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Abstract

Recycling of cargos from early endosomes requires regulation of endosomal tubule forma-
tion and fission. This regulation is disrupted in cells depleted of the microtubule severing
enzyme spastin, causing elongation of endosomal tubules and mis-trafficking of recycling
endosomal cargos such as the transferrin receptor. Spastin is encoded by SPAST, muta-
tions in which are the most frequent cause of autosomal dominant hereditary spastic para-
plegia, a condition characterised by a progressive loss of lower limb function resulting from
upper motor neuron axonopathy. Investigation of molecular factors involved in endosomal
tubule regulation is hindered by the need for manual counting of endosomal tubules. We
report here the development of an open source automated system for the quantification of
endosomal tubules, using ImagedJ and R. We validate the method in cells depleted of spastin
and its binding partner IST1. The additional speed and reproducibility of this system com-
pared with manual counting makes feasible screens of candidates to further understand the
mechanisms of endosomal tubule formation and fission.

Introduction
Endosomal tubulation in hereditary spastic paraplegia (HSP)

Endocytosed membrane proteins that are destined for recycling, rather than degradation in
the lysosome, are sorted away from the endosomal compartment via several different recycling
pathways. In general, a first step in recycling involves the formation and fission of endosomal
tubules from the endosomal body. Some endosomal membrane protein cargoes are selectively
recruited into these membrane tubules whilst others are transported by bulk flow, with the
large surface area to volume ratio of tubules helping to provide selectivity for these cargoes [1,
2]. Formation of endosomal tubules involves the sorting nexin (SNX) proteins, which bind the
cytosolic face of endosomal membrane via an arched BAR (Bin, amphiphysin, Rvs) domain,
which preferentially associates with highly curved membranes [3]. Different recycling path-
ways are preferentially marked by specific SNX proteins, e.g. SNX1 marks the retromer path-
way that recycles receptors to the Golgi, while SNX4 marks a pathway involved in recycling to
the plasma membrane [4, 5].
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Mechanisms of endosomal tubule fission are emerging. We proposed recently that the
microtubule severing enzyme spastin is involved in this process [6]. Spastin is recruited to the
ESCRT (endosomal sorting complexes required for transport) IIT complex at endosomes by
binding to the ESCRT-III complex-associated proteins IST1 and CHMP1B [7-9], and deple-
tion of either spastin or IST1 in tissue culture cells results in an increased number of long
endosomal tubules, including those marked by SNX1 and SNX4 [6].

Spastin is encoded by the SPAST gene, which is mutated in approximately 30-40% of auto-
somal dominant HSP families [10]. HSP is clinically characterised by progressive weakness
and spasticity in the lower limbs, resulting from distal axonal degeneration in the corticospinal
tract upper motor neurons [11]. The pathological relevance of endosomal tubulation in this
axonopathy is suggested by the presence of endosomal tubules in Zebrafish axons depleted of
spastin [6]. Thus, as well as elucidating a process of basic cell biological importance, identifying
proteins that can modulate endosomal tubulation may reveal mechanisms involved in HSP
and axonal maintenance.

Manual analysis of endosomal tubulation is a rate limiting factor

In our work on the role of spastin in endosomal tubulation we have quantified the phenotype
by manually counting the number of SNX1 positive tubules in images taken by a widefield
fluorescent microscope or by reporting the percentage of cells with at least one long tubule.
This manual counting process is time consuming and a rate-limiting step in investigating
endosomal tubulation phenotypes. The laborious nature of this process limits the type of
future work that can be conducted, such as assessing a wider variety of genetic knockdowns
that may lead to tubulation, or conducting rescue experiments to determine sequence-function
correlations.

To overcome these difficulties, we have developed an automated tubule counting system
that analyses manually recorded images from a widefield fluorescent microscope. The accuracy
of this system was validated versus manual counting. The speed and accuracy of analysis opens
the possibility of higher throughput tubule analysis, including small, targeted screens of genes
and proteins of interest.

Materials and Methods
Cell culture conditions

HeLa-M cells were obtained from the Lehner lab, Cambridge Institute for Medical Research
and MRCS5 fibroblasts were obtained from the Morrell lab, Department of Medicine, Univer-
sity of Cambridge. Cell were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 6456
(Sigma) supplemented with 10% (v/v) foetal calf serum (FCS), 1% Penicillin/ Streptomycin
and 2 mM L-Glutamine at 37°C and 5% CO2 in a humidified incubator.

siRNA and DNA transfections

For siRNA transfection, cells were transfected in six well plates with 5 pl Oligofectamine (Invi-
trogen) per well in antibiotic-free media. Transfections were carried out one day after cells
were plated at cell densities stated in specific experimental descriptions. siRNA (Dharmacon)
was used at 10 nM final concentration per gene targeted. Depletion of proteins following
siRNA transfection was verified by western blotting using rabbit polyclonal anti-spastin 86—
340 (generated in house [12]) or rabbit polyclonal anti-IST1 (Proteintech 51002-1-AP).
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Immunoflourescence and image collection

HeLa cells were plated onto coverslips in 6-well plates (Gibco) at a density of 20,000 cells per
well and transfected with siRNA after 24 hours. Cells were incubated for a further 120 hours
after transfection before fixation with 4% formaldehyde. Cells were labelled for SNX1 with
1:200 0-SNX1 (611482—BD Transduction Laboratories) antibody and Alexafluor 488 (Thermo
Fisher Scientific) secondary antibody as described previously [12], with an additional 30 minute
incubation in 1:10,000 whole cell stain (HCS cell mask red, Thermo Fisher Scientific) before
imaging on an Axiolmager Z2 widefield fluorescent microscope. 1024 x 1024 images were
taken with a 63x lens, with 20 ms exposure for the red channel (cell mask) and 400-800 ms
exposure for the SNX1. Exposure times for these markers were constant in individual experi-
mental biological repeats, but were adjusted between experiments so that the imaged pixels
were as bright as possible without becoming saturated.

Datasets

Independent datasets were used for developing and testing the automated counting system. The
HeLa cell ‘test’ dataset contained images taken from three independent biological repeats. The
MRCS5 cell dataset corresponds a single biological experiment, with three technical repeats.

Method overview

Image] and R scripts (S1 and S2 Appendix), a user guide (S3 Appendix) and example images/
results (S1-S3 Datasets) can be found in supporting materials. A brief description of the method
is given below:

Image] macro. Recognition of endosomal tubules labelled by SNX1 was carried out by
Image], with the “Tubule recognition’ macro (supplementary materials). An overview of the
steps included in the Tubule recognition macro is given in Fig 1. This macro enhances SNX1
signal, removes noise and ‘skeletonises’ areas of signal to 1-pixel width lines. During develop-
ment of the macro we found that the dense and overlapping clustering of SNX1 puncta at the
microtubule organising centre (MTOC) led to frequent mis-identification and over-calling of
tubules in this region, leading to poor signal to noise discrimination. We addressed this by
introducing steps to identify the MTOC and remove it from analysis (Fig 1, steps 6-8). After
skeletonisation, the macro then utilises the ‘analyse skeleton’ plug-in which identifies and mea-
sures each skeletonised line in an image and records the data in a.csv file for every image ana-
lysed [13].

Data analysis. Data produced by Image] was processed within the statistical program-
ming environment R. Tubules were classified as linear or curvilinear structures over 20 pixels
in length, which corresponds to 2pm, the minimum length of tubules we previously used as a
cut-off to successfully identify tubulation phenotypes in manual counting approaches [6].
Three methods for analysing data were used: Mean number of tubules per image, the percent-
age of images with at least one identified tubule and mean length by which the longest tubule
measured exceeded 2pum, (i.e. 20 pixels). The latter metric identifies the longest of the tubules
that exceed the 2um threshold in each image, measures its length, calculates the length by
which it exceeds 2pum, then generates a mean value for this 4ure over all images analysed. As
well as giving an indication of the effect of an experimental manipulation on tubule length,
when considered with the tubule numbers parameter, this metric helps identify phenotypes
resulting in fewer but longer tubules, which may be underrepresented if only tubule number is
taken into account. We used this metric rather than simply longest tubule length, as it is easier
to visually discriminate differences in the corresponding histograms. To extract these three
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Fig 1. Imaged processing of endosomal tubulation images. Panel 1: HelLa cell stained with whole cell
stain (red) and snx1 (green). Panel 2: Green channel only. Note the presence of endosomal tubules. Panel 3:
Red channel only, used as a mask to exclude areas in the image that are not part of a cell from image
analysis. Panel 4: Overlaid boundary from whole cell stain on the green channel. Panel 5: Green channel after
image manipulation. Background subtraction, smoothing, contrast enhancement and noise removal have
been carried out. These manipulations are necessary to facilitate successful representation of tubules in the
next step. Panel 6: A binary image taken from image 5 for purposes of comparison. The microtubule
organising centre (MTOC) can be seen as a dense area of Snx1 staining, which greatly increased noise in
image analysis. Panel 7: The identification of the MTOC (yellow) allows its removal before an image is made
binary. Panel 8: A binary image made after the MTOC has been removed. Panel 9: A ‘skeletonised’ image
processed from the binary image. Tubules can then be identified with the ImageJ plugin “analyse skeleton”.
Panel 10: Identified tubules (purple) overlaid on the original green only image from panel 2.

doi:10.1371/journal.pone.0168294.9001

sets of data the R script “Tubule Analysis’ was used (S2 Appendix). Data is exported from R in
a.txt file listing the file name along with the three metrics given above.
Z’ calculation. Z’ scores were calculated with the following formula:

3% (of + ")
X +x

In which ¢ represents the standard deviation of the positive control, ¢” represents the stan-
dard deviation of the negative control, X" represents the mean of the positive control and x"
represents the mean of the negative control.

Results
Training data

We began by using the automated counting system (see Methods) with a ‘training’ dataset con-
sisting of 30 images taken from control cells or cells depleted of spastin by siRNA transfection.
Analysis of this dataset identified increased endosomal tubulation in cells lacking spastin with
all three categories of analysis; percentage of cells with tubules, mean number of tubules per
cell and the mean length by which the longest tubule in an image exceeded the 2um threshold
(Fig 2). The automatically counted tubule number results showed a similar proportional
increase versus manually counted data (Fig 2B), although a fewer absolute number of tubules
was detected with the automated counting system.

Test data

When creating automated image recognition systems, there is a risk of ‘over-training’ to a sam-
ple set of data. Rather than creating a system that recognises the phenotype of choice, over-
training causes the system to distinguish between two specific sets of images, without being
generally applicable to other data. To verify the automated counting system and ensure over-
training had not occurred a new ‘test’ dataset of control cells or cells transfected with spastin
siRNA was used. Images from cells depleted of IST1 were also included to verify the method as
being applicable to a tubulation phenotype caused by depletion of an independent protein. Sig-
nificant effects for cells depleted of spastin or IST1 versus controls were detected in all three
categories of analysis (Fig 3A-3C). Of note, in each category of automated counting the size of
the IST1 depletion effect was greater than the spastin depletion effect; this is not reflected in
the corresponding manual counts.

Z’ scores are used to identify an assay’s suitability for high throughput screening; scores
above 0.5 indicate a robust assay for screening, scores between 0 and 0.5 suggests the assay is
functional, but marginal, and scores below 0 suggest the assay is not suitable for screening. Z’
scores for the auto-counting system suggest that mean tubule number and mean tubule length
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Fig 2. System development. A) Endosomal tubulation in mock transfected and spastin depleted cells. In mock transfected cells (left panel)
the endosomal resident protein SNX1 marks an endosomal subdomain and short endosomal tubules. These elongate in cells treated with
spastin siRNA (right panel). Scale bar = 10pm. B) Results of automated tubule analysis with data used to develop the system. Increases in
endosomal tubulation are observed in all three analysis types. The same data, manually counted, is shown for comparison. True mean length
of longest tubule per image can be calculated by adding 2um to the values shown in the length parameter histogram. 30 images were taken
per condition, n=1.

doi:10.1371/journal.pone.0168294.9002

metric would provide robust screening methodologies, while the percentage of cells with
tubules would provide a functional but marginal assay (Fig 3D).

To determine whether the automated counting methodology would be applicable to other
cell types, we carried out spastin depletion experiments in MRC5 lung fibroblasts and imaged
endogenous SNX1. Subsequent automated counting identified a clear effect on endosomal
tubulation analysis parameters (Fig 3E and 3F).

The minimal dataset for results presented in Figs 1-3 is provided in S4 Dataset.

Discussion

We have developed an automated counting system for quantifying endosomal tubulation
using as an example depletion of two proteins, spastin and IST1, which we have proposed to
drive endosomal tubule fission [6]. The automated counting system produced results with
speed, reproducibility and specificity. The system was much less labour intensive than manual
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Fig 3. Verification of automated tubule counting. A) SNX1 signal in spastin and IST1 depleted cells. Scale
bar = 10um. B) Results from automated tubule counting on a data set not used in training. This dataset contained
3 independent repeats, with 45 images per condition. C) Manually counted results from the same data set. D) Z’
scores between spastin depleted and mock cells. E) SNX1 signal in wild-type MRCS5 and a cell depleted of
spastin. F) Automated counting data generated from a spastin depletion experiment in MRC5 cells. In B) and C),
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results are shown as the mean of three experiments plus the standard error of the mean, in F) results are the

mean of three technical repeats plus the standard error of the mean, with 60 images analysed per condition. For
the length metric, true mean length of longest tubule can be calculated by adding 2um to the values shown in the
length parameter histogram. In B) and C) p values were calculated with paired t-tests, in F) with unpaired t-tests.

doi:10.1371/journal.pone.0168294.9g003

counting (we estimate a factor of approximately 30 versus manual counting of a 600 image
experiment) and the increase in analysis speed allows more images to be analysed per condi-
tion, further improving accuracy.

Multiple parameters could be analysed at the same time with automated counting, and this
highlighted possible differences between the spastin and IST1 phenotypes that were not obvi-
ous from manual counting of the number of tubules per cell; for example the mean length of
the longest tubule metric showed a trend towards being greater in cells depleted of IST1. In
addition, while the absolute number of tubules counted in IST1 depleted cells was broadly
comparable between automated and manual results, the number of tubules detected by auto-
mated counting in spastin depleted cells was fewer than in manual counting. These differences
almost certainly relate to an interplay between different biological characteristics of the
tubules, and choices made in the design of the autocounting system; tubules in IST1 depleted
cells are generally straighter and longer than those in spastin depleted cells (a representative
example is shown in Fig 3A), and the autocounting design prioritised specificity of tubule
detection over sensitivity, using length as a factor in making this decision. Thus shorter tubules
(as seen in spastin depletion) are under-counted by the automated counting system versus
manual counting. Nevertheless, the system was able to robustly detect both spastin and IST1
tubulation phenotypes.

There are several caveats and practical points to note regarding use of our system. A) We
have only tested the system on relatively flat (HeLa) or very flat (MRC5) adherent cell lines,
and so the system may not perform as well for cell lines that do not have these characteristics.
B) The images we analysed were collected with epiflourescence using a high quality wide field
microscope and imaging system, and the automated counting system should be validated and
optimised before use with other microscopy approaches, for example Z-stacks generated by
confocal microscopy. The analysis is also dependent upon the input of high quality in-focus
images into the system and for this reason we collected images manually. The automated
counting system may be applicable to images generated from an automated microscope, pro-
vided that images of sufficient quality could be produced. The better performance of high-
quality images may be reflected in the modestly improved discrimination of the effect of spas-
tin depletion in the test dataset (Fig 3B) versus the training set (Fig 2B) set; cells from the train-
ing dataset were imaged several times during development of the system, resulting in some
loss of fluorescence signal and less optimal signal to noise. C) The system is likely to under-
count short tubules (see comments above regarding the differing performance of the auto-
mated system for quantifying numbers of tubules in spastin-depleted versus IST1-depleted
cells). In a screen, incorporation of the mean longest tubule length metric and the percentage
of cells with at least one tubule metric into the analysis will minimise the risk of a false negative
result in this situation. D) We have so far only used automated counting to detect tubules
marked by antibodies to SNX1. Theoretically the system could be used to analyse other tubular
compartments, but would need to be optimised for other markers on a case by case basis, as
each will have different sensitivities and specificities, resulting in different signal-to-noise
ratios. E) During development of the automated counting system, we found that removal of
the region of the MTOC from analysis reduced false-positive calling of tubules and improved
discrimination of the effects of spastin or IST1 depletion on SNXI tubulation. However, this
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manipulation means that experimental conditions that exclusively or even predominantly
cause increased tubulation at the MTOC will not be identified by the system, which will likely
deliver a false-negative in this situation. In addition, experimental manipulations that cause
the marker under test to cluster at, or be dispersed from, the MTOC are likely to cause effects
on tubule counts that are unrelated to the true extent of tubulation. Thus effects on the distri-
bution of the marker should be taken into account in interpreting results.

Despite these caveats, the creation of a semi-automated system for counting endosomal
tubules greatly reduces the time taken to analyse endosomal tubulation and could be useful in
many scenarios. The speed and accuracy of this system will make feasible small scale siRNA
screens examining endosomal tubulation or perhaps larger scale screens if combined with an
automated image capture system. These screens could identify other proteins required for
tubule fission, or reveal other factors that can rescue the spastin-depleted phenotype, increas-
ing our understanding of endosomal tubule fission and its role in diseases such as HSP.

Supporting Information

S1 Appendix. Image] script that recognises tubules in an Image. This macro must be modi-
fied by the user before use.
(TXT)

S2 Appendix. R script that processes data produced by the Image] macro provided in S1
Appendix. This script must be modified by the user before use.
(TXT)

S3 Appendix. User guide containing instructions for use of the auto counting system. This
includes modifications the user must make to the ImageJ and R scripts (S1 and S2 Appendix)
before analysing images.

(DOCX)

S1 Dataset. Example images of mock-transfected cells. Whole cell stain in red channel,
endogenous SNX1 labelled in green channel.
(Z1P)

$2 Dataset. Example images of spastin-depleted cells. Whole cell stain in red channel,
endogenous SNX1 labelled in green channel.
(Z1P)

$3 Dataset. Example results. Results of automated counting using the S1 and S2 datasets.
(XLSX)

$4 Dataset. Minimal dataset used in Figs 1-3.
(XLSX)
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