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Abstract

We present statistical methods for big data arising from online analytical processing, where large 

amounts of data arrive in streams and require fast analysis without storage/access to the historical 

data. In particular, we develop iterative estimating algorithms and statistical inferences for linear 

models and estimating equations that update as new data arrive. These algorithms are 

computationally efficient, minimally storage-intensive, and allow for possible rank deficiencies in 

the subset design matrices due to rare-event covariates. Within the linear model setting, the 

proposed online-updating framework leads to predictive residual tests that can be used to assess 

the goodness-of-fit of the hypothesized model. We also propose a new online-updating estimator 

under the estimating equation setting. Theoretical properties of the goodness-of-fit tests and 

proposed estimators are examined in detail. In simulation studies and real data applications, our 

estimator compares favorably with competing approaches under the estimating equation setting.
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1 Introduction

The advancement and prevalence of computer technology in nearly every realm of science 

and daily life has enabled the collection of “big data”. While access to such wealth of 

information opens the door towards new discoveries, it also poses challenges to the current 

statistical and computational theory and methodology, as well as challenges for data storage 

and computational efficiency.

Recent methodological developments in statistics that address the big data challenges have 

largely focused on subsampling-based (e.g., Kleiner et al., 2014; Liang et al., 2013; Ma et 

al., 2013) and divide and conquer (e.g., Lin and Xi, 2011; Guha et al., 2012; Chen and Xie, 

2014) techniques; see Wang et al. (2015) for a review. “Divide and conquer” (or “divide and 

recombine” or ‘split and conquer”, etc.), in particular, has become a popular approach for 

the analysis of large complex data. The approach is appealing because the data are first 

divided into subsets and then numeric and visualization methods are applied to each of the 

subsets separately. The divide and conquer approach culminates by aggregating the results 

from each subset to produce a final solution. To date, most of the focus in the final 

aggregation step is in estimating the unknown quantity of interest, with little to no attention 

devoted to standard error estimation and inference.

In some applications, data arrive in streams or in large chunks, and an online, sequentially 

updated analysis is desirable without storage requirements. As far as we are aware, we are 

the first to examine inference in the online-updating setting. Even with big data, inference 

remains an important issue, particularly in the presence of rare-event covariates. In this 

work, we provide standard error formulae for divide-and-conquer estimators in the linear 

model (LM) and estimating equation (EE) framework. We further develop iterative 

estimating algorithms and statistical inferences for the LM and EE frameworks for online-

updating, which update as new data arrive. These algorithms are computationally efficient, 

minimally storage-intensive, and allow for possible rank deficiencies in the subset design 

matrices due to rare-event covariates. Within the online-updating setting for linear models, 

we propose tests for outlier detection based on predictive residuals and derive the exact 

distribution and the asymptotic distribution of the test statistics for the normal and non-

normal cases, respectively. In addition, within the online-updating setting for estimating 

equations, we propose a new estimator and show that it is asymptotically consistent. We 

further establish new uniqueness results for the resulting cumulative EE estimators in the 

presence of rank-deficient subset design matrices. Our simulation study and real data 

analysis demonstrate that the proposed estimator outperforms other divide-and-conquer or 

online-updated estimators in terms of bias and mean squared error.

The manuscript is organized as follows. In Section 2, we first briefly review the divide-and-

conquer approach for linear regression models and introduce formulae to compute the mean 

squared error. We then present the linear model online-updating algorithm, address possible 

rank deficiencies within subsets, and propose predictive residual diagnostic tests. In Section 

3, we review the divide-and-conquer approach of Lin and Xi (2011) for estimating equations 

and introduce corresponding variance formulae for the estimators. We then derive our 

online-updating algorithm and new online-updated estimator. We further provide theoretical 
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results for the new online-updated estimator and address possible rank deficiencies within 

subsets. Section 4 contains our numerical simulation results for both the LM and EE 

settings, while Section 5 contains results from the analysis of real data regarding airline on-

time statistics. We conclude with a brief discussion.

2 Normal Linear Regression Model

2.1 Notation and Preliminaries

Suppose there are N independent observations {(yi, xi), i = 1, 2, . . . , N} of interest and we 

wish to fit a normal linear regression model  where εi ~ N(0, σ2) independently 

for i = 1, 2, . . . , N, and β is a p-dimensional vector of regression coefficients corresponding 

to covariates xi (p × 1). Write y = (y1, y2, . . . , yN)′ and X = (x1, x2, . . . , xN)′ where we 

assume the design matrix X is of full rank p < N. The least squares (LS) estimate of β and 

the corresponding residual mean square, or mean squared error (MSE), are given by 

 and , respectively, where IN is the N × N 
identity matrix and H = X(X′X)−1X′.

In the online-updating setting, we suppose that the N observations are not available all at 

once, but rather arrive in chunks from a large data stream. Suppose at each accumulation 

point k we observe yk and Xk, the nk-dimensional vector of responses and the nk × p matrix 

of covariates, respectively, for k = 1, . . . , K such that  and 

. Provided Xk is of full rank, the LS estimate of β based on the kth 

subset is given by  and the MSE is given by 

, where , for k = 1, 2, . . . , K.

As in the divide-and-conquer approach (e.g., Lin and Xi, 2011), we can write  as

(1)

We provide a similar divide-and-conquer expression for the residual sum of squares, or sum 

of squared errors (SSE), given by

(2)

and MSE = SSE/(N − p). Expression (2) is quite useful if one is interested in performing 

inference in the divide-and-conquer setting, as  may be estimated by 
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. We will see in Section 2.2 that both expressions (1) and (2) may 

be expressed in sequential form that is more advantageous from the online-updating 

perspective.

2.2 Online Updating

While equations (1) and (2) are quite amenable to parallel processing for each subset, the 

online-updating approach for data streams is inherently sequential in nature. Equations (1) 

and (2) can certainly be used for estimation and inference for regression coefficients 

resulting at some terminal point K from a data stream, provided quantities 

 are available for all accumulation points k = 1, . . . , K. However, such 

data storage may not always be possible or desirable. Furthermore, it may also be of interest 

to perform inference at a given accumulation step k, using the k subsets of data observed to 

that point. Thus, our objective is to formulate a computationally efficient and minimally 

storage-intensive procedure that will allow for online-updating of estimation and inference.

2.2.1 Online Updating of LS Estimates—While our ultimate estimation and inferential 

procedures are frequentist in nature, a Bayesian perspective provides some insight into how 

we may construct our online-updating estimators. Under a Bayesian framework, using the 

previous k – 1 subsets of data to construct a prior distribution for the current data in subset k, 

we immediate identify the appropriate online updating formulae for estimating the 

regression coefficients β and the error variance σ2 with each new incoming dataset (yk, Xk). 

The Bayesian paradigm and accompanying formulae are provided in the Supplementary 

Material.

Let  and MSEk denote the LS estimate of β and the corresponding MSE based on the 

cumulative data Dk = {(yℓ, Xℓ), ℓ = 1, 2, . . . , k}. The online-updated estimator of β based on 

cumulative data Dk is given by

(3)

where  for k = 1, 2, . . . , and V0 = 0p is a p × p matrix of zeros. 

Although motivated through Bayesian arguments, (3) may also be found in a (non-Bayesian) 

recursive linear model framework (e.g., Stengel, 1994, p313).

The online-updated estimator of the SSE based on cumulative data Dk is given by

(4)

where SSEnk,k is the residual sum of squares from the kth dataset, with corresponding 

residual mean square MSEnk,k =SSEnk,k/(nk – p). The MSE based on the data Dk is then 
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MSEk = SSEk/(Nk – p) where  for k = 1, 2, . . . . Note that for k 
= K, equations (3) and (4) are identical to those in (1) and (2), respectively.

Notice that, in addition to quantities only involving the current data (yk, Xk) (i.e., 

, and nk), we only used quantities ( , SSEk–1, Vk–1, Nk–1) 

from the previous accumulation point to compute  and MSEk. Based on these online-

updated estimates, one can easily obtain online-updated t-tests for the regression parameters. 

Online-updated ANOVA tables require storage of two additional scalar quantities from the 

previous accumulation point; details are provided in the Supplementary Material.

2.2.2 Rank Deficiencies in Xk—When dealing with subsets of data, either in the divide-

and-conquer or the online-updating setting, it is quite possible (e.g., in the presence of rare 

event covariates) that some of the design matrix subsets Xk will not be of full rank, even if 

the design matrix X for the entire dataset is of full rank. For a given subset k, note that if the 

columns of Xk are not linearly independent, but lie in a space of dimension qk < p, the 

estimate

(5)

where  is a generalized inverse of  for subset k, will not be unique. 

However, both  and MSE will be unique, which leads us to introduce the following 

proposition.

Proposition 2.1: Suppose X is of full rank p < N. If the columns of Xk are not linearly 

independent, but lie in a space of dimension qk < p for any k = 1, . . . , K,  in (1) and SSE 

(2) using  as in (5) will be invariant to the choice of generalized inverse .

To see this, recall that a generalized inverse of a matrix B, denoted by B−, is a matrix such 

that BB−B = B. Note that for , a generalized inverse of ,  given in (5) 

is a solution to the linear system . It is well known that if  is a 

generalized inverse of , then  is invariant to the choice of 

 (e.g., Searle, 1971, p20). Both (1) and (2) rely on  only through product 

 which is invariant to the choice of .

Remark 2.2: The online-updating formulae (3) and (4) do not require  for all k to be 

invertible. In particular, the online-updating scheme only requires  to be 

invertible. This fact can be made more explicit by rewriting (3) and (4), respectively, as
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(6)

(7)

where W0 = 0 and  for k = 1, 2, . . ..

Remark 2.3: Following Remark 2.2 and using the Bayesian motivation discussed in the 

Supplementary Material, if X1 is not of full rank (e.g., due to a rare event covariate), we may 

consider a regularized least squares estimator by setting V0 ≠ 0p. For example, setting V0 = 

λIp, λ > 0, with μ0 = 0 would correspond to a ridge estimator and could be used at the 

beginning of the online estimation process until enough data has accumulated; once enough 

data has accumulated, the biasing term V0 = λIp may be removed such that the remaining 

sequence of updated estimators  and MSEk are unbiased for β and σ2, respectively. 

Further details are provided in the Supplementary Material.

2.3 Model Fit Diagnostics

While the advantages of saving only lower-dimensional summaries are clear, a potential 

disadvantage arises in terms of difficulty performing classical residual-based model 

diagnostics. Since we have not saved the individual observations from the previous (k – 1) 

datasets, we can only compute residuals based upon the current observations (yk, Xk). For 

example, one may compute the residuals eki = yki – ŷki, where i = 1, . . . , nk and 

, or even the externally studentized residuals given by

(8)

where  and MSEnk,k(i) is the MSE computed 

from the kth subset with the ith observation removed, i = 1, . . . , nk.

However, for model fit diagnostics in the online-update setting, it would arguably be more 

useful to consider the predictive residuals, based on  from data Dk–1 with predicted 

values , as ěki = yki – y̌ki, i = 1, . . . , nk. Define the 

standardized predictive residuals as .
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2.3.1 Distribution of standardized predictive residuals—To derive the distribution 

of , we introduce new notation. Denote , and  and ϵk–1 the 

corresponding Nk–1 × p design matrix of stacked Xℓ, ℓ = 1, . . . , k – 1, and Nk–1 × 1 random 

errors, respectively. For new observations yk, Xk, we assume yk = Xkβ + εk, where the 

elements of εk are independent with mean 0 and variance σ2 independently of the elements 

of ϵk–1 which also have mean 0 and variance σ2. Thus, E(ěki) = 0, 

 for i = 1, . . . , nk, and 

 where ěk = (ěk1, . . . , ěknk)′.

If we assume that both εk and ϵk–1 are normally distributed, then it is easy to show that 

. Thus, estimating σ2 with MSEk–1 and noting that 

 independently of , we find that  ~ tNk–1–p and

(9)

If we are not willing to assume normality of the errors, we introduce the following 

proposition. The proof of the proposition is given in the Supplementary Material.

Proposition 2.4: Assume that (i) εi, i = 1, . . . , nk, are independent and identically 

distributed with E(εi) = 0 and ; (ii) the elements of the design matrix  are 
uniformly bounded, i.e., |Xij| < C,  i, j, where C < ∞ is constant; (iii) 

, where Q is a positive definite matrix. Let , where 

. Write , where  is an nki × 1 

vector consisting of the  component through the 

component of , and . We further assume that (iv) , where 0 < Ci 

< ∞ is constant for i = 1, . . . , m. Letting 1ki be an nki × 1 vector of all ones, then at 

accumulation point k, we have

(10)

2.3.2 Tests for Outliers—Under normality of the random errors, we may use the 

standardized predictive residuals  and F̌
k in (9) to test individually or globally if there are 

any outliers in the kth dataset. Notice that  and F̌
k can be re-expressed equivalently as
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(11)

respectively, and thus can both be computed with the lower-dimensional stored summary 

statistics from the previous accumulation point.

We may identify as outlying yki observations those cases whose standardized predicted 

are large in magnitude. If the regression model is appropriate, so that no case is outlying 

because of a change in the model, then each  will follow the t distribution with Nk–1 – p 

degrees of freedom. Let pki = P (|tNk–1–p| > | |) be the unadjusted p-value and let p̃ki be the 

corresponding adjusted p-value for multiple testing (e.g., Benjamini and Hochberg, 1995; 

Benjamini and Yekutieli, 2001). We will declare yki an outlier if p̃ki < α for a prespecified α 
level. Note that while the Benjamini-Hochberg (BH) procedure assumes the multiple tests to 

be independent or positively correlated, the predictive residuals will be approximately 

independent as the sample size increases. Thus, we would expect the false discovery rate to 

be controlled with the BH p-value adjustment for large Nk–1.

To test if there is at least one outlying value based upon null hypothesis H0 : E(ěk) = 0, we 

will use statistic F̌
k. Values of the test statistic larger than F(1 – α, nk, Nk–1 – p) would 

indicate at least one outlying yki exists among i = 1, . . . , nk at the corresponding α level.

If we are unwilling to assume normality of the random errors, we may still perform a global 

outlier test under the assumptions of Proposition 2.4. Using Proposition 2.4 and following 

the calibration proposed in Muirhead (1982) (Muirhead, 1982, page 218), we obtain an 

asymptotic F statistic

(12)

Values of the test statistic  larger than F(1 – α, m, Nk–1 – m + 1) would indicate at least 

one outlying observation exists among yk at the corresponding α level.

Remark 2.5: Recall that , where Γ is 

an nk × nk invertible matrix. For large nk, it may be challenging to compute the Cholesky 
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decomposition of var(ěk). One possible solution that avoids the large nk issue is given in the 

Supplementary Material.

3 Online Updating for Estimating Equations

A nice property in the normal linear regression model setting is that regardless of whether 

one “divides and conquers” or performs online updating, the final solution  will be the 

same as it would have been if one could fit all of the data simultaneously and obtained 

directly. However, with generalized linear models and estimating equations, this is typically 

not the case, as the score or estimating functions are often nonlinear in β. Consequently, 

divide and conquer strategies in these settings often rely on some form of linear 

approximation to attempt to convert the estimating equation problem into a least square-type 

problem. For example, following Lin and Xi (2011), suppose N independent observations 

{zi, i = 1, 2, . . . , N}. For generalized linear models, zi will be (yi, xi) pairs, i = 1, . . . , N 

with  for some known function g. Suppose there exists  such that 

 for some score or estimating function ψ. Let  denote the solution 

to the estimating equation (EE)  and let VN̂ be its corresponding 

estimate of covariance, often of sandwich form.

Let {zki, i = 1, . . . , nk} be the observations in the kth subset. The estimating function for 

subset k is . Denote the solution to Mnk,k(β) = 0 as . If we 

define

(13)

a Taylor expansion of –Mnk,k(β) at  is given by 

 as  and Rnk,k is the remainder 

term. As in the linear model case, we do not require Ank,k to be invertible for each subset k, 

but do require that  is invertible. Note that for the asymptotic theory in Section 

3.3, we assume that Ank,k is invertible for large nk. For ease of notation, we will assume for 

now that each Ank,k is invertible, and we will address rank deficient Ank,k in Section 3.4 

below.

The aggregated estimating equation (AEE) estimator of Lin and Xi (2011) combines the 

subset estimators through

(14)
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which is the solution to . Lin and Xi (2011) did not discuss a 

variance formula, but a natural variance estimator is given by

(15)

where V̂
nk,k is the variance estimator of  from the subset k. If V̂

nk,k is of sandwich 

form, it can be expressed as , where Q̂
nk,k is an estimate of Qnk,k = 

var(Mnk,k(β)). Then, the variance estimator is still of sandwich form as

(16)

3.1 Online Updating

Now consider the online-updating perspective in which we would like to update the 

estimates of β and its variance as new data arrives. For this purpose, we introduce the 

cumulative estimating equation (CEE) estimator for the regression coefficient vector at 

accumulation point k as

(17)

for k = 1, 2, . . . where , A0 = 0p, and . With V0̂ = 0p 

and A0 = 0p, the variance estimator at the kth update is given by

(18)

By induction, it can be shown that (17) is equivalent to the AEE combination (14) when k = 

K, and likewise (18) is equivalent to (16) (i.e., AEE=CEE). However, the AEE estimators, 

and consequently the CEE estimators, are not identical to the EE estimators  and V̂
N 

based on all N observations. It should be noted, however, that Lin and Xi (2011) did prove 

asymptotic consistency of AEE estimator  under certain regularity conditions. Since the 

CEE estimators are not identical to the EE estimators in finite sample sizes, there is room for 

improvement.

Towards this end, consider the Taylor expansion of –Mnk,k(β) around some vector , to 

be defined later. Then
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with Řnk,k denoting the remainder. Denote  as the solution of

(19)

Define  and assume Ank,k refers to . Then we have

(20)

If we choose , then  in (20) reduces to the AEE estimator of Lin and Xi 

(2011) in (14), as (19) reduces to  because 

for all k = 1, . . . , K. However, one does not need to choose . In the online-

updating setting, at each accumulation point k, we have access to the summaries from the 

previous accumulation point k – 1, so we may use this information to our advantage when 

defining . Consider the intermediary estimator given by

(21)

for  and . Estimator (21) combines the 

previous intermediary estimators  and the current subset estimator 

, and arises as the solution to the estimating equation 

, where  serves as a bias 

correction term due to the omission of  from the equation.

With the choice of  as given in (21), we introduce the cumulatively updated estimating 

equation (CUEE) estimator  as

(22)
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with  and 

 where a0 = b0 = 0, Ã0 = 0p, and k = 1, 

2, . . . . Note that for a terminal k = K, (22) is equivalent to (20).

For the variance of , observe that 

. Thus, we have 

. Using the above approximation, the variance 

formula is given by

(23)

for k = 1, 2, . . . and Ã0 = Ṽ0 = 0p.

Remark 3.1—Under the normal linear regression model, all of the estimating equation 

estimators become “exact”, in the sense that .

3.2 Online Updating for Wald Tests

Wald tests may be used to test individual coefficients or nested hypotheses based upon either 

the CEE or CUEE estimators from the cumulative data. Let 

refer to either the CEE regression coefficient estimator and corresponding variance in 

equations (17) and (18), or the CUEE regression coefficient estimator and corresponding 

variance in equations (22) and (23).

To test H0 : βj = 0 at the kth update (j = 1, . . . , p), we may take the Wald statistic 

, or equivalently, , where the standard error 

 and  is the jth diagonal element of V̆
k. The 

corresponding p-value is  where Z and  are standard 

normal and 1 degree-of-freedom chi-squared random variables, respectively.

The Wald test statistic may also be used for assessing the difference between a full model 

M1 relative to a nested submodel M2. If β is the parameter of model M1 and the nested 

submodel M2 is obtained from M1 by setting Cβ = 0, where C is a rank q contrast matrix 

and V̆ is a consistent estimate of the covariance matrix of estimator , the test statistic is 

, which is distributed as  under the null hypothesis that Cβ = 0. As 
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an example, if M1 represents the full model containing all p regression coefficients at the kth 

update, where the first coefficient β1 is an intercept, we may test the global null hypothesis 

H0 : β2 = . . . = βp = 0 with , where C is (p – 1) × p matrix C = 

[0, Ip–1] and the corresponding p-value is .

3.3 Asymptotic Results

In this section, we show consistency of the CUEE estimator. Specifically, Theorem 3.2 

shows that, under regularity, if the EE estimator based on the all N observations  is a 

consistent estimator and the partition number K goes to infinity, but not too fast, then the 

CUEE estimator  is also a consistent estimator. The technical regularity conditions are 

provided in the Supplementary Material. We use the same conditions, (C1)-(C6), as Lin and 

Xi (2011) with the exception of condition (C4). Instead, we use a slightly modified version 

which focuses on the behavior of An,k(β) for all β in the neighborhood of β0 (as in (C5)), 

rather than just at the subset estimate . (C4’) In a neighborhood of β0, there exists two 

positive definite matrices Λ1 and Λ2 such that Λ1 ≤ n–1 An,k(β) ≤ Λ2 for all β in the 

neighborhood of β0 and for all k = 1, ..., K.

We assume for simplicity of notation that nk = n for all k = 1, 2, . . . , K. The proof of the 

theorem can be found in the Supplementary Material.

Theorem 3.2—Let  be the EE estimator based on entire data. Then under (C1)-(C2), 

(C4’)-(C6), if the partition number K satisfies K = O(nγ) for some 0 < γ < min{1 – 2α, 4α – 

1}, we have  for any δ > 0.

Remark 3.3—If nk ≠ n for all k, Theorem 3.2 will still hold, provided for each k,  is 
bounded, where nk–1 and nk are the respective sample sizes for subsets k – 1 and k.

Remark 3.4—Suppose N independent observations (yi, xi), i = 1, . . . , N, where y is a 
scalar response and x is a p-dimensional vector of predictor variables. Further suppose 

 for i = 1, . . . , N for g a continuously differentiable function. Under mild 

regularity conditions, Lin and Xi (2011) show in their Theorem 5.1 that condition (C6) is 

satisfied for a simplified version of the quasi-likelihood estimator of β (Chen et al., 1999), 

given as the solution to the estimating equation .

3.4 Rank Deficiencies in Xk

Suppose N independent observations (yi, xi), i = 1, . . . , N, where y is a scalar response and 

x is a p-dimensional vector of predictor variables. Using the same notation from the linear 

model setting, let (yki, xki), i = 1, . . . , nk, be the observations from the kth subset where yk = 

(yk1, yk2, . . . , yknk)′ and Xk = (xk1, xk2, . . . , xknk)′. For subsets k in which Xk is not of full 

rank, we may have difficulty in solving the subset EE to obtain , which is used to 
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compute both the AEE/CEE and CUEE estimators for β in (14) and (20), respectively. 

However, just as in the linear model case, we can show under certain conditions that if 

 has full column rank p, then the estimators  in (14) and  in 

(20) for some terminal K will be unique.

Specifically, consider observations (yk, Xk) such that E(yki) = μki = g(ηki) with  for 

some known function g. The estimating function ψ for the kth dataset is of the form ψ(zki, 
β) = xkiSkiWki(yki – μki), i = 1, . . . , nk, where Ski = ∂μki/∂ηki, and Wki is a positive and 

possibly data dependent weight. Specifically, Wki may depend on β only through ηki. In 

matrix form, the estimating equation becomes

(24)

where Sk = Diag(Sk1, . . . , Sknk), Wk = Diag(Wk1, . . . , Wknk), and μk = (μk1, . . . , μknk)′.

With Sk, Wk, and μk evaluated at some initial value β(0), the standard Newton–Raphson 

method for the iterative solution of (24) solves the linear equations

(25)

for an updated β. Rewrite equation (25) as  where vk = yk – 

μk+SkXkβ(0); this can be recognized as the normal equation of a weighted least squares 

regression with response vk, design matrix SkXk, and weight Wk. Therefore the iterative 

reweighted least squares approach (IRLS) can be used to implement the Newton–Raphson 

method for an iterative solution to (24) (e.g., Green, 1984).

Rank deficiency in Xk calls for a generalized inverse of . In order to show 

uniqueness of estimators  in (14) and  in (20) for some terminal K, we must first 

establish that the IRLS algorithm will work and converge for subset k given the same initial 

value β(0) when Xk is not of full rank. Upon convergence of IRLS at subset k with solution 

, we must then verify that the CEE and CUEE estimators that rely on  are unique. 

The following proposition summarizes the result; the proof is provided in the Supplementary 

Material.

Proposition 3.5—Under the above formulation, assuming that conditions (C1)-(C3) hold 

for a full-rank sub-column matrix of Xk, estimators  in (14) and  in (20) for some 
terminal K will be unique provided X is of full rank.

The simulations in Section 4.2 and Supplementary Material consider rank deficiencies in 

binary logistic regression and Poisson regression. Note that for these models, the variance of 

Schifano et al. Page 14

Technometrics. Author manuscript; available in PMC 2017 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the estimators  and  are given by  or . 

For robust sandwich estimators, for those subsets k in which Ank,k is not invertible, we 

replace  and  in the “meat” of equations (18) and (23), 

respectively, with an estimate of Qnk,k from (16). In particular, we use 

 for the CEE variance and 

 for the CUEE variance. We use these modifications 

in the robust Poisson regression simulations in Section 4.2.2 for the CEE and CUEE 

estimators, as by design, we include binary covariates with somewhat low success 

probabilities. Consequently, not all subsets k will observe both successes and failures, 

particularly for covariates with success probabilities of 0.1 or 0.01, and the corresponding 

design matrices Xk will not always be of full rank. Thus Ank,k will not always be invertible 

for finite nk, but will be invertible for large enough nk. We also present results of a proof-of-

concept simulation for binary logistic regression in the Supplementary Material, where we 

compare CUEE estimators under different choices of generalized inverses.

4 Simulations

4.1 Normal Linear Regression: Residual Diagnostic Performance

In this section we evaluate the performance of the outlier tests discussed in Section 2.3.2. 

Let k* denote the index of the single subset of data containing any outliers. We generated the 

data according to the model , i = 1, . . . , nk, where bk = 0 if k ≠ k* 
and bk ~ Bernoulli(0.05) otherwise. Notice that the first two terms on the right-hand-side 

correspond to the usual linear model with β = (1, 2, 3, 4, 5)′, xki[2:5] ~ N(0, I4) 

independently, xki[1] = 1, and εki are the independent errors, while the final term is 

responsible for generating the outliers. Here, ηki ~ Exp(1) independently and δ is the scale 

parameter controlling magnitude or strength of the outliers. We set δ ∈ {0, 2, 4, 6} 

corresponding to “no”, “small”, “medium”, and “large” outliers.

To evaluate the performance of the individual outlier t-test in (11), we generated the random 

errors as εki ~ N(0, 1). To evaluate the performance of the global outlier F-tests in (11) and 

(12), we additionally considered εki as independent skew-t variates with degrees of freedom 

ν = 3 and skewing parameter γ = 1.5, standardized to have mean 0 and variance 1. To be 

precise, we use the skew t density,  for x < 0 and  for x ≥ 

0, where f(x) is the density of the t distribution with ν degrees of freedom.

For all outlier simulations, we varied k*, the location along the data stream in which the 

outliers occur. We also varied nk = nk* ∈ {100, 500} which additionally controls the number 

of outliers in dataset k*. For each subset ℓ = 1, . . . , k* – 1 and for 95% of observations in 

subset k*, the data did not contain any other outliers.

To evaluate the global outlier F-tests (11) and (12) with m = 2, we estimated power using B 
= 500 simulated data sets with significance level α = 0.05, where power was estimated as the 
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proportion of 500 datasets in which F̌
k* ≥ F(0.95, nk*, Nk* –1 – 5) or 

. The power estimates for the various subset sample sizes nk*, 
locations of outliers k*, and outlier strengths δ appear in Table 1. When the errors were 

normally distributed, notice that the Type I error rate was controlled in all scenarios for both 

the F test and asymptotic F test. As expected, power tends to increase as outlier strength 

and/or the number of outliers increase. Furthermore, larger values of k*, and hence greater 

proportions of “good” outlier-free data, also tend to have higher power; however, the 

magnitude of improvement decreases once the denominator degrees of freedom (Nk* – 1 – p 
or Nk* – 1 – m + 1) become large enough, and the F tests essentially reduce to χ2 tests. Also 

as expected, the F test given by (11) is more powerful than the asymptotic F test given in 

(12) when, in fact, the errors were normally distributed. When the errors were not normally 

distributed, the empirical type I error rates of the F test given by (11) are severely inflated 

and hence, its empirical power in the presence of outliers cannot be trusted. The asymptotic 

F test, however, maintains the appropriate size.

For the outlier t-test in (11), we examined the average number of false negatives (FN) and 

average number of false positives (FP) across the B = 500 simulations. False negatives and 

false positives were declared based on a BH adjusted p-value threshold of 0.10. These values 

were plotted in solid lines against outlier strength in Figure 1 for nk* = 500 for various 

values of k* and δ; the corresponding plot for nk* = 100 is given in the Supplementary 

Material. Within each plot the FN decreases as outlier strength increases, and also tends to 

decrease slightly across the plots as k* increases. FP increases slightly as outlier strength 

increases, but decreases as k* increases. As with the outlier F test, once the degrees of 

freedom Nk* – 1 – p get large enough, the t-test behaves more like a z-test based on the 

standard normal distribution. For comparison, we also considered FN and FP for an outlier 

test based upon the externally studentized residuals tk*i from subset k* only. Specifically, 

under the assumed linear model, tk*i as given by (8) follow a t distribution with nk* – p – 1 

degrees of freedom. Again, false negatives and false positives were declared based on a BH 

adjusted p-value threshold of 0.10, and the FN and FP for the externally studentized residual 

(ESR) test are plotted in dashed lines in Figure 1 for nk* = 500; the plot for nk* = 100 may 

be found in the Supplementary Materials. This ESR test tends to have a lower FP, but higher 

FN than the predictive residual test that uses the previous data. Also, the FN and FP for the 

ESR test are essentially constant across k* for fixed nk*, as the ESR test relies on only the 

current dataset of size nk* and not the amount of previous data controlled by k*. 

Consequently, the predictive residual test has improved power over the ESR test, while still 

maintaining a low number of FP.

4.2 Simulations for Estimating Equations

4.2.1 Logistic Regression—To examine the effect of the total number of blocks K on 

the performance of the CEE and CUEE estimators, we generated yi ~ Bernoulli(μi), 

independently for i = 1, . . . , 100000, with  where β = (1, 1, 1, 1, 1, 1)′, 

xi[2:4] ~ Bernoulli(0.5) independently, xi[5:6] ~ N(0, I2) independently, and xki[1] = 1. The 

total sample size was fixed at N = 100000, but in computing the CEE and CUEE estimates, 

the number of blocks K varied from 10 to 1000 where N could be divided evenly by K. At 

each value of K, the root-mean squared error (RMSE) of both the CEE and CUEE estimators 
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were calculated as , where  represents the jth coefficient in either the 

CEE or CUEE terminal estimate. The averaged RMSEs are obtained with 200 replicates. 

Figure 2 shows the plot of averaged RMSEs versus the number of blocks K. It is clear that as 

the number of blocks increases (block size decreases), RMSE from CEE method increases 

very fast while RMSE from the CUEE method remains relatively stable.

4.2.2 Robust Poisson Regression—In these simulations, we compared the 

performance of the (terminal) CEE and CUEE estimators with the EE estimator based on all 

of the data. We generated B = 500 datasets of yi ~ Poisson(μi), independently for i = 1, . . . , 

N with  where β = (0.3, −0.3, 0.3, −0.3, 0.3)′, xki[1] = 1, xi[2:3] ~ N(0, I2) 

independently, xi[4] ~ Bernoulli(0.25) independently, and xi[5] ~ Bernoulli(0.1) 

independently. We fixed K = 100, but varied nk = n ∈ {100, 500}.

Figure 3 shows boxplots of the biases in the 3 types of estimators (CEE, CUEE, EE) of βj, j 
= 1, . . . , 5, for varying nk. The CEE estimator tends to be the most biased, particularly in 

the intercept, but also in the coefficients corresponding to binary covariates. The CUEE 

estimator also suffers from slight bias, while the EE estimator performs quite well, as 

expected. Also as expected, as nk increases, bias decreases. The corresponding robust 

(sandwich-based) standard errors are shown in Figure 4, but the results were very similar for 

variances estimated by  and . In the plot, as nk increases, the standard errors become 

quite similar for the three methods.

Table 2 shows the RMSE ratios, RMSE(CEE)/RMSE(EE) and RMSE(CUEE)/RMSE(EE), 

for each coefficient. The RMSE ratios for CEE and CUEE estimators confirm the boxplot 

results as the intercept and the coefficients corresponding to binary covariates (β4, β5) tend 

to be the most problematic for both estimators, but more so for the CEE estimator.

For this particular simulation, it appears nk = 500 is sufficient to adequately reduce the bias. 

However, the appropriate subset size nk, if given the choice, is relative to the data at hand. 

For example, if we alter the data generation of the simulation to instead have xi[5] ~ 
Bernoulli(0.01) independently, but keep all other simulation parameters the same, the bias, 

particularly for β5, still exists at nk = 500 (see Figure 5) but diminishes substantially with nk 

= 5000.

5 Data Analysis

We examined the airline on-time statistics, available at http://stat-computing.org/dataexpo/

2009/the-data.html. The data consists of flight arrival and departure details for all 

commercial flights within the USA, from October 1987 to April 2008. This involves N = 

123, 534, 969 observations and 29 variables (~ 11 GB).

We first used logistic regression to model the probability of late arrival (binary; 1 if late by 

more than 15 minutes, 0 otherwise) as a function of departure time (continuous); distance 

(continuous, in thousands of miles), day/night flight status (binary; 1 if departure between 

8pm and 5am, 0 otherwise); weekend/weekday status (binary; 1 if departure occurred during 
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the weekend, 0 otherwise), and distance type (categorical; ‘typical distance’ for distances 

less than 4200 miles, the reference level ‘large distance’ for distances between 4200 and 

4300 miles, and ‘extreme distance’ for distances greater than 4300 miles) for N = 120, 748, 

239 observations with complete data.

For CEE and CUEE, we used a subset size of nk = 50, 000 for k = 1, . . . , K – 1, and nK = 

48239 to estimate the data in the online-updating framework. However, to avoid potential 

data separation problems due to rare events (extreme distance; 0.021% of the data with 

26,021 observations), a detection mechanism has been introduced at each block. If such a 

problem exists, the next block of data will be combined until the problem disappears. We 

also computed EE estimates and standard errors using the commercial software Revolution 

R.

All three methods agree that all covariates except extreme distance are highly associated 

with late flight arrival (p < 0.00001), with later departure times and longer distances 

corresponding to a higher likelihood for late arrival, and night-time and weekend flights 

corresponding to a lower likelihood for late flight arrival (see Table 3). However, extreme 

distance is not associated with the late flight arrival (p = 0.613). The large p value also 

indicates that even if number of observations is huge, there is no guarantee that all covariates 

must be significant. As we do not know the truth in this real data example, we compare the 

estimates and standard errors of CEE and CUEE with those from Revolution R, which 

computes the EE estimates, but notably not in an online-updating framework. In Table 3, the 

CUEE and Revolution R regression coefficients tend to be the most similar. The regression 

coefficient estimates and standard errors for CEE are also close to those from Revolution R, 

with the most discrepancy in the regression coefficients again appearing in the intercept and 

coefficients corresponding to binary covariates.

We finally considered arrival delay (ArrDelay) as a continuous variable by modeling 

log(ArrDelay − min(ArrDelay) + 1) as a function of departure time, distance, day/night 

flight status, and weekend/weekday flight status for United Airline flights (N = 13, 299, 

817), and applied the global predictive residual outlier tests discussed in Section 2.3.2. 

Using only complete observations and setting nk = 1000, m = 3, and α = 0.05, we found that 

the normality-based F test in (11) and asymptotic F test in (12) overwhelmingly agreed upon 

whether or not there was at least one outlier in a given subset of data (96% agreement across 

K = 12803 subsets). As in the simulations, the normality-based F test rejects more often than 

the asymptotic F test: in the 4% of subsets in which the two tests did not agree, the 

normality-based F test alone identified 488 additional subsets with at least one outlier, while 

the asymptotic F test alone identified 23 additional subsets with at least one outlier.

6 Discussion

We developed online-updating algorithms and inferences applicable for linear models and 

estimating equations. We used the divide and conquer approach to motivate our online-

updated estimators for the regression coefficients, and similarly introduced online-updated 

estimators for the variances of the regression coefficients. The variance estimation allows for 
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online-updated inferences. We note that if one wishes to perform sequential testing, this 

would require an adjustment of the α level to account for multiple testing.

In the linear model setting, we provided a method for outlier detection using predictive 

residuals. Our simulations suggested that the predictive residual tests are more powerful than 

a test that uses only the current dataset in the stream. In the EE setting, we may similarly 

consider outlier tests also based on standardized predictive residuals. For example in 

generalized linear models, one may consider the sum of squared predictive Pearson or 

Deviance residuals, computed using the coefficient estimate from the cumulative data (i.e., 

 or ). It remains an open question in both settings, however, regarding how to 

handle such outliers when they are detected. This is an area of future research.

In the estimating equation setting, we also proposed a new online-updated estimator of the 

regression coefficients that borrows information from previous datasets in the data stream. 

The simulations indicated that in finite samples, the proposed CUEE estimator is less biased 

than the AEE/CEE estimator of Lin and Xi (2011). However, both estimators were shown to 

be asymptotically consistent.

The methods in this paper were designed for small to moderate covariate dimensionality p, 

but large N. The use of penalization in the large p setting is an interesting consideration, and 

has been explored in the divide-and-conquer context in Chen and Xie (2014) with popular 

sparsity inducing penalty functions. In our online-updating framework, inference for 

penalized parameters would be challenging, however, as the computation of their variance 

estimates is quite complicated and is also an area of future work.

The proposed methods are particularly useful for data that is obtained sequentially and 

without access to historical data. Notably, under the normal linear regression model, the 

proposed scheme does not lead to any information loss for inferences involving β, as when 

the design matrix is of full rank,  and MSEnk,k are sufficient and complete statistics for 

β and σ2. However, under the estimating equation setting, some information will be lost. 

Precisely how much information needs to be retained at each subset for specific types of 

inferences is an open question, and an area devoted for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average numbers of False Positives and False Negatives for outlier t-tests for nk* = 500. 

Solid lines correspond to the predictive residual test while dotted lines correspond to the 

externally studentized residuals test using only data from subset k*.
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Figure 2. 
RMSE of CEE and CUEE estimators for different numbers of blocks.
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Figure 3. 
Boxplots of biases for CEE, CUEE, EE estimators of βj (estimated βj - true βj), j = 1, . . . , 5, 

for varying nk.

Schifano et al. Page 23

Technometrics. Author manuscript; available in PMC 2017 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Boxplots of standard errors for CEE, CUEE, EE estimators of βj, j = 1, . . . , 5, for varying 

nk. Standard errors have been multiplied by  for comparability.
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Figure 5. 
Boxplots of biases for CEE, CUEE, EE estimators of β5 (estimated β5 - true β5), for varying 

nk, when xi[5] ~ Bernoulli(0.01).
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Table 1

Power of the outlier tests for various locations of outliers (k*), subset sample sizes (nk = nk*), and outlier 

strengths (no, small, medium, large). Within each cell, the top entry corresponds to the normal-based F test 

and the bottom entry corresponds to the asymptotic F test that does not rely on normality of the errors.

Outlier Strength
nk* = 100 (5 true outliers) nk* = 500 (25 true outliers)

k* = 5 k* = 10 k* = 25 k* = 100 k* = 5 k* = 10 k* = 25 k* = 100

F Test/Asymptotic F Test(m=2) F Test/Asymptotic F Test(m=2)

Standard Normal Errors

no 0.0626 0.0596 0.0524 0.0438 0.0580 0.0442 0.0508 0.0538

0.0526 0.0526 0.0492 0.0528 0.0490 0.0450 0.0488 0.0552

small 0.5500 0.5690 0.5798 0.5718 0.9510 0.9630 0.9726 0.9710

0.2162 0.2404 0.2650 0.2578 0.6904 0.7484 0.7756 0.7726

medium 0.9000 0.8982 0.9094 0.9152 1.0000 1.0000 1.0000 1.0000

0.5812 0.6048 0.6152 0.6304 0.9904 0.9952 0.9930 0.9964

large 0.9680 0.9746 0.9764 0.9726 1.0000 1.0000 1.0000 1.0000

0.5812 0.6048 0.6152 0.6304 0.9998 1.0000 1.0000 1.0000

Standardized Skew t Errors

no 0.2400 0.2040 0.1922 0.1656 0.2830 0.2552 0.2454 0.2058

0.0702 0.0630 0.0566 0.0580 0.0644 0.0580 0.0556 0.0500

small 0.5252 0.4996 0.4766 0.4520 0.7678 0.7598 0.7664 0.7598

0.2418 0.2552 0.2416 0.2520 0.6962 0.7400 0.7720 0.7716

medium 0.8302 0.8280 0.8232 0.8232 0.9816 0.9866 0.9928 0.9932

0.5746 0.5922 0.6102 0.6134 0.9860 0.9946 0.9966 0.9960

large 0.9296 0.9362 0.9362 0.9376 0.9972 0.9970 0.9978 0.9990

0.7838 0.8176 0.8316 0.8222 0.9988 0.9992 0.9998 1.0000

Power with “outlier strength = no” are Type I errors.
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Table 2

RMSE Ratios of CEE and CUEE with EE

β 1 β 2 β 3 β 4 β 5

nk = 100 CEE 2.414 1.029 1.036 1.299 1.810

CUEE 1.172 1.092 1.088 1.118 1.205

nk = 500 CEE 1.225 1.002 1.002 1.060 1.146

CUEE 0.999 1.010 1.016 0.993 1.057
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Table 3

Estimates and standard errors (×105) from the Airline On-Time data for EE (computed by Revolution R), 

CEE, and CUEE estimators.

EE CEE CUEE

βN j se βN j βK j se βK j βK j se βK j

Intercept −3.8680 1395.65 −3.7060 1434.60 −3.8801 1403.49

Depart 0.1040 6.01 0.1024 6.02 0.1017 5.70

Distance 0.2409 40.89 0.2374 41.44 0.2526 38.98

Night −0.4484 81.74 −0.4318 82.15 −0.4335 80.72

Weekend −0.1769 54.13 −0.1694 54.62 −0.1779 53.95

TypDist 0.8785 1389.11 0.7676 1428.26 0.9231 1397.46

ExDist −0.0103 2045.71 −0.0405 2114.17 −0.0093 2073.99
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