
Advanced Review

Transcending the prediction
paradigm: novel applications
of SHAPE to RNA function
and evolution
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Selective 20-hydroxyl acylation analyzed by primer extension (SHAPE) provides
information on RNA structure at single-nucleotide resolution. It is most often
used in conjunction with RNA secondary structure prediction algorithms as a
probabilistic or thermodynamic restraint. With the recent advent of ultra-high-
throughput approaches for collecting SHAPE data, the applications of this tech-
nology are extending beyond structure prediction. In this review, we discuss
recent applications of SHAPE data in the transcriptomic context and how this
new experimental paradigm is changing our understanding of these experiments
and RNA folding in general. SHAPE experiments probe both the secondary and
tertiary structure of an RNA, suggesting that model-free approaches for within
and comparative RNA structure analysis can provide significant structural
insight without the need for a full structural model. New methods incorporating
SHAPE at different nucleotide resolutions are required to parse these transcrip-
tomic data sets to transcend secondary structure modeling with global structural
metrics. These ‘multiscale’ approaches provide deeper insights into RNA global
structure, evolution, and function in the cell. © 2016 The Authors. WIREs RNA published

by Wiley Periodicals, Inc.
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INTRODUCTION

As more than a mere messenger of information
from DNA to protein, RNA molecules adopt

structures that have functional biological roles.1–6

Traditionally, secondary structure predictions of
RNA molecules from a single sequence minimize a
free energy function to obtain a structural model of
intramolecular base pairing,7–10 or sample

suboptimal structures from the partition func-
tion.11,12 Evolutionary covariation, where two
nucleotides vary in sequence across related RNAs
while preserving base pairing ability, is particularly
powerful for predicting structures, especially for bac-
terial and archaeal RNAs or for highly conserved
RNA structures.13–15 Structure prediction algorithms,
however, only predict about half of all base pairs
that occur in an RNA,16,17 and some alignments may
not have enough information for covariation analy-
sis.18 For these reasons, an experiment capable of
rapidly probing RNA structure is particularly
appealing.

Multiple quantitative methods to determine
RNA structure experimentally are now available,
such as selective 20-hydroxyl acylation analyzed by
primer extension (SHAPE),19 quantitative dimethyl
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sulfate (DMS) modification,20 and parallel analysis
of RNA structure (PARS).5,21 Each of these methods
provides information on the conformational flexibil-
ity of nucleotides in an RNA, either through chemical
modification (SHAPE and DMS) or through enzy-
matic probing (PARS). These quantitative probing
techniques present a new paradigm in understanding
RNA structure on a transcript-wide or greater scale.

The most common use for SHAPE data is as a
restraint (also referred to as a soft constraint) in sec-
ondary structure prediction algorithms.18,22–24 The
incorporation of SHAPE data into structure predic-
tion algorithms refines the probable structure space
of an RNA molecule and greatly improves predic-
tions to approximately 90% accuracy.22,25 Recently,
SHAPE data collected in an ultra-high-throughput
manner is increasingly used in a model-free approach
as an additional feature for evolutionary analysis. In
this review, we discuss these diverse approaches to
applying SHAPE data to understand RNA structure.
As next-generation sequencing now allows for the
rapid quantification of structure probing,5,25–27 the
future of SHAPE will involve signal processing tech-
niques to understand a transcript’s structure on mul-
tiple scales. The speed at which these technologies
now provide us with structure information will allow
for efficient and accurate analysis of comparative
RNA structure.

FIRST-LEVEL APPROACHES
TO INTERPRETING
SHAPE EXPERIMENTS

SHAPE uses the reactivity of the 20-OH of an RNA
molecule to understand the structure of that
RNA.19,28–31 An electrophile, typically 1M7 or
NMIA, covalently bonds with the 20-O to form an
adduct; this reaction occurs preferentially at confor-
mationally flexible, or unpaired, nucleotides.28,29 The
signal is then ‘read’ by reverse transcription. In most
protocols, modified nucleotides block the reverse
transcriptase causing it to fall off the transcript.
Nucleotides that are more reactive will generate more
stops, which, as the experiments are traditionally per-
formed with single-hit kinetics, indicates the relative
frequency of adduct formation.30 The relative rates
of adduct formation are then normalized to find the
SHAPE profile for that RNA, providing information
on the reactivity of each nucleotide.19,32

In general, positions in a SHAPE profile with
high reactivities are more likely to be unpaired, and
positions with low reactivities are more likely to be
paired.22 Because the SHAPE reagent can react at

any nucleobase, the SHAPE profile provides high-
resolution structural information.33 Indeed, differ-
ences in SHAPE profiles of two sequence variants
indicate that an RNA is a riboSNitch, where a single
nucleotide variant changes the structure of the
RNA.34–36 Thus, the SHAPE profile alone encodes
information on an RNA’s structure.

Recently whole-transcriptome probing methods
use the power of next-generation sequencing with
SHAPE structural profiling for an ultra-high-
throughput way of probing RNA structure, such as
the techniques in vivo click SHAPE (icSHAPE)37,38

and SHAPE-Seq,26,39,40 both of which utilize reverse
transcription stops. Of particular interest, SHAPE
with mutational profiling (SHAPE-MaP) uses modi-
fied reverse transcription conditions to induce muta-
tions at positions with 20 adducts, rather than
causing a reverse transcription stop.25 This new tech-
nique thus allows for high-resolution quantification
of RNA structure for whole transcripts at every
nucleotide position, without concerns about signal
decay or adaptor ligation bias.41–43

What Is SHAPE Really Saying?
SHAPE is a powerful technique for probing the struc-
ture of an RNA but the results of a SHAPE experi-
ment are not directly interpretable. Although SHAPE
reactivities generally correspond to pairing state, the
relationship between SHAPE and frequency of base
pairing is not linear. Both Cordero et al.44 and
Sükösd et al.45 found that the SHAPE reactivities of
paired and unpaired nucleotides fall into two differ-
ent probability distributions, although the two stud-
ies found different distributions of SHAPE
reactivities for unpaired nucleotides (Figure 1(a)).
While high (over 1.0) SHAPE reactivities generally
only occur at unpaired nucleotides, lower SHAPE
reactivities frequently correspond to both paired and
unpaired nucleotides. Other structural factors such as
base stacking may result in an unpaired nucleotide
having a low SHAPE reactivity.46 Consequently, the
SHAPE reactivity alone is not always predictive of
whether a base is paired or unpaired.

The distinction that SHAPE provides between
paired and unpaired nucleotides is different between
the data sets by Cordero et al.44 (Figure 1(a); left) and
Deigan et al.22 (shown in Sükösd et al., Figure 1(a);
right). The SHAPE data from Deigan et al. has a much
larger difference between its paired and unpaired dis-
tributions. Thus, the strength of the SHAPE signal
depends on the RNA and the experimental condi-
tions, and is not merely a direct measurement of struc-
ture.42,47 These factors are an important and often
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underappreciated aspect of the experiment. The
SHAPE reactivity profile depends on the overall fold
of the molecule being probed. As such, experimental
conditions can significantly alter the profile, and any
comparative analysis of SHAPE reactivity should
carefully consider experimental conditions.

SHAPE and Structure Prediction
Besides reporting a likelihood of base pairing for any
given nucleotide, SHAPE data also refine secondary
structure predictions of an RNA as an energetic
restraint. This method was first introduced by Deigan
et al.,22 where an additional energy term to the near-
est neighbor rules incorporates SHAPE reactivity as
an additional pseudo-free energy term.48 A high
SHAPE reactivity makes that nucleotide less likely to
base pair, while a low SHAPE reactivity makes base
pairing more favorable. The SHAPE reactivities thus
refine the structural space to find a structure or struc-
tures compatible with the SHAPE data (Figure 1(b)).
As RNAs often adopt multiple structural conforma-
tions and as SHAPE is a measurement over the entire
structural ensemble, the SHAPE data may not match
a single structure but instead represent the average
reactivity over the ensemble.

Still, projecting SHAPE reactivities onto a single
structure, as is the case in Figure 1(b), is the most
common approach for visualizing SHAPE data.
Although one structure may appear to agree with the
data (as in Figure 1(b)), there are often many other
structures in the suboptimal ensemble that appear to

agree with the data just as well. In fact, in the case of
the RB1 50 UTR illustrated in Figure 1(b), three alter-
native conformations are all compatible with the
data.18 Nonetheless, there is value in visualizing
structural models with SHAPE data projected as in
Figure 1(b), and these approaches to interpreting
SHAPE data will likely remain popular.

The most fitting way of incorporating SHAPE
data into structure prediction is a subject of recent
debate and thoroughly reviewed in Eddy 2014.49

These methods all attempt to use SHAPE data to con-
strain structure prediction of that RNA, based on the
likelihood of each nucleotide being paired. These
methods treat SHAPE measurements in a variety of
ways: as a free energy term,22 as a prior probability,50

or as a likelihood of base pairing.24,51 While each
method of incorporating SHAPE into prediction
greatly improves the accuracy of the structure predic-
tions, they all perform similarly to each other, with
accuracies up to 90–95%.22,24,25,44

When given a SHAPE reactivity, it is impossible
to know whether that base is paired or unpaired,
especially at lower reactivities. Using structural prob-
ing as a restraint in structure prediction provides
more information on the structure, with approxi-
mately the same accuracy over a wide range of para-
meters regardless of the method used.22,24,25,44,50,51

The next challenge in SHAPE processing is not opti-
mizing these parameters further, but instead evaluat-
ing broader structural characteristics that the SHAPE
signal can inform us of. Given that the use of SHAPE
in structure prediction was very extensively reviewed
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FIGURE 1 | SHAPE reactivities distinguish between paired and unpaired nucleotides. (a) Distributions of SHAPE reactivities for paired and
unpaired nucleotides recreated from Cordero et al.44 (left) and Sükösd et al.45 (right; data from Deigan et al.22). SHAPE reactivities for paired
nucleotides follow a generalized extreme value distribution in both data sets. SHAPE reactivities for unpaired nucleotides follow a generalized
extreme value distribution in Cordero et al. and an exponential distribution in Sükösd et al. In both data sets, the distributions for paired and
unpaired nucleotides differ, signifying that SHAPE reactivities are drawn from multiple probability distributions. (b) Example of RNA structure (the
RB1 50 UTR from Kutchko et al.18) overlaid with SHAPE data. Red: high SHAPE; orange: medium SHAPE; black: low SHAPE; gray: no data. Most
paired positions have low SHAPE and many unpaired positions have high SHAPE, but SHAPE does not completely distinguish between paired and
unpaired nucleotides, in part because this RNA forms multiple conformations.
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recently by Eddy 2014,49 we instead decided to focus
on recent developments in the analysis of SHAPE sig-
nal that attempt to transcend the interpretation of
the data as merely informative of a single secondary
structure.

RECENT APPLICATIONS
OF THE SHAPE SIGNAL

While SHAPE is certainly useful in refining RNA sec-
ondary structure prediction, it also provides additional
information when analyzed at different scales, or when
used in conjunction with other metrics such as evolu-
tionary data. Here, we will discuss recent extensions
of SHAPE reactivities beyond structure prediction.

Zooming Out: Regional View of
SHAPE Reactivities
At a single-nucleotide resolution, the traditional con-
ceptualization of SHAPE data is that each reactivity
provides a likelihood of that base being paired or
unpaired (Figure 2(a)). However, the proportions of
unreactive (low-SHAPE) and reactive (high-SHAPE)
nucleotides are not consistent across larger RNAs
because while certain regions within a transcript fold
into a well-defined structure, other regions may adopt
multiple distinct structures with similar free energies.

It is important to note that a majority of tran-
scribed RNAs are long, ranging up to several kilo-
bases.54,55 The longest transcripts are often RNA
virus genomes, such as the well-studied HIV genome.
To quantify these different SHAPE patterns, the
median SHAPE reactivity over windows ranging from
50 to 75 nucleotides is a novel way to identify and
visualize structured regions in a transcript.25,52

Although SHAPE reactivities are at single-nucleotide
resolution, averaging reactivities over many nucleo-
tides reveals structured and unstructured regions of
an RNA. Such ‘multiscale’ level analysis of these very
large transcripts (often greater than 10 kb) provides a
different picture of RNA structure than SHAPE at
single-nucleotide resolution (Box 1). Of course, differ-
ences in the window size will change the scale at
which we are understanding an RNA’s structure, and
the choice of window size to date has remained
largely empirical. There are significant opportunities
for algorithm development using SHAPE data at dif-
ferent scales.

Pollom et al.52 compares the windowed SHAPE
reactivities of both simian immunodeficiency virus
(SIV) and HIV-1 (Figure 2(b)). Regions where both
viruses have low median SHAPE correspond to known

RNA structural elements such as the 50 UTR, the gag-
pro-pol frameshift, and the Rev response element.
Other unannotated regions where both viruses have
low median SHAPE reactivities are good targets for
identifying new functional RNA elements. This win-
dowed picture of SHAPE reactivity provides structural
information—identifying regions of the RNA genomes
that have well-defined structures—that is difficult to see
at single-nucleotide resolution. Median SHAPE helps
characterize structure across the transcript, demonstrat-
ing that SHAPE profiles have relevance beyond single
nucleotide measurements and structure prediction algo-
rithms. Future methods of processing these large
SHAPE profiles, using this multiscale approach, may
uncover more higher-order RNA features. This
approach also identifies unstructured regions, which
may turn out to be just as functional as structure.18

SHAPE Supplements Weak
Evolutionary Signals
The traditional method of identifying conserved
RNA structures is through mutual information or
covariation of nucleotide positions.13,14,56 Although
covariance is extremely useful for highly conserved
RNA structures such as the RNA component of the
ribosome,15,57 the covariance signal may be weak or
nonexistent in other eukaryotic RNAs, making it dif-
ficult to identify conserved RNA structures in these
organisms.18 SHAPE represents a new method to
help strengthen the evolutionary signal by finding
support for conserved RNA structures independent
of structure prediction.

Kutchko et al.18 looked at the structure of the
50 UTR of RB1, the transcript that codes for the
tumor suppressor Retinoblastoma protein, in three
different species. Qualitatively, SHAPE data for the
three different UTRs have regions of striking similar-
ity (Figure 2(c)). As in reference by Pollom et al.,52

SHAPE data—even in the absence of structure
prediction—can indicate structural similarity between
different sequences. In addition, SHAPE data can
provide insight into observed evolutionary patterns.
Watts et al.23 used SHAPE to find that hypervariable
regions of the HIV-1 genome are highly unstructured
and insulate low-SHAPE, highly structured helices.
When used in this manner, SHAPE adds a layer of
context to evolutionary patterns (Box 2).

SHAPE-Directed Sequence Alignments
Identify Conserved RNA Structures
To extend beyond qualitative analysis, the Weeks lab
recently published two papers using SHAPE data as
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FIGURE 2 | SHAPE data for related RNAs follow similar but not identical patterns. (a) Examples of SHAPE data from high-SHAPE regions (left)
and low-SHAPE regions (right) from the SIVmac239 SHAPE data from Pollom et al.52 High SHAPE nucleotides are indicated in red, medium in
orange, and low in black. Although both profiles have low- and high-SHAPE nucleotides, the frequencies of each are distinct between the two
regions. (b) SHAPE data for SIVmac239 (top) and HIV-1 (bottom) aligned genomes. SHAPE data are from Pollom et al., annotations are from
Pollom et al. and the Los Alamos HIV database (http://www.hiv.lanl.gov/), and the sequences were aligned using MAFFT.53 Regional SHAPE
represents the windowed median SHAPE over a 75-nt window, with respect to the global median SHAPE value for each transcript. Values above
the line are regionally unstructured, and below the line are regionally structured. Alignment regions where both viruses are regionally structured
are annotated in gray. These regions correspond to known structural elements of the SIVmac virus (above, red). (c) SHAPE reactivities aligned by
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Laboratory Press for the RNA Society).
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a feature for sequence alignment.58,59 Their algo-
rithm aligns two SHAPE profiles to minimize the dif-
ference in SHAPE reactivity at each position,
optionally including sequence as an alignment
parameter (Figure 3(a)). The difference in SHAPE
reactivity between two sequence positions becomes a
function applied to the Gotoh alignment algorithm60

(Figure 3(b)). This novel method uses SHAPE reactiv-
ity as an additional feature for understanding evolu-
tionary conservation.

As a proof of concept, they used the method to
align ribosomal RNA sequences from Escherichia
coli, Clostridium difficile, and Haloferax volcanii
with only SHAPE data, not taking sequence into
account58 (Figure 3(c)). It should be noted that align-
ing these distantly related rRNAs based on sequence
alone is quite challenging.58 The rRNAs aligned with
SHAPE data alone produce an alignment with similar
accuracy to the sequence-only alignment, and using
both sequence and SHAPE data reproduce the gold
standard, manually curated alignment, suggesting
that SHAPE data captures evolutionary patterns in
RNA structure.

To extend this method further, they aligned three
lentivirus genomes (HIV-1, SIVcpz, and SIVmac)
using sequence and SHAPE together59 (Figure 3(d)).
Some regions in viral genomes have very robust struc-
tures, although unlike rRNA, viral RNAs also have
many unstructured or less-structured regions. The
application of SHAPE-directed sequence alignments to
viral RNAs is thus an important test of this new align-
ment method. From the aligned SHAPE data, they
used a linear regression model to find regions where
the SHAPE profiles are correlated between the three
viruses (Figure 3(e)). Known RNA functional elements
have significant correlations between the SHAPE pro-
files (Figure 3(e); green), indicating that SHAPE corre-
lation is a signal for structural homology.

SHAPE-directed sequence alignments are there-
fore applicable to more divergent RNAs, but most
useful for conserved RNA elements where the
SHAPE profiles are similar. Systematically using
SHAPE as an alignment parameter is a novel
approach to identifying conservation of RNA struc-
ture, and future extensions of this technique may
involve quantifying structural divergence and similar-
ity using SHAPE data.

SHAPE Facilitates Discovery of the
Conservation of Multiple RNA Structures
The SHAPE signal does not measure the conforma-
tion of a single molecule but instead represents the
average reactivities over all copies of that RNA

transcript. Indeed the reaction occurs in bulk, and as
such the reactivity at any given nucleotide is an
ensemble average. As many RNA structures, includ-
ing riboswitches, adopt multiple conformations,2,61 it
is critical to consider the entire structural ensemble of
a transcript when interpreting the SHAPE profile. We
can therefore compute the SHAPE-directed partition
function, which models the entire structural ensemble
informed by SHAPE data11,22 and allows us to iden-
tify the presence of multiple structural conformations.

As comparative structure analysis now incorpo-
rates SHAPE data as additional information, the next
step in this direction is using SHAPE to compare
multiple structural conformations of an RNA. Our
laboratory recently showed that multiple conforma-
tions of a purine riboswitch are conserved in
sequence62 (Figure 4(a)). However, the covariation
signal is much weaker in eukaryotic RNAs than bac-
terial or archaeal. SHAPE data thus provide us with
more information, helping us identify the conserva-
tion of multiple structures.

To incorporate SHAPE into conservation analy-
sis, we used SHAPE to probe the 50 UTR of the
human RB1 transcript.18 As SHAPE data greatly
improve the accuracy of RNA secondary structure
prediction22,25 we can be confident in our subsequent
computational analysis. Using SHAPE-directed Boltz-
mann sampling,10,22,63 we found that the 50 UTR
adopts three distinct conformations (Figure 4(b)). We
applied the same analysis to the homologous UTRs
in Bos taurus and Trichechus manatus latirostris and
found that they also adopt multiple, similar confor-
mations to the UTR in humans (Figure 4(c)). Here, in
conjunction with structure prediction, SHAPE helps
uncover the conservation of multiple structures in an
RNA. As whole-transcriptome probing technologies
improve, we anticipate further discovery of this type
of structural conservation and we encourage others
investigating RNA structure to also investigate the
conservation of multiple conformations as an impor-
tant functional consideration.

THE FUTURE OF SHAPE IN
THE NEXT-GENERATION
SEQUENCING ERA

The recent developments of high-throughput struc-
ture probing technologies such as SHAPE-Seq,39

icSHAPE,31 and SHAPE-MaP25 utilize next-
generation sequencing to quickly obtain the SHAPE
profile of one or more RNAs, making SHAPE now a
next-generation probing technology. With the advent
of next-generation sequencing, probing experiments
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are much faster and more efficient than in the past,
and public databases such as the RNA Mapping
Database64 allow for large-scale comparisons of
SHAPE data. Several studies recently applied next-
generation sequencing to analyze RNA structure at
the whole transcriptome level.5,27,36,65,66 With this
unprecedented amount of RNA structural probing
data, the next steps in computational analysis of
RNA structure will incorporate methods beyond
structure prediction into read alignment, motif analy-
sis, and signal processing.

In this new era of ‘next-generation structural
probing,’ the SHAPE signal is now one of multiple
available features to inform us about an RNA.
SHAPE represents a model-free approach to RNA
structure analysis and provides information at

multiple levels, from single nucleotides to 50-nt win-
dows to whole transcripts. This multiscale approach
to SHAPE structural probing gives us a wealth of
information on the structure of a transcript, and
combined with other methods such as Shannon
entropy25,67,68 or mutual information,14 provides us
with great detail on the transcript’s structure.

Using SHAPE at this whole-transcriptome, mul-
tiscale level will facilitate the application of signal
processing methods to these SHAPE profiles of inter-
est and uncover RNA structural features. The use of
Fourier transforms to detect periodicity in (aggre-
gated) SHAPE data is the first example of applying
signal processing to SHAPE.27,69 As new model-free
methods are applied to SHAPE profiles, we will gain
detailed information on RNA structure at a whole-

FIGURE 4 | SHAPE reactivities can help identify conservation of multiple RNA structures. (a) Figure from Ritz et al.62 Multiple conformations of
an RNA are evolutionarily conserved. Top: Purine riboswitch consensus structure with the anti-terminator pairs in red lines. Both the P1/terminator
conformation and the anti-terminator conformation must be conserved. Bottom: Evolutionary analysis of bases involved in the P1, terminator, and
anti-terminator stems. Blue indicates conservation of each base. Mutual information shows that the pairs involved in the anti-terminator stem
preserve their ability to base pair, but also to pair with their partners in the P1 and terminator stems. (Reprinted with permission from Ref 62.
Copyright 2013 Ritz et al.; PLOS Computational Biology) (b) The 50 UTR of RB1 forms multiple distinct structures in humans (blue), cow (brown),
and manatee (gray), with SHAPE-directed Boltzmann sampled structures indicated by blue dots. Structures and arc diagrams on the side show
representative structures from each conformation. Green and orange stems are conserved across all three organisms. Thus, SHAPE-directed
structure prediction allows us to confidently identify the conservation of multiple RNA structures. (Reprinted with permission from Ref 18.
Copyright 2015 Kutchko et al.; Cold Spring Harbor Laboratory Press).
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transcriptome level and likely discover new levels of
structural conservation.

In addition, these new high-throughput probing
technologies allow us to generate SHAPE data for
related RNAs very quickly, facilitating the compari-
son of SHAPE data and structural preservation
between homologous sequences. As with HIV and

SIV genomes,59 correlations of SHAPE data will
identify regions with conserved RNA structure. We
live in exciting times for RNA structural biology as
these next-generation structural probing techniques
are being developed, refined, and applied to large
data sets. The next few years will involve a huge
expansion of information regarding the conservation
of RNA structure.
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