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Abstract

We present new methodology based on Multi-Objective Markov Decision Processes for 

developing sequential decision support systems from data. Our approach uses sequential decision-

making data to provide support that is useful to many different decision-makers, each with 

different, potentially time-varying preference. To accomplish this, we develop an extension of 

fitted-Q iteration for multiple objectives that computes policies for all scalarization functions, i.e. 

preference functions, simultaneously from continuous-state, finite-horizon data. We identify and 

address several conceptual and computational challenges along the way, and we introduce a new 

solution concept that is appropriate when different actions have similar expected outcomes. 

Finally, we demonstrate an application of our method using data from the Clinical Antipsychotic 

Trials of Intervention Effectiveness and show that our approach offers decision-makers increased 

choice by a larger class of optimal policies.
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1. Introduction

Markov Decision Processes (MDPs) (Bertsekas and Tsitsiklis, 1996) provide a framework 

for reasoning about the actions of an autonomous decision-making agent in an environment 

as it strives to achieve long-term success. Operating within this framework, reinforcement 

learning (RL) methods for finding optimal actions in MDPs hold great promise for using 

vast amounts of accumulating longitudinal data to help humans make better-informed 

decisions. Batch reinforcement learning methods, including fitted Q-learning (Ernst et al., 

2005), A-learning (Blatt et al., 2004), and regret regression (Henderson et al., 2010), are 

already being used to aid decision-making in diverse areas including medicine (Alagoz et 

al., 2010; Shortreed et al., 2011; Burnside et al., 2012), ecology (Păduraru et al., 2012), 

intelligent tutoring systems (Brunskill and Russell, 2011), and water reservoir control 

HHS Public Access
Author manuscript
J Mach Learn Res. Author manuscript; available in PMC 2016 December 22.

Published in final edited form as:
J Mach Learn Res. 2016 ; 17: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Castelletti et al., 2010). Although headway has been made in these application areas, 

progress is hampered by the fact that many sequential decision support problems are not 

modelled well by MDPs.

One reason for this is that in most cases, human action selection is driven by multiple 

competing objectives; for example, a medical decision will be based not only on the 

effectiveness of a treatment, but also on its potential side-effects, cost, and other 

considerations. Because the relative importance of these objectives varies from user to user, 

the quality of a policy is not well captured by a universal single scalar “reward” or “value.” 

Multi-Objective Markov Decision Processes (MOMDPs) accommodate this by allowing 

vector-valued rewards (Roijers et al., 2013) and proposing an application-dependent solution 
concept. A solution concept is essentially a partial order on policies; the set of policies that 

are maximal according to the partial order are considered “optimal” and are 

indistinguishable under that solution concept. Depending on the application, a single policy 

may be selected from among these, or a set of policies may be presented in some way. 

Computing and presenting a set of policies is termed the decision support setting by Roijers 

et al. and is the setting we consider here.

2. Existing Methods and Our Contributions

Roijers et al. (2013) note that, “…there are currently no methods for learning multiple 

policies with non-linear [preferences] using a value-function approach.” We present a 

method that fills this gap, and that additionally uses value function approximation to 

accommodate continuous state features, thus allowing us to use the MOMDP framework to 

analyze continuous-valued sequential data. Previous work (Lizotte et al., 2012) on this 

problem computes a set of policies based on the assumptions that i) end-users have a “true 

reward function” that is linear in the objectives and ii) all future actions will be chosen 

optimally with respect to the same “true reward function” over time. Our new method 

relaxes both of these assumptions as it allows the decision-maker to revisit action selection 

at each decision point in light of new information, both about state and about their own 

preferences and priorities over different outcomes of interest. Therefore, the proposed 

method can accommodate changes in preference over time while still making optimal 

decisions according to our new solution concepts by introducing the non-deterministic 
multi-objective fitted-Q algorithm, which computes policies for all scalarization functions, 

i.e., preference functions, simultaneously from continuous-state, finite-horizon data. This 

allows us to present a greater variety of action choices by acknowledging that preference 

functions may be non-linear. We then present the vector-valued expected returns associated 

with the different policies in order to provide decision support without having to refer to any 

particular scalarization function. Showing the expected returns in the original reward space 

allows us to more easily understand the qualitative differences between action choices. 

Although decision support is important in many application areas, we are motivated by 

clinical decision-making; therefore we demonstrate the use of our algorithm using data from 

the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE).
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Simplified versions of some of our ideas were presented in a shorter paper by Laber et al. 

(2014a), but we treat the problem in its full generality here. In particular, our work goes 

beyond “Set-Valued Dynamic Treatment Regimes” in four significant ways:

• We introduce a complete non-deterministic fitted-Q algorithm that is 

applicable to arbitrary numbers of actions and arbitrary time horizons. 

(Previous work was limited to binary actions and maximum two decision 

points.) This allows us to perform fitted-Q backups in general settings 

using multiple reward functions over continuous-valued state features.

• We prove that our algorithm finds all policies that are optimal for some 

scalarization function by considering a collection of policies at the next 

time step that is only polynomial in the data set size.

• We formalize a solution concept, practical domination, that is more 

flexible than Pareto domination for identifying whether an action is not 

desirable. A similar concept was introduced in previous work (Laber et al., 

2014a), but we show that using practical domination, while useful, is 

problematic for more than two decision points because it is does not 

induce a partial order on actions. However, we show that a modification of 

practical domination leads to a partial ordering for any number of actions 

or time points.

• We demonstrate the use of our algorithm on the Clinical Antipsychotic 

Trials of Intervention Effectiveness (CATIE) and we compare our 

approach quantitatively and qualitatively with a competing approach 

derived from previous work of Lizotte et al. (2010, 2012).

3. Motivation

Our work is motivated by a clear opportunity for reinforcement learning methods to provide 

novel ways of analyzing data to produce high-quality, evidence-based decision support. We 

briefly review some specific applications here where we believe our approach could be 

particularly relevant.

3.1 Intelligent Tutorial Systems

Brunskill and Russell (2011), and Rafferty et al. (2011) study the automatic construction of 

adaptive pedagogical strategies for intelligent tutoring systems. They employ POMDP 

models to capture the partially observable and sequential aspect of this problem, using 

hidden state to represent a student’s knowledge. Their approach uses time taken to learn all 

skills as a cost, i.e., negative reward, that drives teaching action selection. Chi et al. (2011) 

use an MDP formulation and use “Normalized Learning Gain,” a quantification of skill 

acquisition, as a reward; however, they do not explicitly consider time spent. The ability to 

consider both of these rewards simultaneously would empower the learner or the teacher to 

emphasize one or the other over the course of their interaction with the system. The method 

we present could offer a selection of teaching actions that are all optimal for different 

preferences over these rewards, and possibly others as well.
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3.2 Computational Sustainability

Păduraru et al. (2012) identify an application within the domain of sustainable wildlife 

management where the MDP framework is particularly appropriate. They investigate the 

efficacy of several off-policy methods for developing control policies for mallard duck 

populations. Their output, rather than providing autonomous control, is intended to provide 

decision support for public environmental policy-makers. They use “number of birds 

harvested per year” as the reward. However, in practical management plans, several 

outcomes may be of interest including minimum population size, program cost, and so on. 

Because formulating a (e.g. linear) trade-off among these rewards would be difficult, our 

method is relevant to this problem.

3.3 Treating Chronic Disease

Reinforcement learning has also been used as a means of analyzing sequential medical data 

to inform clinical decision-makers of the comparative effectiveness of different treatments 

(Shortreed et al., 2011). RL methods are suited to decision support for treating chronic 

illness where a good policy for choosing treatments over time is crucial for success. Indeed, 

optimal policies—known as “Dynamic Treatment Regimes” in statistics and the behavioral 

sciences—have been learned for the management of chronic conditions including attention 

deficit hyperactivity disorder (Laber et al., 2014b), HIV infection (Moodie et al., 2007), and 

smoking addiction (Strecher et al., 2006). They have also been applied to sequences of 

diagnostics as well, for example in breast cancer (Burnside et al., 2012). We present a case 

study in this domain in Section 7.

4. Background

We introduce a new approach for solving Multi-Objective Markov Decision Processes with 

the goal of providing data-driven decision support. Our approach uses non-deterministic 

policies to encode the set of all non-dominated policies. In this section, we review the most 

relevant existing literature on MOMDPs and NDPs.

4.1 Multi-objective Optimization and MOMDPs

The most basic definition of a Markov Decision Process is as a 4-tuple 〈 , , P, R〉 where 

 is a set of states,  is a set of actions, P(s, a, s′) = Pr(s′|s, a) gives the probability of a 

state transition given action and current state, and R(s, a) is the immediate scalar reward 

obtained in state s when taking action a. One common goal of “solving” an MDP, if we 

assume a finite time horizon of T steps, is to find a policy π :  →  that maximizess

pointwise for all states. In the preceding, π indicates that the expectation is taken assuming 

the state-action trajectories are obtained by following policy π. Because in the finite-horizon 

setting that the optimal π is in general non-stationary (Bertsekas, 2007), we define π to be a 

sequence of functions πt for t ∈ {1, …, T}, where πt: t → t.
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Like previous work by Lizotte et al. (2010, 2012) and by many others (Roijers et al., 2013), 

we focus on the setting where the definition of an MDP is augmented by assuming a D-

dimensional reward vector R(st, at) is observed at each time step. We define a finite-horizon 

MOMDP with finite time horizon T as a tuple of state spaces t, action spaces t, state 

transition functions Pt: t × t → ℙ( t+1) where ℙ( t+1) is the space of probability 

measures on t+1, and reward functions Rt: t × t → ℝD for t ∈ {1, …, T}. In keeping 

with the Markov assumption, both Rt and Pt depend only on the current state and action. In 

this work we assume finite action sets, but we do not assume that state spaces are finite. The 

value of a policy π is then given by

(1)

which is the expected sum of (vector-valued) rewards we achieve by following policy π.

Just as “solving” an MDP is an optimization problem (i.e. we want the optimal value 

function or policy), “solving” a MOMDP is a multi-objective optimization (MOO) problem. 

Whereas in typical scalar optimization problems having a unique solution is viewed as 

typical or at least desirable, in the MOO setting, the most common goal is to produce a set of 

solutions that are non-dominated.

Definition 1 (Non-dominated a.k.a. Pareto optimal solutions)—Let  be the set of 
all feasible inputs to a multi-objective optimization problem with objective f (x). Let  be 
the range of f on . (In the RL context, one can think of  as the set of all possible policies 
starting from a given state, and  as their corresponding values, which are vectors in this 

case.) A solution vector y ∈  is non-dominated if ∄y′ ∈  s.t.  and . A 
preimage x ∈  of such a y is sometimes called an efficient solution, but we will also refer 
to such inputs as non-dominated.

A common goal in MOO is to find all of the non-dominated solutions (Miettinen, 1999; 

Ehrgott, 2005). Some work on MOMDPs has this same goal (Perny and Weng, 2010). One 

approach to finding non-dominated solutions of a MOO problem is to solve a set of 

optimization problems that are scalarized versions of the MOO. A scalarization function ρ is 

chosen which maps vector-valued outcomes scalars and then one solves

the scalar optimization defined by composing the vector-valued outcome function with the 

scalarization function. If a specific “correct” scalarization function is fixed and known, we 

can simply apply it to all outcome vectors and reduce our MOO problem to a scalar 

optimization problem (and arguably we never had a MOO problem to begin with.) 

Otherwise, we may seek solutions to scalarized problems for all ρ belonging to some 

function class. We assume that any ρ of interest is non-decreasing along each dimension, 

that is, it is always preferable to increase a reward dimension, all else being equal. It is well-
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known (Miettinen, 1999) that the set of Pareto-optimal solutions corresponds to the set of all 

solutions that are optimal for some scalarization function; we will use these two views of 

optimality as we construct our algorithm.

Previous work by Lizotte et al. (2012) uses dynamic programming to compute policies for 

all possible scalar rewards that are a convex combination of the basis rewards, using Q-

functions learned by linear regression. Thus the output produces the optimal policies for all 

ρ such that ρ(r) = r⊤ w, wd > 0, ∑d wd = 1. Each convex combination is interpreted as a 

preference describing the relative importance of the the different basis rewards, and the 

method is used to show how preference relates to optimal action choice. This gives a new 

and potentially useful way of visualizing the connection between preference and action 

choice, but there are drawbacks to the approach. First, one must assume that the convex 

combination is fixed for all time points—that is, preferences do not change over time. This 

assumption enables dynamic programming to work, but is not reasonable for some 

applications, particularly in clinical decision-making where a patient’s first-hand experience 

with a treatment may influence subsequent preferences for symptom versus side-effect 

reduction. Second, the method is overly eager to eliminate actions. Consider two actions a1 

and a2 that are extreme, e.g., a1 has excellent efficacy but terrible side-effects and a2 has no 

side-effects but poor efficacy. These could eliminate a third action a3 that is moderately good 

according to both rewards. An example of this situation is illustrated in Figure 1(a), which 

shows that the actions chosen by this method are restricted to the convex hull of the Pareto 

frontier, rather than the entire frontier. In this circumstance where a3 is qualitatively very 

different from both a1 and a2, we argue that a decision support system should suggest all 
three treatments and thereby allow the decision-maker to make the final choice based on her 

expertise. The third drawback of using this approach is that it is limited to ordinary least 

squares regression, which may not work well for data with non-Gaussian errors, e.g., a 

binary terminal reward.

Rather than use the method of Lizotte et al., we will instead base our method on assessing 

actions and policies using a partial order on their vector of Q-values. Perhaps the most 

common partial order on vectors comes from the notion of Pareto-optimality (Vamplew et 

al., 2011). For example, an action a is Pareto-optimal at a state sT if ∀(d, a′) QT[d] (sT, a) ⩾ 
QT[d] (sT, a′). We will show in Section 5 that for t < T, the problem of deciding which 

actions are optimal is more complex, but we will still leverage the idea of a partial order. The 

problem of identifying Pareto-optimal policies is of significant interest in RL (Perny and 

Weng, 2010; Vamplew et al., 2009) and is closely related to what we wish to accomplish. 

Basing our work on the Pareto-optimal approach rather than on the previous work of Lizotte 

et al. avoids assuming that preferences are fixed over time, and it avoids the problem of 

“extreme” actions eliminating “moderate” ones. Furthermore, our approach works with a 

larger class of regression models, including ordinary least squares, the lasso, support vector 

regression, and logistic regression. While our Pareto-based approach makes these three 

improvements, using Pareto-optimality can still result actions being eliminated 

unnecessarily; this is illustrated in Figure 1(b). We address this problem by introducing an 

alternative notion of domination in Section 6. Each of these contributions leads to increased 
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action choice for the decision-maker by considering a larger class of preferences over reward 

vectors.

4.2 Non-Deterministic Policies

Milani Fard and Pineau (2011) describe non-deterministic policies for Markov Decision 

Processes (MDPs) with a finite state space and a single reward function. The term non-
deterministic is used as in the study of non-deterministic finite automata and indicates that 

there are choices made as the system evolves about which we assume we have no 

information.1 Given an MDP with state space  and an action set , an NDP Π is a map 

from the state space to the set 2 \{∅}. Milani Fard and Pineau assume that a user operating 

the MDP will, at each timestep, choose an action from the set Π(s). They are motivated by 

the same considerations that we are in the sense that they wish to provide choice to the user 

while still achieving good performance; thus, they only eliminate actions that are clearly 

sub-optimal. Because they consider only a single reward function, they can measure 

performance using the expected discounted infinite sum of future (scalar) rewards in the 

usual way, and they can produce an NDP Π that has near-optimal performance even if the 

user chooses the “worst” actions from Π(s) in each state.

One can view the NDP as a compact way of expressing a set of policies that might be 

executed. Suppose that ⧣A = |Π(s)|, the number of actions provided by the NDP Π, is the 

same at all states. Then the number of policies that are consistent with Π, that is, the policies 

for which π(s) ∈ Π(s), is ⧣A|S|. So the NDP Π is a compact encoding of an exponential 

number of policies. We will make use of this property to encode our policies. The two most 

important differences between our work and that of Milani Fard and Pineau are that our 

motivation for learning non-deterministic policies is driven explicitly by having more than 

one basis reward of interest, and that we use more general value function models rather than 

a tabular representation. Having multiple basis rewards combined with value function 

approximation leads us to a different, novel algorithm for learning NDPs.

5. Fitted-Q for MOMDPs

Our non-deterministic fitted-Q algorithm for multiple objectives uses finite-horizon, batch 

data. We present a version that uses linear value function approximation because this model 

is commonly used by statisticians working in clinical decision support (Strecher et al., 2006; 

Lizotte et al., 2010, 2012; Laber et al., 2014b), and because available data often contain 

continuous-valued features, e.g., symptom and side-effect levels, laboratory values, etc., and 

outcomes, e.g., symptom scores, body mass index. It is a flexible model because we will not 

restrict the state features one might use. For learning, we assume a batch of n data 

trajectories of the form

1Note that non-deterministic does not mean “stochastic”; i.e., we do not suppose a known stationary random policy will be followed.
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In the following exposition, we begin by specifying how the algorithm works for the last 

time point t = T. This would be the only step needed in a “non-sequential” decision problem. 

We then describe the steps analogous to the fitted-Q “backup” operation for earlier 

timepoints t < T, which are more complex.

5.1 Final time point, t = T

At time T, we define the approximate Q-function for reward dimension d as the linear least 

squares fit

(2)

giving the estimated vector-valued expected reward function

(3)

Here, ϕT (sT, aT) is a feature vector of state and action. As discussed by Lizotte et al. (2012), 

ϕT (sT, aT) would typically include: a constant component for the intercept, features 

describing sT, dummy variables encoding the discrete action aT, and the product of the 

dummy variables with the features describing sT (Cook and Weisberg, 1999). One could also 

include other non-linear functions of sT and aT as features if desired. We present our method 

assuming that ŵT[d] are found by least squares regression, but one could for example add an 

L1 penalty, or use support vector regression (Hastie et al., 2001). Furthermore, unlike 

previous work by Lizotte et al. (2012), any Generalized Linear Model (GLM) with a 

monotonic increasing link function (e.g. logistic regression, Poisson regression, and so on) 

can also be used (Cook and Weisberg, 1999). Note that we can recover a “tabular” 

representation if the states are discrete and we assign mutually orthogonal feature vectors to 

each one.

Having obtained the Q̂
T from (2), we construct an NDP ΠT that will give, for each state, the 

actions one might take at the last time point. For each state sT at the last time point, each 

action aT is associated with a unique vector-valued estimated expected reward given by Q̂
T 

(sT, aT). Thus, we decide which among these vectors is a desirable outcome, and include 

their associated actions in ΠT (sT). Our main focus will be to construct ΠT (sT) for each state 

based on the multi-objective criterion of Pareto optimality; however, an important advantage 

of our algorithm is that it can use other definitions of ΠT as well; we discuss an extension in 

Section 6. For example, different definitions of ΠT allow us to recover other varieties of Q-

learning:

Scalar Fitted-Q: Defining
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gives standard fitted-Q applied to reward dimension 0.

Convex Pareto-optimal Fitted-Q: Defining

includes those actions whose expected reward is on the convex hull of the 

Pareto frontier; these are the actions that would be included by the previous 

method of Lizotte et al. (2012).

Pareto-optimal Fitted-Q: Defining

includes precisely those actions whose expected reward is on the (weak) Pareto 

frontier; this is a superset of those included by the method of Lizotte et al. 

(2012). It includes the actions that are optimal for some scalarization function, 

which is our action set of interest.

5.2 Earlier time points, t < T

For t < T, it is only possible to define the expected return of taking an action in a given state 

by also deciding which particular policy will be followed to choose future actions. In 

standard fitted-Q, for example, one assumes that the future policy is given by πj (s) = arg 

maxa Q̂
j (s, a) for all j > t. In the non-deterministic setting, we may know that the future 

policy belongs to some set of possible policies derived from Πj for j > t, but in general we do 

not know which among that set will be chosen; therefore, we explicitly include the 

dependence of Q̂
t on the choice of future policies πj, t < j ⩽ T:

where

and

(4)
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We say an expected return is achievable if it can be obtained by taking some immediate 

action in the current state and following it with a fixed sequence of policies until we reach 

the last time point.

We use t to denote a set of partially-evaluated Q-functions; each member of t is a function 

of st and at only and assumes a particular fixed sequence πt+1, …, πT of future policies. 

Precisely which future policies should be considered is the subject of the next section. For 

the last time point, we define T = {Q̂
T}, the set containing the single (multivariate) Q-

function for the last time point. Figure 2 is a visualization of an example T−1 where each 

function in the set is evaluated at the same given state and for each of the five available 

actions, { , , , , }. Thus, each element of the example T−1 corresponds to a collection of 

five markers on the plot, one for the expected return for each action, assuming we follow a 

particular πT. The question of what collection of πT we should consider is the subject of the 

next section.

5.3 Constructing Πt from Πt+1

We now describe the “backup” step that constructs Πt and t from Πt+1 and t+1. A member 

of t is constructed from data using equation (4) by choosing two components: An element 

of t+1 (with its implicit choice of πt+2 through πT) and a policy πt+1. When considering 

different possible πt+1, we restrict our attention to policies that i) are consistent with Πt+1, 

and ii) are representable using the approximation space chosen for Q̂
t+1. In the following, 

we define these notions of consistency and representability, argue that this subset of policies 

contains all those we need to consider, and show how the set of consistent and representable 

policies can be efficiently enumerated using mixed integer linear programming.

To construct t, we will only consider future policies that are consistent with the NDPs we 

have already learned for later time points. As described above, each Π(s) contains each 

action for which some scalarization function (i.e. preference) prefers that action.

Definition 2 (Policy consistency)—A policy π is consistent with an NDP Π, denoted π 
⊏ Π, if and only if π(s) ∈ Π(s) ∀s ∈ . We denote the set of all policies consistent with Π 
by (Π).

This restriction is analogous to fitted-Q in the scalar reward setting, where we estimate the 

current Q function assuming we will follow the greedy policy of the estimated optimal Q 
function at later time points. In our setting, there are likely to be multiple different policies 

whose values, pointwise at each state, are considered “optimal,” e.g. that are Pareto non-

dominated. Although we cannot pare down the possible future policies to a single unique 

choice as in scalar fitted-Q, we can still make significant computational savings. Note that in 

the batch RL setting, two policies are distinguishable only if they differ in action choice on 

states observed in our data set. In the following, when we talk about the properties of 

policies, we mean in particular over the observed states in our data set. Where clarification is 

needed, we write  to mean the n states observed in our data set at time t. Note that 

, the product of the cardinalities of the sets produced by Πt over 

the observed data. Because |Πt (st)| ⩽ | |, we have | (Πt)| ⩽ | |n. If Πt screens out enough 
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actions from enough observed states, restriction to consistent policies can result in a much 

smaller t. Unfortunately, in the worst case where ∀st Πt (st) = t, we have | (Πt)| = | |n, 

and if for some fraction η of the n trajectories (0 < η ⩽ 1) we have |Πt (st)| ⩾ 2, then we 

have | (Πt)| ∈ Ω(2n). Therefore in many interesting cases, computing a t that includes even 

just the consistent future policies is computationally intractable.

We therefore impose a further restriction on possible future policies, again only eliminating 

policies we do not wish to consider. In scalar fitted-Q, the learned optimal policy is given by 

argmaxa Q (s, a). If the learned Q-functions are linear in some feature space, then the learned 

optimal policy can be represented by a collection of linear separators that divide feature 

space into regions where different actions are chosen. This is true for any scalar reward 

signal. Therefore, in the scalar reward case for a given feature space, any future policy that 

cannot be represented in this way will never considered when computing Q̂ for earlier 

timepoints no matter what the observed rewards are.

In NDP settings where dim ϕt (st, at) « n, most of the policies that are consistent with Πt (st) 

are not representable in the form π(st) = argmaxa Qt (st, a), and therefore would never be 

learned by fitted-Q iteration using any scalar reward signal. Figure 3 illustrates this. The top 

panel shows a non-deterministic policy on a one-dimensional continuous state-space with 

two possible actions. The middle panel shows a policy that is consistent with the NDP. 

Though it is consistent, this policy is a complex function of the 1D state and is difficult to 

justify if the state is a continuous patient measurement and the action is a treatment. 

Furthermore, there is no Q-function linear in the given feature space that produces this 

consistent policy as its greedy policy. In other words, given the feature space, there is no 
scalar reward signal that would cause us to learn this policy with fitted-Q and linear 

regression. We therefore will “prune away” these consistent but un-representable policies in 

order to reduce the size of t by introducing the notion of policy ϕ-consistency.

Definition 3 (Policy ϕ-consistency)—Given a feature map ϕ :  ×  → ℝp, we say a 

policy πt is ϕ-consistent with a non-deterministic policy Πt over a data set with n 

trajectories, if and only if . 

We write πt ⊏ϕ Πt, and we denote the set of all policies that are ϕ-consistent with Πt by ϕ 
(Πt).

A ϕ-consistent policy is an element of (Πt) that is the argmax policy for some (scalar) Q-

function over the feature map ϕ. The form of such a policy is much like that of the function 

learned by a structured-output SVM (Tsochantaridis et al., 2005).

We now show that the number of ϕ-optimal policies for any given time point is polynomial 

in the data set size n.

Theorem 1—Given a data set of size n, a feature map ϕ, and an action set , there are at 
most O(ndim(ϕ) · | |2 dim(ϕ)) feature-consistent policies.

Proof: The space of ϕ-consistent policies is exactly analogous to the space of linear 

multiclass predictors with ϕ as their feature map. We therefore port two results from learning 
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theory to analyze the number of ϕ-consistent policies in terms of the dimension of ϕ, the size 

of the data set n, and the size of the action set. The Natarajan dimension (Natarajan, 1989; 

Shalev-Shwartz and Ben-David, 2014) is an extension of VC-dimension to the multiclass 

setting. For a supervised learning data set of size n, k classes, and a hypothesis class ℋ with 

Natarajan dimension Ndim (ℋ), the number |ℋn| of hypotheses restricted to the n datapoints 

is subject to the following upper bound due to Natarajan (1989):

(5)

Furthermore, the hypothesis class given by

(6)

has Natarajan dimension Ndim(ℋϕ) = dim(ϕ) (Shalev-Shwartz and Ben-David, 2014). 

Combining Equations (5) and (6) and completes our proof.

Theorem 1 shows that for fixed | | and dim(ϕ) there are only polynomially many ϕ-

consistent future policies, rather than a potentially exponential number of consistent policies 

as a function of n. Therefore, by considering only ϕ-consistent future policies, we can ensure 

that the size of T−1 is polynomial in n. The restriction to ϕ-consistent policies applies to Q-

functions based on Generalized Linear Models with monotonic increasing link functions 

(such as logistic regression) as well. Such models have output of the form g(ϕ(st, a)⊤w) for 

monotonic increasing g. For these models, argmaxa g(ϕ(si, a)⊤w) = argmaxa ϕ(st, a)⊤w, so 

all of our results and algorithms for ϕ-consistency immediately apply.

We note that even if we prune using ϕ-consistency, the number of policies is exponential in 

dim ϕ, the feature space. Hence, this approach is tractable only for relatively simple Q-

models. In this work we demonstrate that it is practical in a proof-of-concept setting (the 

CATIE study) but we acknowledge this limitation and defer it to future work.

We now express ϕ(Π) in a way that allows us to enumerate it using a Mixed Integer 

Program (MIP). To formulate the constraints describing ϕ(Π), we take advantage of 

indicator constraints, a mathematical programming formalism offered by modern solvers; 

e.g. the CPLEX optimization software package as of version 10.0, which was released in 

2006 (CPLEX). Each indicator constraint is associated with a binary variable, and is only 

enforced when that variable takes the value 1. To construct the MIP, we introduce n × | | 

indicator variables αi,j that indicate whether π(si) = j or not. We then impose the following 

constraints:

(7)
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(8)

(9)

Constraints (7) ensure that the indicator variables for the actions are binary. Constraints (8) 

ensure that, for each example in our data set, exactly one action indicator variable is on. The 

indicator constraints in (9) ensure that if the indicator for action j is on for the ith example, 

then weights must satisfy j = argmaxa ϕ(si, a)⊤w. Note that the margin condition (i.e., having 

the constraint be ⩾ 1 rather than ⩾ 0) avoids a degenerate solution with w = 0.

The above constraints ensure that any feasible αi,j define a policy that can be represented as 

an argmax of linear functions over the given feature space. Imposing the additional 

constraint that the policy defined is consistent with a given NDP Π is now trivial:

(10)

Constraints (10) ensure that the indicator that turns on for the ith example in the data must 

be one that indicates an action that belongs to the set Π(si).

Note that we have not specified an objective for this MIP: for the problem of generating ϕ-

consistent policies, we are only interested in generating feasible solutions and interpreting 

the label variables as a potential future policy. Software such as CPLEX can enumerate all 

possible discrete feasible solutions to the constraints we have formulated. To do so, we give 

the constraints to the solver and ask for solutions given an objective that is identically zero. 

Note that if we instead minimized the quadratic objective ‖w‖2 subject to these constraints, 

we would recover the consistent policy with the largest margin between action choices in the 

feature space. The output would be equivalent to exact transductive learning of a hard-

margin multiclass SVM using the actions as class labels (Tsochantaridis et al., 2005).

Given t, our final task is to define Πt (st) for all st. While T is a singleton, for t < T this is 

not the case in general, and we must take this into account when defining Πt (st). We present 

two definitions for Πt (st) based on a strict partial order ≺. (For example ≺ may be the Pareto 

partial order.)
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Algorithm 1

Non-deterministic fitted-Q

Learn Q̂T = (Q̂T[1], …, Q̂T[D]), set T = {Q̂T}

for t = T − 1, T − 2, …, 1 do

  for all  in the data do

    Generate  using t+1

  t ← ∅

  for all  do

    for all Q̂t+1 ∈ t+1 do

      Learn (Q̂t[1](·, ·, πt, …), …, Q̂t[D] (·, ·, πt, …)) using Q̂t+1, add to t

Under , action a is included if for all fixed sequences of policies we might follow after 

choosing a, no other choice of current action and future policy is preferable according to ≺. 

 is appealing in cases where we wish to guard against a naïve decision maker choosing 

poor sequences of future actions. For the T−1 shown in Figure 2, we would have 

. The  action is obviously eliminated because any  point dominates 

every single  point. The  and  actions eliminate each other: There are  points that are 

dominated by  points, and  points that are dominated by  points. Note that this illustrates 

how  could be empty: if our example only contained the  and  actions, we would 

have . In practice we find that  can be very restrictive; we therefore present 

 as an alternative. Under , action a is included if there is at least one fixed future policy 

for which a is not dominated by a value achievable by another (a′, Q̂′) pair. Note that 

, and that because the relation Q̂ ≺ Q̂′ is a partial order on a finite set, there must 

exist at least one maximal element; therefore . In the Figure 2 example, we have 

; note that  is not included because there is always another action 

that can dominate it if we choose an appropriate future policy. In order to provide increased 

choice and to ensure we do not generate NDPs with empty action sets, we will use  in our 

complete non-deterministic multiple-reward fitted-Q algorithm, but in our examples we will 

investigate the effect of choosing  instead.

5.4 Time Complexity

Pseudocode is given in Algorithm 1. The time cost of Algorithm 1 is dominated by the 

construction of t, whose size may increase by a factor of O(n|A| dim ϕ) at each timestep; 

therefore in the worst case | 1| is exponential in T. This can be mitigated somewhat by 

pruning t at each step, essentially removing from consideration future policy sequences 

that are dominated no matter what current action is chosen. Again, this pruning has no 

impact on solution quality because we are only eliminating future policy sequences that will 
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never be executed. Despite the exponential dependence on T, we will show that our method 

can be successfully applied to real data in Section 7, and we defer the development of 

approximations to future work.

6. Practical domination

So far we have presented our algorithm assuming we will use Pareto dominance to define ≺. 

However, there are two ways in which Pareto dominance does not reflect the reasoning of a 

physician when she determines whether one action is superior to another. First, an action 

that has a slightly lower value along a single dimension, but is otherwise equivalent, will be 

Pareto-dominated (and eliminated) even if this difference is clinically meaningless. A 

physician with this knowledge would consider both actions in light of other “tie-breaking” 

factors not known to the RL policy, e.g., cost, allergies, etc. Second, an action that is slightly 

better for one reward but much worse for another would not be dominated, even though it 

may realistically be a very poor choice, and perhaps even unethical. Chatterjee et al. (2006) 

introduced ε-dominance which would partially address the first issue, but not the second. We 

wish to eliminate only actions that are “obviously” inferior while maintaining as much 

freedom of choice as possible. To accomplish this, we use the idea of practical significance 
(Kirk, 1996) to develop a definition of domination based on the idea that in real-world 

applications, small enough differences in expected reward simply do not matter. Differences 

that fall below a threshold of importance are termed “practically insignificant.”

We introduce two notions of domination that are modifications of Pareto domination. The 

first, Practical Domination, most accurately describes our intuition about the set of actions 

that should be recommended. However, we show that it has an undesirable non-transitivity 

property. We then describe an alternative strategy based on what we call Strong Practical 
Domination.

Definition 4 (Practical Domination)

We say that an action a2 is practically dominated by a1 at state sT, and we write a2 ≺p a1, if 
both of the following hold

(11)

(12)

If either of the above do not hold, we write a2 ⊀p a1.

Intuitively, an action a1 practically dominates a2 if a2 is “not practically better” than a1 for 

any basis reward (property 11), and if a2 is “practically worse” than a1 for some basis reward 

(property 12). “Practically better” and “practically worse” are determined by the elicited 

differences Δd ⩾ 0. Note that we could have Δd depend on the current state if that were 

appropriate for the application at hand; for simplicity we assume a uniform Δd. We might 
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consider using the relation ≺p as the ordering that produces our NDP according to one of the 

mappings from Section 5. Unfortunately, ≺p is not transitive. Suppose that the Q-vectors 

(QT[1](sT, a), QT[2](sT, a)) are (4.9, 4.9), (3, 5.2), (1.8, 5.6), (4.6, 4.6) for a1, a2, a3, a4, 

respectively, and suppose Δ1 = Δ2 = 0.5. Then a2 ≺p a1 and a3 ≺p a2 but a3 ⊀p a1. This non-

transitivity causes undesirable behavior: if we consider only actions a1 and a3, we get 

. However, if we consider a1, a2 and a3, we get  Thus by 

considering more actions, we get a smaller . This is unacceptable in our domain, so 

we introduce an alternative.2

Definition 5 (Strong Practical Domination)

We say an action a2 is strongly practically dominated by a1 at state sT, and we write a2 ≺sp 

a1, if both of the following hold.

(13)

(14)

If either of the above do not hold, we write a2 ⊀sp a1.

The relation ≺sp is transitive, and will not cause the unintuitive results of ≺p. However, it 

does not eliminate actions that are slightly better for one basis reward but much worse for 

another. (Note that ∃d ∈ 1…D, QT[d](sT, a2) > QT[d](sT, a1) ⇒ a2 ⊀sp a1.) We propose a 

compromise: we will use ≺sp as our partial order for producing NDPs as in Section 5. 

However, if an action a would have been eliminated according to ≺p but not according to 

≺sp, we may “warn” that it may be a bad choice. This has no impact on computation of Π 
and Q̂ at earlier time points, but can warn the user that choosing a entails taking a practically 

significant loss on one basis reward to achieve a practically insignificant gain on another.

7. Empirical Example: CATIE

We illustrate the output of non-deterministic fitted-Q using data from the Clinical 

Antipsychotic Trials of Intervention Effectiveness (CATIE) study. The CATIE study was 

designed to compare sequences of antipsychotic drug treatments for the care of 

schizophrenia patients. The full study design is quite complex (Stroup and al, 2003; Swartz 

et al., 2003); we use a simplified subset of the CATIE data in order to more clearly illustrate 

the proposed methodology. CATIE was an 18-month study of n = 1460 patients that was 

divided into two main phases of treatment. Upon entry, most patients began “Phase 1,” and 

were randomized to one of five treatments3 with equal probability: olanzapine , risperidone

, quetiapine , ziprasidone , or perphenazine . As time passed, patients were given the 

2Note that for binary actions, the non-transitivity is not an issue and that this is common in some medical applications (e.g. treatment 
vs. watchful waiting, high-intensity vs. low-intensity treatment, etc.)
3Throughout the text we will suffix each treatment name with its corresponding plot-marker.
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opportunity to discontinue their Phase 1 treatment and begin “Phase 2” on a new treatment. 

The possible Phase 2 treatments depended on the reason for discontinuing Phase 1 

treatment. If the Phase 1 treatment was ineffective at reducing symptoms, then patients 

entered the “Efficacy” arm of Phase 2, and their Phase 2 treatment was chosen randomly as: 

{clozapine } with probability 1/2, or uniformly randomly from the set {olanzapine , 

risperidone , quetiapine } with probability 1/2. Because relatively few patients entered this 

arm, and because of the uneven action probabilities, it is reasonable to combine {olanzapine

, risperidone , quetiapine } into one “not-clozapine” action, and we will do so here. If the 

Phase 1 treatment produced unacceptable side-effects, they entered the “Tolerability” arm of 

Phase 2, and their Phase 2 treatment was chosen uniformly randomly from {olanzapine , 

risperidone , quetiapine , ziprasidone }.

The goal of analyzing CATIE is to develop a two-time point policy (T = 2), choosing the 

intial treatment at t = 1 and possibly a follow-up treatment at t = 2. From a methodological 

perspective, the t = 1 policy is most interesting as it requires the computation of 1 using 

Algorithm 1. Previous authors have used batch RL to analyze data from this study using a 

single basis reward (Shortreed et al., 2011) and examining convex combinations of basis 

rewards (Lizotte et al., 2012). In the following, we present the treatment recommendations 

of a non-deterministic fitted-Q analysis that considers both symptom relief and side-effects, 

and we compare with the output of a method by Lizotte et al. (2010, 2012). We begin by 

describing our basis rewards and our state spaces for t = 2 and t = 1, and we then present our 

results, paying particular attention to how much action choice is available using the different 

methods.

7.1 Basis Rewards

We will use ordinary least squares to learn Q functions for two basis rewards. For our first 

basis reward, we use the Positive and Negative Syndrome Scale (PANSS) which is a 

numerical representation of the severity of psychotic symptoms experienced by a patient 

(Kay et al., 1987). PANSS has been used in previous work on the CATIE study (Shortreed et 

al., 2011; Lizotte et al., 2012; Swartz et al., 2003), and is measured for each patient at the 

beginning of the study and at several times over the course of the study. Larger PANSS 

scores are worse, so for our first basis reward r[1] we use 100 minus the percentile of a 

patient’s PANSS at their exit from the study. We use the distribution of PANSS at intake as 

the reference distribution for the percentile.

For our second basis reward, we use Body Mass Index (BMI), a measure of obesity. Weight 

gain is an important and problematic side-effect of many antipsychotic drugs (Allison et al., 

1999), and has been studied in the multiple-reward context (Lizotte et al., 2012). Because 

having a larger BMI is worse, for our second basis reward, r[2], we use 100 minus the 

percentile of a patient’s BMI at the end of the study, using the distribution of BMI at intake 

as the reference distribution.
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7.2 State Space

For our state space, we use the patient’s most recently recorded PANSS score, which experts 

consider for decision making (Shortreed et al., 2011). We also include their most recent 

BMI, and several baseline characteristics.

Because the patients who entered Phase 2 had different possible action sets based on 

whether they entered the Tolerability or Efficacy arm, we learn separate Q-functions for 

these two cases. The feature vectors we use for Stage 2 Efficacy patients are given by

Here, s2:P and s2:B are the PANSS and BMI percentiles at entry to Phase 2, respectively. 

Feature 1a2=  indicates that the action at the second stage was clozapine  and not one of the 

other treatments. We also have other features that do not influence the optimal action choice 

but that are chosen by experts to reduce variance in the value estimates.4 1TD indicates 

whether the patient has had tardive dyskinesia (a motor-control side-effect), 1EX indicates 

whether the patient has been recently hospitalized, and 1ST1 through 1ST4 indicate the “site 

type,” which is the type of facility at which the patient is being treated (e.g. hospital, 

specialist clinic, etc.)

For Phase 2 patients in the Tolerability arm, the possible actions are , 

and the feature vectors we use are given by

Here we have three indicator features for different treatments at Phase 2, 1a2= , 1a2= , 1a2= , 

with ziprasidone represented by turning all of these indicators off. Again we include the 

product of each of these indicators with the PANSS percentile s2. The remainder of the 

features are the same as for the Phase 2 Efficacy patients.

For Phase 1 patients, the possible actions are 1 = { , , , , }, and the feature vectors we 

use are given by

4See Section 4.2 of the paper by Shortreed et al. (2011) for an explanation of these kinds of features.
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We have four indicator features for different treatments at Phase 2, 1a1= , 1a1= , 1a1= , and 

1a1= , with ziprasidone represented by turning all of these indicators off. We include the 

product of each of these indicators with the PANSS percentile s1 at entry to the study, and 

the remainder of the features are the same as for the Phase 2 feature vectors. (These are 

collected before the study begins and are therefore available at Phase 1 as well.)

7.3 Results

The purpose of our empirical study is to demonstrate that our non-deterministic fitted-Q 
algorithm is feasible to use on real clinical trial data, and that it can offer increased choice 

over other approaches in a real-world setting. We will discuss several plots of different 

NDPs. Each point on a plot represents one value of s1 in our data set, and at each point is 

placed a marker for each action recommended by an NDP5. To use the plots to make a 

decision for Phase 1, one would find the point on the plot corresponding to a current 

patient’s state, and see what actions are recommended for that state. One would then decide 

among them using expert knowledge, knowing that according to the data and the chosen 

solution concept, any of those actions would be optimal. Then the process would be repeated 

should the patient move on to Phase 2, using the corresponding plots for T = 2 (not shown.) 

It is important to note that the axes in Figures 5 through 8 represent state, even though the 

same features (measured after treatment) are also used as reward values.

One can think of all of the learned NDPs that we present in the following experiments as 

transformations of the raw trajectory data into recommended actions, made under different 

solution concepts. The choice of solution concept is subjective and tied an application at 

hand; hence we will not argue that one result is necessarily “better” than another, but rather 

illustrate some of the differences between them. Indeed, the ability to accommodate different 

solution concepts is a strength of our approach. That said, we argue that if two solution 

concepts are both acceptable for a given application, we should prefer the one that offers 

more action choice to the decision-maker. Therefore, as we discuss the appropriateness of 

different solution concepts for the CATIE data, and we will examine how the amount of 

action choice varies for different solution concepts.

Figure 5 serves as our baseline. It shows the NDP at Phase 1 produced using the convex 

combination technique of Lizotte et al. (2012), which assumes a linear scalarization function 

(equivalent to the convex Pareto partial order) and assumes that preferences are fixed over 

time. One can see that for a large part of the state space, only ziprasidone  and olanzapine

are recommended. This occurs because for much of the state space, ziprasidone  and 

olanzapine  have Q values similar to those in Figure 2: olanzapine  performs better on 

PANSS than on BMI, and ziprasidone  has the opposite effect. These two treatments tend to 

eliminate the more “moderate” actions by the mechanism we described in Figure 1. In this 

NDP, the mean number of choices per state is 2.26, and 100% of states have had one or more 

actions eliminated.

5Note that Figure 2 is in fact a plot of the Q-function for Phase 1 at a state where (PANSS, BMI) = (50. 1, 48. 6), limited to a t of 
size of 20 for clarity.
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In our opinion, the convex Pareto domination solution criterion is overly eager to eliminate 

actions in this context, and the assumption of a fixed scalarization function is unrealistic. 

Figure 6 shows the NDP learned for Phase 1 using Algorithm 1 with Pareto domination and 

, which relaxes these two assumptions. As expected, the recommended action sets are 

larger. Despite the increased choice available, a user following these recommendations can 

still achieve a value on the Pareto frontier even if their preferences change in Phase 2. In this 

NDP, the mean number of choices per state is 4.14, and 68% of states have had at least one 

eliminated.

We now examine the actions that would be recommended if the decision-maker used the 

Strong Practical Domination solution concept. Figure 7 shows the NDP learned for Phase 1 

using our algorithm with Strong Practical Domination (Δ1 = Δ2 = 2.5) and , and actions 

that receive a “warning” according to Practical Domination have been removed. In this 

example, choice is further increased by requiring an action to be practically better than 

another action in order to dominate it, and although we have removed actions that were 

warned to have a bad trade-off—those that were slightly better for one reward but practically 

worse for another—we still provide increased choice over using the Pareto frontier alone. In 

this NDP, the mean number of choices per state is 4.30, and 55% of states have had one or 

more actions eliminated.

We now consider using the same solution concept but the more strict  definition for 

constructing the NDP. Figure 8 shows the NDP learned for Phase 1 using our algorithm with 

Strong Practical Domination (Δ1 = Δ2 = 2.5) and . Again, an action must be practically 

better than another action in order to dominate it, which tends to increase action choices. 

However, recall that for  we only recommend actions that are not dominated by another 

action for any future policy. Hence, these actions are extremely “safe” in the sense that they 

achieve an expected value on the ≺sp-frontier as long as the user selects from our 

recommended actions in the future. In this NDP, the mean number of choices per state is 

2.56, and 100% of states have had one or more actions eliminated. Hence, we have a trade-

off here: Relative to , this approach reduces choice, yet increases safety; whether or not 

this is preferable will depend on the application at hand. That said, using  in this way 

provides more choice than recommending actions based on convex Pareto optimality and a 

fixed future policy, while at the same time providing a guarantee that the recommended 

actions are safe choices even if preferences change.

Using ϕ-consistency to reduce the size of t was critical for all of our analyses. In the Phase 

2 Tolerability NDP there are over 10124 consistent policies but only 1213 ϕ-consistent 

policies, and in the Phase 2 Efficacy NDP there are 1048576 consistent policies but only 98 

ϕ-consistent policies. Finding the ϕ-consistent policies took less than one minute on an Intel 

Core i7 at 3.4GHz using Python and CPLEX.
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8. Discussion

Our overarching goal is to expand the toolbox of data analysts by developing new, useful 

methods for producing decision support systems in very challenging settings. To have 

maximum impact, decision support must appropriately take into account the sequential 

aspects of the problem at hand and at the same time acknowledge the fact that different 

decision makers have different preferences. Working toward this goal, we have presented a 

suite of novel ideas for learning non-deterministic policies for MDPs with multiple 

objectives. We gave a formulation of fitted-Q iteration for multiple basis rewards, we 

discussed ways of producing an NDP from a set t of Q-functions that depend on different 

future policies, we introduced the idea of ϕ-consistent policies to control computational 

complexity, and we introduced “practical domination” to help users express their preference 

over actions without explicitly eliciting a preference over basis rewards. Finally, we showed 

using clinical trial data how our method could be used, and we showed that the NDPs we are 

able to learn offer more optimal action choice than previous approaches.

One of our next steps will be to augment the definition of practical dominance to incorporate 

our estimation uncertainty in the Q-values. We will also investigate more aggressive 

“pruning” of the t to control computational complexity—one could even consider using a 

single consistent policy per timestep, for example, by adding a margin-based objective to the 

MIP as described in Section 3.

Rather than restrict ourselves by trying to identify a single “best approach” for all decision 

support systems, we have developed an algorithm that is modular: One could substitute 

another notion of domination for the ones we proposed if another notion is more appropriate 

for a given problem domain. Regardless of this choice, our algorithm will suggest sets of 

actions that are optimal in the sense we have described. For some applications,  may be 

appropriate; for other more conservative applications  may be the only responsible 

choice. Note that we are not dictating how the output from the NDP is used; one could 

imagine an interface that accepted patient state information and displayed richer information 

based on , and perhaps plots like Figure 2 to convey to the user what the pros and 

cons are for the different actions. Our contributions make a wide variety of new decision 

support systems possible.
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Figure 1. 
Comparison of existing approaches to eliminating actions at time T. The problems illustrated 

here have analogs for t < T where the picture is more complicated. In this simple example, 

we suppose the vector-valued expected rewards (QT[1](sT, a), QT[2](sT, a)) are (1, 9), (9, 1), 

(4.9, 4.9), (4.6, 4.6) for actions a1, a2, a3, a4, respectively. Figure 1(a): Using the method of 

Lizotte et al. (2010, 2012) based on convex combinations of rewards, actions a3 and a4 

would be eliminated, and we would have ΠT (st) = {a1, a2}. (Any action whose expected 

rewards fall in the shaded region would be eliminated.) However, we would prefer to at least 

include a3 since it offers a more “moderate” outcome that may be important to some 

decision-makers. Figure 1(b): Using the Pareto partial order, only action a4 is eliminated, 

and we have ΠT (sT) = {a1, a2, a3}. However, we may prefer to include a4 since its 

performance is very close to that of a3, and may be preferable for reasons we cannot infer 

from our data—e.g. cost, or allergy to a3.
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Figure 2. 
Partial visualization of the members of an example T−1. We fix a state sT−1 = (50.1, 48.6) 

in this example, and we plot Q̂
T−1(sT, aT) for each Q̂

T−1 ∈ T−1 and for each aT−1 ∈ { , , , 

, }. For example, the  markers near the top of the plot correspond to expected returns for 

each Q̂ ∈ T that is achievable by taking the  action at the current time point and then 

following a particular future policy. This example T−1 contains 20 Q̂
T−1 functions, each 

assuming a different πT.
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Figure 3. 
An NDP on a one-dimensional continuous state-space, a consistent policy, and a ϕ-

consistent policy.
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Figure 4. 
Comparison of rules for eliminating actions. In this simple example, we suppose the Q-

vectors (QT[1] (sT, a), QT[2] (sT, a)) are (4.9, 4.9), (3, 5.2), (1.8, 5.6), (4.6, 4.6) for a1, a2, a3, 

a4, respectively, and suppose Δ1 = Δ2 = 0.5. Figure 4(a): Using the Practical Domination 

rule, action a4 is not eliminated by a3 because it is not much worse according to either basis 

reward, as judged by Δ1 and Δ2. Action a2 is eliminated because although it is slightly better 

than a1 according to basis reward 2, it is much worse according to basis reward 1. Similarly, 

a3 is eliminated by a2. Note the small solid rectangle to the left of a2: points in this region 

(including a3) are dominated by a2, but not by a1. This illustrates the non-transitivity of the 

Practical Domination relation, and in turn shows that it is not a partial order. Figure 4(b): 
Using Strong Practical Domination, which is a partial order, no actions are eliminated, and 

there are no regions of non-transitivity.
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Figure 5. 
NDP produced by taking the union over actions recommended by Lizotte et al. (2010, 2012)
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Figure 6. 

NDP produced by  with Pareto Domination.
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Figure 7. 

CATIE NDP for Phase 1 made using ; “warning” actions that would have been eliminated 

by Practical Domination but not by Strong Practical Domination have been removed.
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Figure 8. 

NDP produced by  with Strong Practical Domination.
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