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Abstract

Examination of intrinsic functional connectivity using functional MRI (fMRI) has provided 

important findings regarding dysconnectivity in schizophrenia. Extending these results using a 

complementary neuroimaging modality, magnetoencephalography (MEG), we present the first 

direct comparison of functional connectivity between schizophrenia patients and controls, using 

these two modalities combined. We developed a novel MEG approach for estimation of networks 

using MEG that incorporates spatial independent component analysis (ICA) and pairwise 

correlations between independent component timecourses, to estimate intra- and intern-network 

connectivity. This analysis enables group-level inference and testing of between-group differences. 

Resting state MEG and fMRI data were acquired from a large sample of healthy controls (n=45) 

and schizophrenia patients (n=46). Group spatial ICA was performed on fMRI and MEG data to 

extract intrinsic fMRI and MEG networks and to compensate for signal leakage in MEG. Similar, 

but not identical spatial independent components were detected for MEG and fMRI. Analysis of 

functional network connectivity (FNC; i.e., pairwise correlations in network (ICA component) 

timecourses) revealed a differential between-modalities pattern, with greater connectivity among 

occipital networks in fMRI and among frontal networks in MEG. Most importantly, significant 

differences between controls and patients were observed in both modalities. MEG FNC results in 

particular indicated dysfunctional hyperconnectivity within frontal and temporal networks in 

patients, while in fMRI FNC was always greater for controls than for patients. This is the first 

study to apply group spatial ICA as an approach to leakage correction, and as such our results may 

be biased by spatial leakage effects. Results suggest that combining these two neuroimaging 

modalities reveals additional disease-relevant patterns of connectivity that were not detectable with 

fMRI or MEG alone.
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1. Introduction

More than 2000 neuroimaging papers examining the human “resting state” have been 

published since the first fMRI study (Biswal et al., 1995; Calhoun et al., 2001; Raichle et al., 

2001). Analysis of resting state data has yielded information across a wide range of topics 

including basic sensory processing (Shostak, 1968), tobacco and alcohol use (Brown, 1968), 

neurodegenerative diseases (Rosadini et al., 1974), and neuropsychiatric illnesses (Reeve et 

al., 1993). Resting state protocols are particularly advantageous for the study of disease 

states where patients may have difficulty responding or performing behavioral tasks due to 

compromised cognitive and/or physiological functions. Connectivity methods such as 

independent component analysis (ICA) are a set of powerful analysis techniques used to 

analyze resting brain activity. Such approaches are particularly relevant to disease states 

such as schizophrenia, in which dysfunctional connectivity (“dysconnectivity”) is 

hypothesized to underlie patient symptoms (Bullmore et al., 1997; Stephan et al., 2006). 

Because this dysconnectivity is thought to be driven by aberrant synaptic plasticity (Stephan 

et al., 2009), characterizing functional connectivity may be essential to understanding the 

disorder.

Group independent component analysis (gICA) is an effective means of interrogating 

functional dysconnectivity in schizophrenia (Calhoun and Adali, 2012). As typically applied 

to resting fMRI data, this technique identifies and reconstructs temporally-coherent, 

spatially-independent networks in groups of subjects (Calhoun et al., 2001), where 

“networks” are defined as components identified via ICA. Spatial independence facilitates 

the comparison of topographies, or maps, between groups, while the property of temporal 

coherence permits the assessment of interregional, connectivity between spatially 

independent networks. However, exclusive reliance on fMRI to generate such networks may 

limit inference on dysconnectivity: Whilst the blood oxygenation-level dependent (BOLD) 

response measured by fMRI allows high spatial resolution maps, it is limited by being an 

indirect and slow physiological signal (Bandettini et al., 1993; Kim et al., 1997). Neural 

oscillatory activity, which comprises rhythmic electrical activity in cell assemblies, is 

thought to underlie BOLD responses. This occurs in the ~1–900Hz band; such rapid 

electrical signals cannot be assessed using fMRI but can be measured directly by techniques 

such as magnetoencephalography (MEG; Cohen, 1968), a noninvasive neuroimaging 

technique used to infer the cortical current distribution via assessment of the induced extra-

cranial magnetic fields. Measurement of resting state brain activity using both fMRI and 

MEG, within a common sample of subjects, combines the strengths of each modality by 

allowing comparison of haemodynamic and electrophysiological effects. In this way we 

provide significant insight into functional connectivity, with special relevance for the study 

of schizophrenia and similar conditions. Significant progress towards integrating MEG and 

fMRI has been made in the past decade. MEG inverse solutions such now permit functional 

connectivity analysis in the same brain space as fMRI (Brookes et al., 2005). This approach 
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has already been used to evaluate intrinsic connectivity networks (ICNs) in MEG in a similar 

way to that typically used in fMRI (Brookes et al., 2011b). Neural oscillations are implicated 

strongly in this approach and in particular, multiple studies (Brookes et al., 2011b; Luckhoo 

et al., 2012) have now shown that assessment of temporal correlation between the amplitude 

envelopes of oscillatory activity facilitates elucidation of distributed network structure that 

bears reasonable resemblance to fMRI.

The purpose of the present study is to use both fMRI and band limited envelope correlation 

metrics in MEG to interrogate functional connectivity in the resting state in a sample of 

healthy normal volunteers and schizophrenia patients. Using methods based on group spatial 

ICA, for the first time we estimate networks from both MEG and fMRI and compare and 

contrast the networks and findings from the two modalities, with the hypotheses that 1) 

Patients and controls would differ significantly on both MEG and fMRI measures of intra-

network connectivity, called functional network connectivity (FNC), and 2) MEG and fMRI 

spatial maps would show substantial overlap.

2. Materials and Methods

2.1 Participants

This investigation combined existing data from 91 participants, 46 schizophrenia patients 

and 45 healthy controls. Informed consent was obtained from all participants according to 

institutional guidelines at the University of New Mexico Human Research Protections Office 

(HRPO). All participants were compensated for their participation. Patients with a diagnosis 

of schizophrenia or schizoaffective disorder were invited to participate. Each patient 

completed the Structured Clinical Interview for DSM-IV Axis I Disorders (First et al., 1997) 

for diagnostic confirmation and evaluation of co-morbidities. Patients with a history of 

neurological disorders including head trauma (loss of consciousness > 5 minutes), mental 

retardation, history of substance dependence, or active substance abuse (except for nicotine) 

within the past year were excluded, as were patients who were clinically unstable (e.g., in 

the previous month were discharged from the hospital or had any changes in their 

psychotropic medications). Stability was also monitored throughout the study to confirm that 

patients had no clinically meaningful symptom changes. All patients had a negative urine 

toxicology for drugs of abuse at the time of enrollment in the study. Patients were treated 

with a variety of antipsychotic medications. The doses of antipsychotic medications were 

converted to olanzapine equivalents (see Table 1: Gardner et al., 2010). Healthy controls 

were recruited from the same geographic location and completed the SCID – Non-Patient 

Edition to rule out Axis I conditions (First et al., 2002). Although patients and controls were 

not yoked, demographic characteristics including age, gender, and caregiver socio-economic 

status (Werner et al., 2007) were monitored throughout recruitment to ensure that both 

groups were of similar composition. There were no significant between-group differences on 

these measures (see Table 1), and results were largely unchanged when demographic 

characteristics were included as covariates. All participant smokers were instructed not to 

use tobacco during the two hours prior to each scan to minimize acute effects. This was 

confirmed via a breath carbon monoxide measure of less than 8 ppm. Each participant 
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completed resting MEG and MRI scans. Scans were collected in counterbalanced order, with 

a median time between scans of approximately 22 days.

2.2 fMRI Data Acquisition

All fMRI data were collected on a 3-Tesla Siemens Trio scanner with a 12-channel radio 

frequency coil. High-resolution T1-weighted structural images were acquired with a five-

echo MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s, TI = 1.2 s, 

flip angle = 7°, number of excitations = 1, slice thickness = 1 mm, field of view = 256 mm, 

resolution = 256×256. T2*-weighted functional images were acquired using a gradient-echo 

EPI sequence with TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm, slice 

gap = 1.05 mm, field of view 240 mm, matrix size = 64x64, voxel size = 3.75 mm×3.75 

mm×4.55 mm. Resting-state scans consisted of 149 volumes per run.

2.3 fMRI Data Preprocessing

An automated preprocessing pipeline and neuroinformatics system developed at MRN (Scott 

et al., 2011) was used to preprocess the fMRI data. The first four volumes were discarded to 

remove T1 equilibration effects. Images were realigned and slice-timing correction was 

applied using the middle slice as the reference frame in the functional data pipeline. The 

data were then spatially normalized to the standard MNI space, resampled to 3×3× 3 mm 

voxels, and smoothed using a Gaussian kernel with a full-width at half-maximum (FWHM) 

of 10 mm. The preprocessed time series data were scaled to a mean of 100.

2.4 fMRI Group Spatial Independent Component Analysis (gsICA)

Following Allen et al. (Allen et al., 2012), we performed a subject-specific data reduction 

PCA retaining 100 principal components (PC). In order to use memory more efficiently, 

group data reduction was performed using an EM-based PCA algorithm and C = 75 PCs 

were retained. The infomax algorithm (cf. Erhardt et al., 2011) was used for gICA. It was 

performed using the GIFT Toolbox (http://mialab.mrn.org/software/gift/). This high model 

order ICA (number of components, C = 75) affords a number of advantages, including the 

ability to use the resulting FNC matrix to infer how components would group in the case of 

a lower-dimension estimation, as well as refined components that correspond to known 

anatomical and functional segmentation (Allen et al., 2011; Kiviniemi et al., 2009). In order 

to estimate the reliability of the decomposition, the Infomax ICA algorithm was applied 

repeatedly via ICASSO (Himberg and Hyvarinen, 2003) and resulting components were 

clustered. Subject-specific maps and timecourses were estimated using a back-reconstruction 

approach based on PCA compression and projection (Calhoun et al., 2001).

2.5 fMRI Feature Identification

To identify non-artifactual components that contain features associated with resting state 

networks a combination of two methods was used (Allen et al., 2012). In the first method we 

examined the power spectra with two criteria in mind: dynamic range and low frequency/

high frequency ratio. Dynamic range refers to the difference between the peak power and 

minimum power at frequencies to the right of the peak in the power spectra. Low frequency 

to high frequency power ratio is the ratio of the integral of spectral power below 0.10 Hz to 
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the integral of power between 0.15 and 0.25 Hz. To verify the results, three expert reviewers 

evaluated the components for functional relevance. In this evaluation, if a component 

exhibited 1) peak activation in gray matter, 2) low spatial overlap with known vascular, 

ventricular, motion, and susceptibility artifacts, and 3) TCs dominated by low frequency 

fluctuations, it was classified as a non-artifactual component. Of the 75 components returned 

by the gICA, 39 were identified as BOLD-related component; see Fig. S1.

2.6 MEG data acquisition

MEG data were collected in a magnetically and electrically shielded room (VAC Series 

Ak3B, Vacuumschmelze GmbH) using a whole-cortex 306-channel MEG array (Elekta 

Neuromag™) at the Mind Research Network. Before positioning the participant in the 

MEG, four coils were affixed to the participant’s head: two on the forehead and one behind 

each ear. These coils allow determination of the position of the participant’s head relative to 

the position and orientation of the MEG sensors. Additional positioning data were collected 

using a 3D digitizer (Polhemus Fastrak) in order to permit co-localization of MEG activity 

with the anatomical MRI result for each participant. Two channels of electro-oculogram 

(EOG), one vertical and one horizontal, and one channel of electrocardiogram (ECG) were 

collected simultaneously with MEG. MEG data were sampled at a rate of 1000 Hz, with a 

bandpass filter of 0.10 to 330 Hz. Head position was monitored continuously throughout the 

MEG session. Raw data were collected and stored. Participants were instructed to keep their 

eyes open and maintain fixation during the 6-minute scan to minimize occipital alpha 

rhythm (Cohen, 1968).

2.7 MEG data preprocessing

Artifact removal, correction for head movement, and downsampling to 250 Hz were 

conducted offline using Elekta Maxfilter software, with 123 basis vectors, a spatiotemporal 

buffer of 10 s, and a correlation limit of r=.95. Cardiac and blink artefacts were removed 

using a signal-space projection (SSP) approach (Uusitalo and Ilmoniemi, 1997). To facilitate 

an exploratory comparison with previous research (Brookes et al., 2011b), data were 

bandpass filtered into four frequency ranges of interest: delta (1–4 Hz), theta (5–9 Hz), alpha 

(10–15 Hz), and beta (16–29 Hz).

2.8 MEG beamformer projection

Covariance matrices were generated independently for each subject and frequency band, 

using all recorded data. Covariance matrices were regularized using a value of 4 times the 

minimum singular value of the unregularized matrix. That is, after estimation of the 

covariance matrix we regularized the matrix by adding a constant to the diagonal. The 

constant added was four times the minimum singular value of the unregularized covariance 

matrix. Voxels were placed on a regular 6-mm3 grid spanning the brain image. Source 

orientation at each voxel was based on a nonlinear search for maximum projected signal-to-

noise ratio. The forward solution was based on a dipole model (Sarvas, 1987) and a single-

shell boundary element model (Hamalainen and Sarvas, 1989). Beamformer projection was 

performed separately for each subject and frequency range. After beamformer projection, 

source-space signals were normalized by an estimate of projected noise (Hall et al., 2013) 

and transformed to standard (MNI) space using FLIRT in FSL. A Hilbert transform was 

Houck et al. Page 5

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applied to the time course at each voxel time to derive the analytic signal. The absolute value 

of this analytic signal was computed to yield the Hilbert envelope, an amplitude envelope of 

oscillatory power. The Hilbert envelope at each voxel was downsampled to an effective 

sampling rate of 1 Hz (Brookes et al., 2011b). Source space envelope data were smoothed 

spatially (6 mm3 at full-width half-maximum), and the voxel size was resampled to 3×3×3 

mm to facilitate comparison with the fMRI data. While strong and sustained correlations 

between brain regions can lead to beamformer failure, this requires correlations that persist 

through 30–40% of the period analyzed (Hadjipapas et al., 2005), unlikely in resting data 

(Brookes et al., 2011b).

2.9 MEG Group Spatial Independent Component Analysis (gsICA)

Group spatial ICA was applied to the individual subject data using the GIFT toolbox. The 

gsICA approach was selected over group temporal ICA (gtICA) for two reasons: 1) Because 

components produced by gsICA are not temporally independent, relations among network 

timecourses can be evaluated; and 2) gtICA of participant timecourses carries the 

assumption of temporal consistency, limiting its utility in group analysis of resting data. 

Replicating and extending the work of Brookes et al. (2011b), each frequency range was 

treated as a session in GIFT to permit exploratory analysis of each band, as well as the mean 

across bands. MEG ICA processing generally followed the procedures applied to the fMRI. 

Reduction steps were applied using principal component analysis. First, subject-specific data 

reduction was applied, retaining 100 principal components. Next, group level data reduction 

was applied to reduce the dataset to 75 principal components. Infomax ICA was applied 20 

times in ICASSO and the resulting components were clustered. Spatial maps were generated 

by decomposing the mixed MEG timecourses to yield a set of spatially independent and 

temporally coherent networks. As with fMRI, subject-specific maps and timecourses were 

estimated using a back-reconstruction approach based on PCA compression and projection 

(Calhoun et al., 2001). This approach was chosen over alternate reconstruction approaches 

(e.g., GICA1, GICA2, dual regression) because it provides more accurate estimates for each 

subject and is more readily interpretable (Erhardt et al., 2011).

2.10 MEG feature identification

Consistent with standard practice (Allen et al., 2011; Robinson et al., 2009), component 

quality was assessed both qualitatively, to remove components situated in white matter and 

ventricles, and quantitatively, using assessments of dynamic range and the ratio of low-

frequency to high-frequency power in each component. Components were separated into 

artifactual and non-artifactual components. Of the 75 components requested from the group 

ICA, 29 were retained as non-artifactual components; see Fig. S2. In the present context 

these criteria, originally applied previously to fMRI ICA components (Allen et al., 2011; 

Robinson et al., 2009), also appeared to perform well for MEG. As with fMRI, MEG FNC 

was defined as the zero-lag cross-correlations among reconstructed timecourses.
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3. Results

3.1 Analytic approach

Resting MEG and fMRI data were acquired in 45 healthy controls and 46 schizophrenia 

patients. MEG data were source space projected using beamforming, enabling subsequent 

processing in brain space, equivalent to fMRI. Source space MEG and fMRI data were 

decomposed based upon a standard group spatial ICA analysis. This approach produces two 

forms of output: 1) network spatial maps and 2) network timecourses. Spatial maps reflect 

within-network connectivity (i.e., the extent to which the regions in a network tend to co-

activate), while timecourses are used to assess among-network connectivity. For both MEG 

and fMRI, preprocessed timecourses were used to derive estimates of functional network 

connectivity (FNC) among networks, which we operationalized as pairwise zero-lag 

correlation between timecourses from spatially independent networks. Because the primary 

interest in the study was on commonalities in components across the frequency bands, 

analysis focused on the mean MEG, rather than on individual frequency bands.

3.2 Functional network connectivity (FNC)

We hypothesized that patients and controls would differ significantly on MEG and fMRI 

measures of FNC. FNC was assessed for each modality. Note that in MEG, we analysed 

FNC using a mean timecourse encompassing all frequencies, as this best reflects the 

commonalities in components across the frequency ranges examined. FNC coefficients were 

z-transformed prior to statistical analysis. Between-group differences in connectivity were 

evaluated using two-tailed t-tests, ascribing significance at α = .05. We adjusted for multiple 

comparisons within each network matrix using the false discovery rate (FDR) correction. 

Significant FNC differences between patients and controls are shown in Fig. 1, projected 

onto a white matter surface in order to highlight the spatial pattern of among-network 

connectivity differences in the brain. This figure illustrates the spatial signature of the FNC 

differences observed between groups. Generally, we observed greater FNC in visual 

networks for fMRI components, and greater FNC in frontal networks for MEG components. 

Detailed FNC matrices for MEG and fMRI are presented in Fig. 2.

For fMRI, most group differences in intra-network connectivity were detected among 

temporal-occipital and frontal-occipital networks, and within the occipital networks (see 

Figs. 1, 2, and S3). For MEG, fewer FNC group differences were detected, with the majority 

in frontal-DMN networks and within the frontal networks. While fMRI FNC revealed no 

hyperconnectivity in SZ, approximately half of the MEG FNC relationships indicated higher 

connectivity in SZ than in HC, suggesting dysfunctional network connectivity in SZ 

networks revealed with MEG.

3.3 Spatial maps

We hypothesized that there would be considerable spatial overlap in network maps between 

MEG and fMRI. Spatial maps for each modality were assessed across groups via one-

sample t-tests of back-reconstructed subject maps. Identified networks included temporal, 

sensorimotor, parietal, occipital, frontal, subcortical, and DMN regions (Fig. 3).
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Commonalities and differences can be seen across participant groups for fMRI and MEG. 

Spatial overlap between MEG and fMRI was initially assessed via visual inspection and 

subsequently verified quantitatively using spatial correlation. In gsICA, the component map 

for the group is derived from the individual subject data, and is used to generate individual 

subject maps for that component via a back-reconstruction-process. Because examining 

spatial correlation using back-reconstructed subject maps would introduce circularity we 

instead used the group map, which represents the activity for that component across the 

whole group. Individual subject-level spatial correlation among these optimal matches 

ranged from 0.12 to 0.50, with a mean of 0.31. Point estimates and confidence intervals for 

these spatial correlations are reported in each panel of Fig. 4. Substantial overlap was 

detected across multiple networks including DMN as well as frontal, parietal, temporal, and 

occipital regions.

4. Discussion

The present study used an advanced data reduction approach, group ICA, to characterize 

patterns of brain connectivity in the resting state using MEG and fMRI in a sample of 

healthy volunteers and schizophrenia patients. Our results showed significant group 

differences in connectivity between these groups, with substantial spatial overlap as well as 

modality-specific patterns of functional network connectivity.

FNC group differences evident for MEG show greater functional connectivity across 

widespread frontal and temporal regions. Three interesting network patterns are seen in the 

MEG FNC results (Figs. 1 and S3). First, within the DMN we see that the dorsal anterior 

cingulate/superior frontal region appears hyperconnected for SZ compared to HC (blue 

regions) while posterior cingulate/precuneus is hypoconnected in SZ (red/orange regions). 

For HC, bilateral posterior cingulate is hyperconnected with an adjacent parietal component. 

Other recent studies of schizophrenia similarly showed hyperconnectivity within anterior 

cingulate for SZ (Jafri et al., 2008; Skudlarski et al., 2010). Hyperconnectivity has also been 

detected within one subcomponent of the DMN (i.e., anterior cingulate and portions of 

posterior cingulate) while the other subcomponent of the DMN revealed hypoconnectivity 

(bilateral parietal and dorsolateral prefrontal) for SZ (Skudlarski et al., 2010). These 

investigators identified the posterior cingulate as being the focus of decoupling found 

between anatomical (DTI) and functional (fMRI) connectivity. They emphasized that the 

DMN should not be viewed as a single unit; it is composed of substructures that all 

contribute to resting state activation but vary substantially in connectivity patterns.

The second interesting MEG result in Figs. 1 and 2 shows widespread hyperconnectivity 

between perisylvian and frontal regions which closely resemble that seen in fMRI resting 

state of SZ patients who reportedly experience auditory hallucinations (Diederen et al., 

2013; Sommer et al., 2012). These regions include bilateral superior temporal gyri (i.e., 

auditory cortex) and middle temporal gyrus, along with supramarginal gyrus, and what 

appears as the right hemisphere homologue of Wernicke’s area (Jardri et al., 2010; Sommer 

et al., 2012). Stephen and colleagues (Stone et al., 2014) have been examining multisensory 

integration in SZ and find that SZ benefit from multisensory (auditory/visual) integration 

more than do HC. She has related these results to the “high noise” theory where increased 
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activity during rest has been attributed to impaired responsiveness to external stimuli. This 

widespread hyperconnectivity involving auditory and speech perception regions may provide 

important support for the “high noise” theory; this widespread network appears to be 

hyperconnected for SZ, compared to HC, during normal resting state. Therefore, additional 

stimulus intensity and/or additional attention resources may be required for SZ to direct their 

attention to the external environment. In support of this interpretation, the attentional parietal 

regions are hyperconnected in HC. These patterns of functional connectivity lead us to 

speculate that SZ are directed inward more during resting state while HC are directed toward 

the external environment, ready to respond. Altogether our results indicate that multimodal 

methods are essential to understanding the mechanisms of inter-regional brain connectivity. 

(cf. Brookes et al., 2011a).

Recent meta-analytic work on fMRI of the resting state in schizophrenia has revealed that 

schizophrenia patients tend to show hyperactivation bilaterally in lingual gyrus and broad 

hypoactivity elsewhere, with decreases in resting state activity observed in VMPFC, left 

hippocampus, PCC, and precuneus (Kühn and Gallinat, 2013). Other implicated regions 

with lower connectivity include paracingulate cortex, bilateral thalamus, fusiform, left 

caudate, and left thalamus(Argyelan et al., 2013), with greater hypoactivity generally related 

to worse functioning. Larger studies of functional network connectivity in schizophrenia 

have indicated dysfunction across a range of networks, with schizophrenia-specific deficits 

in midbrain/cerebellar and fronto-temporal paralimbic networks (Khadka et al., 2013). Our 

data suggest that patterns of connectivity involving hippocampus, fusiform, and middle 

frontal regions are particularly relevant to the level of functioning within the sample patient 

group, a finding consistent with the observed patient-control differences in frontal and 

temporal networks. Notably, each neuroimaging modality we examined contributed both 

common and unique findings.

Our exploratory MEG analysis of within-frequency FNC (Fig. S3) showed multiple group 

differences in inter-regional connectivity in the beta (16–29 Hz) range, particularly in the 

frontal-cerebellar, frontal-DMN, and frontal-auditory networks. Nearly all FNC group 

differences in the beta range suggested hyperconnectivity in patients. It is worth noting, 

however, that because this was an exploratory analysis separate FDR corrections were 

applied within each frequency band; the analysis of band-specific group differences was not 

subjected to an additional correction for multiple comparisons. These additional exploratory 

results should be viewed with some caution, pending replication. Beta band has previously 

been implicated in long-range cortical synchrony (Stein et al., 1999; Tallon-Baudry et al., 

2004, 2004; Thatcher et al., 2008), notably in visual processing (Sehatpour et al., 2008) and 

working memory (Piantoni et al., in press) networks observed in the present data. Consistent 

with the present study, research in schizophrenia has indicated abnormal synchronization in 

the beta and gamma ranges (Uhlhaas and Singer, 2011, 2010), particularly in the beta band 

(Siebenhühner et al., 2013). Synchrony between the two hippocampi, regions with particular 

relevance for schizophrenia (Hanlon et al., 2012, 2011), has also been linked to the beta 

band (Lee et al., 2014).

What do we learn about functional connectivity in schizophrenia from this dual modality 

study? By combining both MEG and fMRI we are able to interrogate both network structure 
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(maps) and network dynamics (FNC) in schizophrenia, revealing patterns of connectivity 

impossible to detect with either modality alone. In particular, MEG appeared more sensitive 

to hyperconnectivity in frontal and temporal networks among patients. On the whole, our 

resting fMRI FNC findings converge with the schizophrenia literature, which reports 

hypoactivation across multiple regions, including the prefrontal cortex (Kühn and Gallinat, 

2013). However, prefrontal FNC with MEG was increased in our patient group. This 

suggests abnormally increased synchronous firing from neuronal populations in prefrontal 

networks in these chronically ill schizophrenia patients. Whether these hyper-synchronous 

networks underlie core deficits of the illness or represent compensation to overcome other 

primary functional defects, we cannot say. However, we did not find correlations with 

positive symptoms, which have been reported to be associated with fMRI functional hyper-

connectivity (Ford et al., 2014). Our results suggesting hyper-synchronous prefrontal 

networks are consistent with the dysconnectivity model of schizophrenia (Stephan et al., 

2006) and suggest that these represent a deficit at the neuronal population level and not 

merely in the coupling of vascular/neuronal function.

In the present study, the combination of data from multiple modalities, collected at different 

times, conveys additional confidence in our results. For instance, one critique of resting 

fMRI data from populations with mental illness or disease is that patients may respond 

differentially to auditory scanner noise (Skouras et al., 2013). We observed bilateral 

temporal components in fMRI, which has substantial background noise during scans, and 

unilateral temporal components in MEG, which is silent, providing some support for this 

critique. Similarly, schizophrenia patients have well-known autonomic nervous system 

dysregulation (Bär et al., 2007; Rachow et al., 2011; Toichi et al., 1999) related to variability 

in heart rate and respiration (Paterson, 1935; Whitehorn and Richter, 1937; Wittkower, 1934) 

which can directly affect the BOLD response (Cohen et al., 2002). However, the 

electromagnetic signal detected by MEG is less affected, particularly when the cardiac 

signal has been removed as in the present study. Overlapping MEG-fMRI components can 

reasonably be assumed to be free of such influences, revealing only the underlying 

dysregulation. Finally, eye movements also differ between controls and patients (Clementz 

and Sweeney, 1990), again directly affecting the BOLD signal, where changes in the flow of 

vitreous humor during eye movement increase signal variance from nearby regions 

(Beauchamp, 2003). The corneo-retinal potential can affect electrophysiological signals 

(Kolder and North, 1966), but generally would appear as a source between the eyes. In the 

present study, such eye movement artifacts were reduced through the application of SSP. 

Surviving frontal and occipital components that are in common for MEG and fMRI are 

arguably free of such modality-specific artifacts.

Point spread – that is, the leakage of signal between projected timecourses – is a ubiquitous 

issue in beamformer analysis (Brookes et al., 2012; Colclough et al., 2015; Hipp et al., 2012; 

Palva and Palva, 2012). In connectivity analysis, signal leakage manifests as zero-lag 

correlation between timecourses of spatially separate regions. Connectivity analysis of 

beamformer-projected timecourses without leakage correction will therefore lead to spurious 

connectivity estimates if one simply computes the connectivity between two source signals. 

Because signal leakage varies with sensor geometry, brain region, sensor noise, inverse 

solution, and the sparseness of the source space, no universal correction for leakage exists. 
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The predominant approaches to correcting for leakage rely to some degree upon removing or 

ignoring zero-order correlations between timecourses. This includes partial correlation 

approaches, and, in phase-based connectivity, either analysis of the asymmetry of the phase 

distribution or removal of the real portion of coherence. Such approaches can be problematic 

because they discard true zero-order relationships, throwing out the signal ‘baby’ with the 

leakage ‘bathwater’. Further, these approaches are problematic because they rely to varying 

degrees on the assumption that brain sources are point sources rather than distributed 

sources. However, research in intracranial EEG has demonstrated that cortical sources are 

often distributed over at least 10 cm2 of the cortical surface (Chowdhury 2013, Huiskamp 

2010) – that is, spatially-distributed sources detected via MEG may represent true 

distributed sources in the cortex. Therefore, even if an all-to-all voxelwise leakage correction 

were practical, it would be inadvisable, as it could broadly suppress true source extents 

(Jerbi et al., 2004)

Given this, group spatial independent component analysis (sICA) may eventually provide a 

preferable form of leakage correction for FNC-based studies. In this data-driven technique 

for unmixing complex brain signals (Calhoun et al., 2001), the unmixing procedure produces 

a set of maximally independent network topologies (i.e., component maps), with 

timecourses that may be inter-related. Relationships among these networks can then be 

evaluated, as in the present study, using functional network connectivity (FNC). The leakage 

of signal among MEG sensors typically manifests as linear spatial blurring of the sources 

(cf. Palva and Palva, 2012; Schoffelen and Gross, 2009; Wens, 2015). This blurring will 

inflate the connectivity among cross-correlated sensor signals, potentially producing 

spurious estimates of connectivity if not addressed. However, such a signal is well-suited to 

unmixing by sICA, and when present may manifest as a spatial blurring of each individual 

component. The connectivity among these components might be relatively less influenced 

by leakage in such a scenario, as the ICA unmixing procedure may be expected to capture 

both source and leakage within a single component, as both source and leakage are by 

definition quite highly related. In the present study, our approach and statistical testing is 

focused on the cross-correlation among gICA-derived timecourses and as such the effects of 

signal leakage on these estimates of connectivity might be expected to be low. However, 

such claims need to be directly evaluated, a task which is beyond the scope of the current 

work but which we are pursuing in a separate paper. Should this approach be supported in 

our follow-up work, it may ultimately prove inadvisable to perform a separate leakage 

correction step if one is testing gICA-based among-component connectivity, or FNC. 

However, given the novelty of this approach, we need to mention that it is possible that FNC 

results presented in the present study are biased to some extent by signal leakage. As such, 

they should be viewed with some caution pending replication.

Other approaches to leakage require additional considerations such as the rank of the data. 

MEG data is of relatively low rank, which is further reduced if signal space separation is 

applied (Taulu and Kajola, 2005). Some approaches to leakage correction (e.g., Colclough et 

al., 2015) require that the rank of the data is equal to or higher than the number of 

timecourses being corrected. Studies taking that approach must therefore be careful to use an 

appropriate number of basis vectors during signal space separation to ensure that the 

resulting data will have adequate rank for leakage correction.
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4.1 Limitations

While the initial result of this innovative approach are promising, several caveats should be 

noted. First, although this study combined MEG and fMRI, data from each modality were 

collected and analyzed separately, albeit in parallel. Techniques for true whole-brain multi-

modal data fusion remain elusive, and potential sources of inter-modality differences such as 

the day of the scan and time of the scan cannot be ruled out. Second, although substantial 

spatial overlap was observed for MEG and fMRI, there was minimal overlap in the patterns 

of connectivity (i.e., FNC) between MEG and fMRI. This may be due to some sample-

specific idiosyncrasies, to the differing sensitivities of FNC analysis between the two 

modalities, or to some combination of these factors. The optimal approach to addressing 

these issues is via replication in similar samples, which we hope to pursue in a future study. 

Third, while multiple MEG frequency bands were examined, this portion of the analysis was 

exploratory in nature. Future work should examine between-group effects both within 

frequency and across frequencies, an approach that will require a larger sample to ensure 

adequate power to detect such effects. Fourth, the inversion of MEG data from measurement 

channels to brain sources is an ill-posed problem, with approximately 300 measurement 

channels in most commercial devices, but thousands of potential sources in the brain. 

Although sources with high signal-to-noise ratio (SNR) can be resolved with separation of 

0.5 mm using a beamformer approach (Hillebrand and Barnes, 2005), lower SNR data such 

as that obtained in resting studies will typically lead to local blurring of source activity. 

Fifth, while the ICA decomposition assumes a linear relationship between the derived 

components and the source signal, the BOLD signal and MEG source envelopes analyzed in 

the present study are themselves nonlinear functions of the true source signals, and the 

extent to which the ICA accurately represents this nonlinearity is unclear. Finally, although 

the present study used spatial ICA as an approach to leakage correction, it may be the case 

that the ICA unmixing procedure does not adequately compensate for leakage. A detailed 

simulation study testing this approach, while beyond the scope of the present study, is now 

in process.

4.2 Conclusion

The present study employed a novel approach to estimate intrinsic connectivity networks 

from group spatial ICA of fMRI and MEG data to evaluate spatial patterns and functional 

connectivity in a sample of schizophrenia patients and healthy volunteers. This is the first 

study to use group spatial ICA with resting MEG data, and also the first to apply these 

methods to directly compare a patient population to healthy volunteers. We observed 

substantial spatial overlap in multiple intrinsic connectivity networks as assessed using 

spatial correlation. We also observed intermodality differences in functional network 

connectivity of ICNs, with more instances of high frontal FNC for MEG and high occipital 

FNC for fMRI. In addition, while group differences in network spatial topography were 

observed primarily in frontal regions for fMRI, in MEG these differences were observed 

more broadly in frontal and temporal networks. The results suggest hyper-synchronous 

prefrontal networks in schizophrenia with deficits at the neuronal population level and not 

merely in neurovascular coupling. The spatial consistency of components from MEG and 

fMRI, based on data collected on different days, also allows us to rule out several alternative 

explanations for the observed results, including modality-specific scanner and environmental 
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noise. Results suggest that the application of group spatial ICA to multimodal neuroimaging 

using MEG and fMRI provides important information about complex mental illnesses such 

as schizophrenia that would have been missed otherwise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of functional network connectivity (FNC) group averages and group differences 

(Healthy Control [HC] - Schizophrenia patient [SZ]) for fMRI and MEG rendered on white 

matter surface. N = negative (i.e., SZ > HC); P = positive (i.e., HC > SZ). FNC is a measure 

of among-network connectivity; that is, pairwise correlations in network (ICA component) 

timecourses. Only those regions involved in significant group differences are included. For 

networks showing a significant group difference, the rendered values represent the weighted 

sum of the five strongest correlations with that network.

Houck et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Functional network connectivity (FNC) for fMRI (top) and MEG (bottom), for healthy 

controls (left column), Schizophrenia patients (center column), and FDR-corrected group 

differences (right column). ICA component numbers are on the diagonal. Color scale 

describes the p value after FDR correction.
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Figure 3. 
fMRI and MEG network spatial maps. Color scale is arbitrary and corresponds to the ICA 

component number.
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Figure 4. 
Spatial overlap in spatial maps (ICA components) detected using MEG and fMRI. ICA 

component numbers are located in the upper left of each panel. Values in parentheses are the 

mean spatial correlation between the MEG and corresponding fMRI component. Color scale 

is z-scored component magnitude.
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Table 1

Demographic information

Mean (SD) t or X2

Schizophrenia
(n=44)

Control
(n=47) (p-value)

Demographics

  Age 37.28 (13.86)
35.18

(11.83)
0.78

(0.44)

  Gender (M/F) 37/7 34/13
0.27

(0.78)

  Ethnicity
(H/NH) 23/21 26/21

  Race

  American
Indian/Alaska
Native 2 2

  Asian 2 0

  Black or African
American 1 4

  Native
Hawaiian or
Other Pacific
Islander 1 0

  White 38 41

Socioeconoic
status

  Primary
caregiver
education 4.24 (2.11)

4.53
(1.18)

  Secondary
caregiver
education 4.72 (1.83)

4.72
(1.84)

PANSS

  Positive 15.13 (5.136)

  Negative 15.15 (5.013)

  General 29.79 (8.108)

Medications

  OLZ(mg/day) 14.02 (12.39)
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