturba-
tions independently of blood pressure, in part via increasing 
extracellular osmolality [71,72], direct effects of salt and high 
osmolality on choroidal and RPE cells may contribute to the 
pathological processes involved in the development of AMD.

Recent studies showed that high salt and high extracel-
lular osmolality have direct effects on RPE cells, including 
activation of MAPK pathways, activation of transcription 
factors, such as HIF-1, NF-κB, and NFAT5, transcriptional 
activation and secretion of angiogenic and inflammatory 
factors, such as VEGF, PlGF, bFGF, IL-6, and MCP-1, 
priming of the NLRP3 inf lammasome, and upregula-
tion of AQP5 (Figure 4) [57,138,139,153,157]. Salt-induced 
production of inflammatory factors may contribute to the 
development of local inflammation, a characteristic of AMD 
[13,15,16]. Salt-induced production of angiogenic factors may 
promote the development of CNV and edema, two hallmarks 
of neovascular AMD. Salt-induced production of TGF-β may 
contribute to choroidal fibrosis. Because hypoxia and high 
salt induce expression of the VEGF gene in a non-additive 
fashion (Figure 3A), high salt consumption may facilitate the 

development of CNV and edema under normoxic conditions. 
The data also suggest that dietary salt may act via three mech-
anisms: an increase in blood pressure, an increase in plasma 
osmolality, and alteration of the transmembrane sodium 
chloride gradient. These mechanisms may independently 
and additively stimulate the production of VEGF in the RPE 
(Figure 5). However, whether the increased plasma salt level 
and high extracellular osmolality are risk factors of AMD, 
independently of hypertension, remains to be determined in 
clinical studies.

NFAT5 is a transcription factor that may contribute to 
the aggravating effects of high salt on the retinal disease 
processes in AMD. The expression of VEGF, PlGF, and AQP5 
genes in RPE cells is directly related to the level of extracel-
lular osmolality, likely because of the osmolality-dependent 
activation of NFAT5 (Figure 3C) [57,138]. However, the roles 
of NFAT5 activity in the regulation of retinal cell responses 
to osmotic stress and the development of age-related retinal 
diseases remain to be further investigated. In various cell 
systems, NFAT5 can be also activated in an osmolality-
independent manner by different stimuli, such as cytokines, 
growth factors, receptor and integrin activation, ions, and 
reactive oxygen species [160]. It is unclear whether inhibition 
of NFAT5 may represent an approach to prevent the effects of 
high salt and osmotic stress on the RPE. Because NFAT5 is 
a transcription factor that improves cell survival in osmotic 
stress [71,72,151], it is conceivable that inhibition of NFAT5 
may facilitate disease progression. However, downregulation 
of proapoptotic proteins and upregulation of antiapoptotic 
proteins induced by knockdown of NFAT5 in the retina of 
diabetic mice [150] may indicate that inhibition of NFAT5 
will decelerate disease progression.

Osmotic conditions at the basal side of the RPE regulate 
the tightness of the outer blood–retinal barrier; high osmo-
lality increases and low osmolality decreases the permeability 
of the barrier [121]. Up- and downregulation of VEGF under 
high- and low-osmolality conditions [57] may represent one 
mechanism by which osmotic alterations regulate the tight-
ness of the barrier. Alterations in the expression of AQP5 in 
dependence on the osmotic conditions [57] may be implicated 
in the resolution of osmotic gradients across the RPE. High 
plasma osmolality may facilitate AQP5-mediated water 
transport from the subretinal space through the RPE. This 
may support the resolution of subretinal edema under condi-
tions of osmotic opening of the outer blood–retinal barrier. 
Under conditions of low plasma osmolality, downregulation 
of AQP5 may reduce the water transport through the RPE and 
thus may diminish the osmotic water flux from the blood to 
the retinal tissue. However, whether the water permeability 
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of the RPE is regulated by alterations in AQP5 expression 
remains to be confirmed by further studies. Hypoxic and 
serum-induced downregulation of AQP5 [57] may counteract 
the upregulation of AQP5 induced by high plasma osmolality. 
This will impair the fluid clearance across the RPE under 
hypoxic conditions and in the case of hemorrhage. Triamcino-
lone acetonide inhibits the expression and secretion of VEGF 
induced by high osmolality but does not prevent the upregula-
tion of AQP5 [57]. The inhibitory effect on the production of 
VEGF and the ineffectiveness on the expression of AQP5 may 
support the resolution of retinal edema in situ.

Clinical implications: Although hypertension is associated 
with a higher risk of AMD, the use of antihypertensive medi-
cations is associated with an unaltered or even increased risk 
[41,89-92]. This may suggest that lifestyle modifications are 
more relevant than antihypertensive medications to decel-
erate progression of AMD. The effects of salt-induced high 
osmolality in RPE cells (Figure 4) suggest that a decrease in 
plasma osmolality may have protective effects. A decrease 
in plasma osmolality can be achieved by reducing the intake 
of dietary salt. Many meta-analyses suggest that most people 
will benefit from a reduction in salt consumption in terms of 

the risk of stroke and cardiovascular disease (e.g., Li et al. 
[161] and Aburto et al. [162]). Daily salt intake of <4 or <6 g 
is recommended by the American Heart Association and the 
Institute of Medicine, respectively [163]. Reduced dietary salt 
intake may also improve plasma cholesterol and triglyceride 
levels [164], known risk factors of AMD [29,32]. Therefore, 
it might be helpful to monitor dietary salt consumption in 
patients with AMD. However, there is an ongoing discus-
sion regarding the beneficial effects of dietary salt restriction 
for cardiovascular disease [54]. There is a wide range of salt 
consumption (5–8 g/d) that has little effect on the risk of 
cardiovascular disease; higher (>10 g/d) and lower (<4 g/d) 
levels of salt intake are associated with increased risks of 
cardiovascular disease [54]. It is unlikely that dietary salt 
restriction has beneficial effects in populations with moderate 
salt consumption, such as in North America, Great Britain, 
and Germany; here, salt restriction may even be harmful [54]. 
In populations with high salt consumption, such as in Finland 
and Japan, dietary salt restriction may have beneficial effects 
[54].

Another approach to decrease the plasma salt level and 
osmolality is increased water intake. To obtain adequate 

Figure 4. High salt consump-
tion may aggravate neovascular 
retinal diseases by stimulation of 
angiogenic factor production in 
RPE cells. Excess salt induces the 
release of growth factors, such 
as basic fibroblast growth factor 
(bFGF) and transforming growth 
factor-β (TGF-β) from RPE cells. 
Autocrine and paracrine TGF-β 
and FGF receptor signaling induces 
activation of the intracellular signal 
transduction pathways, including 
p38 mitogen-activated protein 
kinase (MAPK), extracellular 
signal-regulated kinase (ERK) 1/2, 
c-Jun NH2-terminal kinase (JNK), 
and phosphatidylinositol-3 kinase 
(PI3K)-Akt pathways, resulting 
in activation of the transcription 
factors nuclear factor of activated T 
cell 5 (NFAT5), hypoxia-inducible 
factor-1 (HIF-1), nuclear factor 

kappa beta (NF-κB). NFAT5 and HIF-1 induce the transcription of the VEGF gene, while NFAT5 and NF-κB induce the transcription of 
the AQP5 gene. NFAT5 also induces expression of the bFGF gene. The salt-induced secretion of VEGF, bFGF, and placental growth factor 
(PlGF) may stimulate the development of the central nervous system (CNV) and edema. Increased expression of AQP5 may improve water 
transport through the RPE, which may facilitate the development and/or resolution of edema, in dependence on the osmotic and hydrostatic 
gradients across the RPE.
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body hydration and plasma osmolality, it was recommended 
to consume 1.5 l/d drinking water for women and 1.9 l/d for 
men [165]. These values are achieved in European countries 
(1.5–1.9 l/d) and are exceeded in North America (2.4 l/d) [166-
168]. To avoid hyponatremia, lower daily water consump-
tion is recommended for patients with distinct diseases, for 
example, severe congestive heart failure that requires high-
dose diuretics [169]. Excess water intake may also cause 
hypertension and congestion of the cardiovascular system 
resulting from the increased blood volume.

Although the beneficial effects of reducing salt consump-
tion and increasing water intake in the whole population 
are uncertain, there are two exceptions: salt-sensitive indi-
viduals and individuals who show signs of body dehydration. 
Because salt-resistant individuals show minimal changes in 
plasma osmolality and blood pressure after salt intake [47], 
dietary salt restriction does not have a benefit. However, 
salt-sensitive (normotensive and hypertensive) individuals 
display abnormal changes in plasma osmolality and blood 
pressure after salt intake [60]. The salt-induced upregulation 

of angiogenic factors in RPE cells is transient (Figure 2C) 
[57,139]. This suggests that repetitive salt-induced increases 
in plasma osmolality during postprandial phases will have 
greater effects than a persistent elevation of the plasma salt 
level. The fact that high extracellular osmolality and altera-
tion of the transmembrane sodium chloride gradient induce 
upregulation of VEGF in RPE cells [57] could, at least in 
part, explain why the use of antihypertensive medications is 
not associated with a decreased risk of AMD [41,89]. This 
may suggest that, in salt-sensitive subjects, approaches to 
reduce plasma salt levels with dietary salt restriction may be 
more beneficial than antihypertensive medications. However, 
it should be kept in mind that the salt sensitivity of blood 
pressure is induced less by high salt consumption and more 
by low intake of blood pressure–lowering minerals (potas-
sium, calcium, magnesium, phosphorus, bicarbonate) [64]. 
Therefore, salt sensitivity can also be attenuated by other 
dietary modifications, including the DASH diet and adequate 
dietary mineral intake [50,51,61,64]. Increased consump-
tion of calcium-, magnesium-, potassium- (milk and dairy 
products), and bicarbonate-rich foods (fruits and vegetables) 

Figure 5. Dietary salt intake may stimulate the production of VEGF in RPE cells via three independent mechanisms. High salt increases 
plasma osmolality resulting in raised blood pressure and membrane stretch, and it alters the transmembrane sodium gradient.
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promotes renal salt excretion and blunts the pressor effect of 
dietary salt [65,170,171].

Inadequate water intake is common in elderly indi-
viduals. Therefore, the water consumption of aged patients 
should be monitored, and attention should be paid to signs of 
body dehydration (e.g., decreased skin turgor and increased 
urine osmolality as indicated by the yellow color of the urine). 
It is important that dehydrated elderly individuals drink more 
plain water and less of other fluids, such as fruit juice and 
soft drinks. The latter have higher osmolalities (550–840 
mOsm/kg) than plasma (285–295 mOsm/kg) [172] and thus 
cause net movement of water from the vascular system into 
the intestinal lumen; this leads to impaired water intake and 
increased plasma osmolality. At least, beverages should be 
diluted with plain water. Dilution of high-energy beverages 
is also beneficial in terms of another risk factor of AMD, 
obesity [33,34].
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