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Abstract

In the last decade, major strides have been made in understanding visual working memory through 

mathematical modeling of color production responses. In the delayed color estimation task 

(Wilken & Ma, 2004), participants are given a set of colored squares to remember and a few 

seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in 

these responses is characterized with mathematical models that estimate working memory 

precision and the proportion of items remembered by participants. A standard mathematical model 

of color memory assumes that items maintained in memory are remembered through memory for 

precise details about the particular studied shade of color. We contend that this model is 

incomplete in its present form because no mechanism is provided for remembering the coarse 

category of a studied color. In the present work we remedy this omission and present a model of 

visual working memory that includes both continuous and categorical memory representations. In 

two experiments we show that our new model outperforms this standard modeling approach, 

which demonstrates that categorical representations should be accounted for by mathematical 

models of visual working memory.

Introduction

One of the most exciting recent developments in working memory (WM) research has been 

the widespread use of delayed estimation tasks (e.g. Bays, Wu, & Husain, 2011; Fougnie & 

Alvarez, 2011; van den Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma, 2004; Zhang 

& Luck, 2008, 2011). In these kinds of tasks, participants study a set of items which can take 

on any value on a continuum and, after a delay, participants must reproduce the remembered 

stimulus value as precisely as they can. Thus, delayed estimation tasks are one type of WM 

task that requires participants to remember the specific studied value in order to perform 

ideally on the task. This is in contrast to other, more traditional WM tasks in which the 

memoranda take on a few categorical values, in which case participants only need to 
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remember rough categorical information to perform ideally on the task (e.g. Allen, 

Baddeley, & Hitch, 2006; Cocchini, Logie, Sala, MacPherson, & Baddeley, 2002; Kane et 

al., 2004; Saults & Cowan, 2007). The delayed estimation paradigm has produced a great 

deal of research and has broad theoretical implications. Some authors argue that more 

traditional WM theories should be updated so as to focus not only on the quantity of 

information held in WM but also, and perhaps primarily, on the quality of that information 

(Ma, Husain, & Bays, 2014).

Most of the recent studies that use delayed estimation tasks use mathematical modeling to 

estimate the precision with which participants can remember the studied features. 

Mathematical models work by assuming that the data were generated by a specific 

psychological/statistical process. If that assumption is true, then it is possible to obtain 

reliable estimates of the parameters of the model, like WM precision, by working backwards 

from the data. However, if the data were not generated under the assumed model, but the 

parameters are estimated under that model, then the parameter estimates may be biased or, in 

the worst case, meaningless. As we will show, the most popular mathematical modeling 

approach used for color delayed estimation tasks is not appropriate for data from our 

experiments, which are representative of the common delayed-estimation paradigm. This 

calls into question both the parameter estimates obtained from that model, across a wide 

variety of studies, and the theoretical interpretations of cognitive process that follow from 

these estimates.

In particular, a large portion of the research on WM precision has used the mathematical 

model used by Zhang and Luck (2008), which we refer to as the ZL (Zhang and Luck) 

model. Much of the debate based around the ZL model has been focused on whether the data 

support a discrete (Fukuda, Awh, & Vogel, 2010; Zhang & Luck, 2008) or continuous (Bays, 

Catalao, & Husain, 2009; van den Berg et al., 2012; Wilken & Ma, 2004) visual working 

memory resource. The disagreement in the cited literature is related to the interpretation of 

results rather than the models that generated those results. Given that both sides of the 

debate use models that are similar or identical to the ZL model, we call the model the “ZL 

model” not to take a side in this debate but to identify a type of model. Our focus in the 

present work is not in determining the correct interpretation of results. Rather we seek to 

determine whether the model used to produce the results accurately accounts for patterns in 

the data. We use the name “ZL model” only because the model was first proposed by these 

authors and we lack better shorthand.

As we will show, the main deficiency of the ZL model is that it does not include a 

mechanism by which information could be stored categorically in WM, rather assuming that 

all information in WM is stored continuously. By continuously, we mean as a specific value 

that can vary along a continuum, such as a specific shade of red which can vary continuously 

within color space. However, it is entirely possible that certain kinds of continuous 

information can be stored in WM using some kind of categorization (Bae, Olkkonen, Allred, 

& Flombaum, 2015; Olsson & Poom, 2005; Rouder, Thiele, & Cowan, 2014). For example, 

colors could be remembered categorically if the studied colors are named and the names 

maintained using, e.g., covert verbal rehearsal (Donkin, Nosofsky, Gold, & Shiffrin, 2015). 

As we will show, categorical color representations appear to be heavily used by our 

Hardman et al. Page 2

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants. We will argue that the ZL model is unable to effectively account for our data, 

and we propose an alternative model that is more complete.

Research Plan

We used two delayed estimation tasks using colors that varied across a continuous spectrum. 

A schematic of a single trial is presented in Figure 1. In our first experiment, we 

manipulated the memory load that participants were placed under by manipulating set size, 

which is the number of to-be-remembered colors that were presented on each trial. In our 

second experiment, we fixed the set size to four items and instead manipulated the amount 

of attentional resources available to participants by varying the cognitive load that 

participants were placed under. This was done by requiring that the participants perform a 

secondary task while maintaining the studied colors. The secondary task was a tone 

discrimination task. Cognitive load was manipulated by varying the number of 

discriminations that were required during a fixed-length maintenance interval (for more on 

cognitive load, see Barrouillet, Bernardin, Portrat, Vergauwe, & Camos, 2007; Barrouillet & 

Camos, 2012; Barrouillet, Portrat, & Camos, 2011). The two manipulations we used in our 

experiments can be thought to increase task difficulty in different ways. The set size 

manipulation increases difficulty by requiring participants to maintain a greater number of 

items in WM. The cognitive load manipulation increases difficulty by reducing the 

attentional resources available to support memory maintenance. By using these 

manipulations, we are able to determine which, if either, of the manipulations dynamically 

impacts the content of visual working memory. The primary parameters of our model 

provide a mathematical reflection of this impact.

We analyzed our data using a mathematical model that, as we will show, outperforms the ZL 

model and offers new insights into the behavior of participants. In our modeling approach, 

we will focus primarily on three important parameters of WM. The first two primary 

parameters are the two parameters of the ZL model: the proportion of the studied colors that 

are stored in WM on a typical trial and the memory precision of these continuously-

remembered colors. Our third parameter, a novel component of our model, reflects the 

proportion of items stored in memory categorically versus continuously. This parameter 

allows us to determine 1) whether people use categorical representations in delayed color 

estimation tasks at all and, if 1 is true, 2) whether our task difficulty manipulations cause a 

trade-off between categorical and continuous memory. There are other secondary parameters 

that are required for the model to function well, but the three primary parameters are of 

greatest theoretical importance.

Cognitive Load

One of the novel contributions of the present work is that we examined the effect of 

cognitive load on performance in a delayed estimation task. This allowed us to test whether 

important parameters of WM, such as precision, vary with cognitive load. Cognitive load is 

the proportion of the retention interval which is occupied by a non-maintenance task. In 

other words cognitive load quantifies how much time is spent on secondary tasks during the 

retention of a working memory set. Higher cognitive load means more time spent on 

secondary tasks and less time spent on maintenance.
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Although most work using delayed estimation has primarily analyzed the number of 

representations maintained by manipulating set size (e.g. Bays & Husain, 2008; Zhang & 

Luck, 2008) and cueing (e.g. Gorgoraptis, Catalao, Bays, & Husain, 2011; Zokaei, 

Gorgoraptis, Bahrami, Bays, & Husain, 2011), the manipulation of cognitive load holds the 

primary task constant and varies secondary task requirements. It is an open question whether 

varying the amount of maintenance time available during retention would affect 

representations held in visual working memory in the same manner as attempting to 

remember more items in total. Our manipulation of cognitive load tasks is a first step toward 

answering this question.

Focus of Attention

The assumption that items in WM are stored in different ways is related to the idea that 

continuous information is difficult or impossible to maintain through active maintenance 

(Ricker & Cowan, 2010; Vergauwe, Camos, & Barrouillet, 2014). In contrast to continuous 

stimulus values, most memory items are naturally categorical. Words, numbers, letters, etc. 

are all discretely categorical in that they are either remembered or not. A specific color value 

differs from these discrete examples in that participants can remember color values that are 

perfectly correct, nearly correct, slightly wrong, very wrong, or anywhere in between. If it is 

indeed difficult to maintain continuous information, we might expect most memory items to 

be remembered categorically in delayed estimation tasks. We have previously argued that 

truly continuous information cannot be actively maintained, but it may also be true that a 

limited amount of information can be maintained through constant focal attention (Ricker & 

Cowan, 2010; Vergauwe et al., 2014). Following this theory, if information leaves the focus 

of attention for more than a few milliseconds, then all continuous information may be lost.

In recent years several authors have put forth strong arguments in favor of a single item 

focus of attention size (e.g. Garavan, 1998; McElree & Dosher, 1989; Oberauer & Bialkova, 

2009). If the focus of attention is required to maintain continuous information and if it can 

only accommodate a single item, it could explain why only a limited amount of continuous 

information can be maintained. Following this theory we would expect that no more than a 

single item would be remembered through the use of continuous item memory on any given 

trial. Our model, however, does not strictly assume anything about the number of categorical 

and continuous stimuli that can be remembered in WM, instead allowing the capacities to be 

freely estimated. On trials using a secondary task, perhaps even fewer items would be 

remembered on average by using a continuous memory representation because the focus of 

attention would have to be shared with the secondary task. To anticipate, this pattern of 

results is found in our data.

Method

Our two experiments share a similar method and were analyzed in the same way, so we 

present the methods together before moving on to a combined results section. Both 

experiments were approved by the University of Missouri Campus Institutional Review 

Board.
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Experiment 1

A sample of 12 participants (6 female) with mean age of 19.1 years drawn from an 

introductory psychology course at the University of Missouri, Columbia took part in the 

experiment. On each trial, participants were tasked with remembering a sequence of 1, 3, or 

5 colors presented at distinct locations on a computer screen. The structure of a single trial is 

shown in Figure 1. Each trial began with a fixation cross in the center of the screen that was 

presented for 500 ms. Each color in the sequence was presented as a square for 400 ms. 

Immediately following each color, a mask made from a 4×4 checkerboard of randomly 

selected color values was presented for 200 ms, followed by a 200 ms interstimulus interval 

in which the screen was blank. Following the last item, mask, and interstimulus interval, 

there was a 1300 ms maintenance interval before the test screen was presented (i.e. there was 

a 1500 ms delay between the last mask and the test screen). At test, the participant was 

shown a color ring surrounding the area in which the colors had been presented. The 

participant was asked to estimate the values of all of the studied colors in order by clicking 

the color on the ring that corresponded to each studied item. To assist participants, a white 

square (white was not one of the possible stimulus colors) was presented in the location of 

the color that they should be reproducing. After each response was made, the white square 

was moved to the location of the next color that should be reproduced. Because the 

responses were cued in the order of presentation, each remembered color could be retrieved 

through its binding with either a unique location or a unique serial position. After the 

participant had made their final response, they were shown a feedback display that showed 

1) the correct colors in their locations, with numbers indicating the order in which the colors 

had been presented, 2) the locations on the ring that corresponded to these colors, and 3) the 

participant's responses. Each participant performed 60 trials at each set size for a total of 180 

trials. The experimental software was created using CX (Hardman, 2015) and was run on 

standard desktop PCs with CRT monitors running at a resolution of 1024 by 768 pixels.

The colors we used were full saturation, full brightness colors from the HSB color space, 

continuously varying in hue. The set of colors used for each trial were selected at random 

given the constraint that no two colors were allowed to be within 40 degrees of angle from 

one another during any single trial. The angle corresponded to the location of the color on 

the response ring. The colors were selected using a function that converts an angle in degrees 

to a hue. The function warps the hue values in order to control the amount of the resulting 

color ring that filled with different colors. This function is given by the following system of 

equations

where AO is the output angle, AI is the input angle, LI and HI are the low and high ends of 

the input range that AI is in, LO and HO are the low and high ends of the output range 

corresponding to the input range, HSB(h, s, b) is a function that produces colors given hue 

(h) in degrees, saturation (s), and brightness (b) values, and CO is the output color. The input 

range values were 0, 180, 270, and 360 degrees and the output range values were 0, 90, 230, 
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and 360 degrees. As an example, if the input angle AI = 250, then LI = 180 and HI = 270. 

The output interval endpoints that correspond to the input interval endpoints are then LO = 

90 and HO = 230.

After participants finished the WM task, but before they were debriefed, they were given a 

short questionnaire related to their use of strategy while performing the task. To assess the 

use of a naming strategy, we asked participants: “How much of the time did you remember 

the colors by remembering their names? Give your answer on a scale from 1 to 5, where 1 is 

never, 3 is half of the time, and 5 is always.” To assess strategies related to remembering 

precise details about colors, we asked the following question: “How often did you remember 

colors by visualizing the exact colors that you saw?” with the same response scale as the 

previous question. This questionnaire was not used in Experiment 2.

Experiment 2

In a second experiment, we manipulated cognitive load rather than set size in order to 

examine the effects of a difficulty manipulation other than set size. A new sample of 24 

participants drawn from the same participant pool as Experiment 1 participated in the 

experiment. Each participant performed 30 trials at each level of cognitive load for a total of 

90 trials. Because the set size was 4 and the participants responded to each studied stimulus, 

there were 120 responses per participant per cognitive load. Except for the details included 

below, the methodology of Experiment 2 was the same as in Experiment 1.

For this Experiment, the set size was fixed to 4 colors. After the last study item was 

presented, a 6 s maintenance interval began, during which participants performed a 

secondary task. The secondary task was to judge whether a single presented tone was the 

higher or lower of two standard tones that were used throughout the experiment. The 

participant was instructed to press the up arrow key on standard keyboard if the tone was the 

high tone or the down arrow key if the tone was the low tone. The tones were sine waves, the 

frequencies of the low and high tones were 262 Hz and 523 Hz, respectively, and each tone 

was played for 250 ms. The difficulty of the secondary task was varied over three cognitive 

load levels by manipulating the number of tone discriminations that were required during 

each maintenance interval. At the three cognitive load levels, 2, 4, or 6 tone discriminations 

were required during the maintenance interval, which was the same length regardless of the 

number of tone discriminations. The first tone was played immediately after the mask for the 

last color had been removed from the screen and the delay between tones was such that an 

equal amount of time followed each tone. For example, for 2 tones, the first tone was played 

for 250 ms, followed by a 2750 ms delay, followed by the next tone for 250 ms, followed by 

a 2750 ms delay.

In this experiment, audio feedback was provided to participants based on their color memory 

performance after they had finished making all responses for a trial. There were three 

feedback sounds: A short melody for good performance, a single tone that increased in 

frequency for neutral performance, and a single tone that decreased in frequency for poor 

performance. Positive feedback was received if the average error was less than 20 degrees; 

neutral feedback was received if the average error was between 20 and 60 degrees; negative 

feedback was received if the average error was greater than 60 degrees.
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The memoranda were the same as in Experiment 1, except for the distribution of colors on 

the response ring. In this experiment, we sampled the colors from the HSB color space 

where the hue was equal to the angle on the ring, i.e. the color angle warping function was 

the identity function: AO = AI. The difference in the distribution of colors between 

experiments allowed us to examine whether the locations of our participants’ color 

categories is determined by the color value, which might be expected if participants use a 

naming strategy, or by the angle on the response ring associated with that color, which might 

be expected if participants try to maximize the distance between color categories in the 

response space.

Model

We give here an overview of our model, which is mathematically defined in the Appendix. 

We made two variants of this model and, to anticipate, we begin be presenting the variant 

that we end up selecting as our best model.

Between-Item Variant

Our first model variant assumes that each response is based on either categorical or 

continuous memory representations, but not both. Thus, a single memory-based response 

cannot reflect a combination of both categorical and continuous information. We call this a 

between-item mixture model because the mixture of categorical and continuous information 

occurs between items. Note that we do not assume that it is impossible to have both 

categorical and continuous information about a single item, just that only one of the two 

kinds of information is used when making a response. As we will demonstrate, this 

assumption appears to be supported by the data.

When a color is remembered categorically, we assume that the memory item is simply 

remembered as a color category and all fine-grained detail about the specific hue of the 

studied color is lost. The number of categories and the locations of the categories are 

allowed to vary between participants. It is assumed that the same categories are used 

regardless of task condition (i.e. set size or cognitive load level). Responses based upon 

categorical representations are centered upon the color category location. For example, a 

response based on a color that was put into the red category would tend to be a response 

centered on a specific shade that represents canonical red to a participant. It is assumed that 

there will be some amount of noise in this response, perhaps due to imprecise positioning of 

the mouse by the participant.

Continuously-stored colors are stored with information specific to the precise shade of color 

that was studied. A response that uses a continuous color is assumed to be centered on the 

studied color with some amount of error, due to an imperfect representation of the color, 

motor noise, and/or other factors. Continuous responses are assumed to be unaffected by 

categorical information (e.g. there is no bias caused by categories near the studied color).

Our model accounts for the possibility that when participants guess, they might guess at the 

location of one of their color categories. Categorical guesses are assumed to have the same 

variability around the category location as responses based on a categorical memory. When 
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making a categorical guess, it is equally likely that any of that participant's categories will be 

chosen. If a participant does not make a categorical guess, the guess is assumed to come 

from a circular uniform distribution (i.e. any response angle is equally likely).

The major components of the model are shown in Figure 2, in which the characteristics of 

the model are demonstrated using data sampled from an imaginary participant with known 

parameter values and 5 color categories. There are four types of responses accounted for by 

the model: continuous memory responses, categorical memory responses, categorical 

guesses, and uniform guesses. Scatterplots of each of these types of responses are plotted in 

Panels A through D of Figure 2.

A multinomial process tree for the model can be seen on the left of Figure 2. Starting from 

the start node S, the first branch depends on whether or not the participant has the tested 

item in WM, which happens with probability PM. If the item is in WM, the participant 

reaches node M. The item in WM may be stored with continuous information, which 

happens with probability PO, in which case the response distribution in Panel A is reached. 

With probability 1 – PO, the memory item was categorical in nature and the response 

distribution in Panel B is reached. If the test item is not in WM, which happens with 

probability 1 – PM, the participant must guess. A categorical guess happens with probability 

PAG (“AG” stands for cAtegorical Guess) and a uniform guess happens with probability 1 – 

PAG, resulting in the response distributions seen in Panels C and D, respectively. As can be 

seen, the guessing distributions do not depend on the study angle, while the response 

distributions do.

The response variability in Panel A is controlled by the continuous imprecision parameter, 

σO. The response variability around category centers in Panel B is controlled by the 

categorical imprecision parameter, σA, and the locations of the categories are controlled by a 

set of category center parameters, μ. The variability of categorical guesses around category 

centers is controlled by the categorical imprecision parameter, σA.

The complete pattern of responses predicted by the model can be seen in Panel E of Figure 

2, where the responses from Panels A to D are plotted together in one panel. The same data 

points are also plotted in Panel H, where information about the type of response represented 

by each point has been removed to produce a plot resembling the real data (for which we do 

not know the type of each response). Depending on the type of each response, there are 

varying probabilities of each response angle being chosen, which are plotted in Panel F of 

Figure 2. This panel gives a different perspective on the information in Panel E by taking a 

slice through the response distributions at the study angle marked by the vertical line in 

Panel E. Thus, the heights of the distributions in Panel F reflect the likelihood that different 

response angles would be chosen given the study angle.

Studied colors are assumed to be categorized in a probabilistic way, where a given color may 

not always be categorized in the same way. The function that gives the probabilities that any 

given study angle would be assigned to each of the 5 color categories of the imaginary 

participant is plotted in Panel G of Figure 2. The general shape of this function was 

informed by empirical color-naming data from Bae et al. (2015). In Panel G, different line 
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types indicate different categories. In general, if a studied color is near the center of a 

category, that category will be selected by the participant nearly all of the time. If a study 

color is halfway between two categories, either of those categories will be selected with 

approximately equal probability. For the study color marked with the vertical line in Panel 

G, it can be seen that the probability that the color would be assigned the two nearby 

categories is roughly equal, but it is very unlikely for that color would be assigned to any of 

the more distant categories. Each participant has a category selectivity parameter, σS, that 

controls how rapidly the probabilities of category assignment transition as the studied color 

angle moves from one category to another.

All of the parameters of our model are important, but three of the parameters are of primary 

interest for determining the nature of visual working memory representations. These are 1) 

the probability that an item is in WM, PM, 2) the precision of continuous WM 

representations, σO, and 3) the proportion WM representations that are continuous in nature, 

PO. The first two parameters have the same interpretation as the two parameters of the ZL 

model, while the third parameter is unique to our model. We allowed these three primary 

parameters to vary as a function of set size and cognitive load, which will allow us to 

determine how those task difficulty manipulations impact the most important factors of WM 

performance. There was no theoretically motivated reason to think that the task difficulty 

manipulations would affect the secondary parameters, so they were assumed to have the 

same value regardless of difficulty condition, which had the benefit of constraining model 

flexibility.

Within-Item Variant

The model we have described above assumes that each response is based on either 

categorical or continuous memory, but not both. In a recent article, Bae et al. (2015) suggest 

a model in which each response is based on a mixture of categorical and continuous 

memory. An assumption here is that participants encode both a categorical and a continuous 

representation of each item. When a response is required, the two representations are 

combined in order to take advantage of both sources of information. In this model, all 

responses are based on a mixture of categorical and continuous information, so we call it a 

type of within-item mixture model. We decided to investigate the Bae et al. suggestion of 

within-item use of categorical and continuous memory by participants by creating a variant 

of our model that uses a within-item mixture of categorical and continuous information.

Our within-item model variant is the same as our between-item model, except that in our 

within-item variant the meaning of PO changes to the proportion of each response that is 

based on the continuous memory representation, while 1 – PO is the proportion of that 

response based on the categorical memory representation. The details of how this changes 

the model mathematically are described in the Appendix. In the within-item model variant, 

each response is a weighted average of a categorical and a continuous representation. As a 

result of this averaging, the within-item model produces qualitatively different data than the 

between-item model, as is illustrated in Figure 3. In geometric terms, the within-item model 

produces clusters of responses with a slope between 1, which is the slope of continuous 

responses, and 0, which is the slope of categorical responses. This intermediate slope arises 
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from the averaging of categorical and continuous representations. The slope of the clusters 

of responses depends on the relative amounts of categorical and continuous information that 

are used in each response, which depends on PO. The higher PO is, the more weight is 

placed on the continuous memory representation and the closer the slopes of the clusters are 

to 1. The lower PO is, the more weight is placed on the categorical memory representation 

and the closer the slopes of the clusters are to 0.

Our within-item model differs in a few ways from the Bae et al. (2015) model. One 

difference is that in our model the category locations are estimated as part of the parameter 

estimation procedure, while the Bae et al. model uses category location estimates derived 

from a separate experimental procedure. Given this difference, the categories used by our 

model are based on the same task that the other WM parameters are based on. Although 

unlikely, it is possible that the categories used by participants would differ between tasks, 

which would result in the category estimates used by our model to be more accurate. An 

additional difference is that the proportion of each response that is categorical in nature is 

freely estimated in our model for each participant with the PO parameter. In the Bae et al. 

model, each is response is based on a constant mixture of categorical and continuous 

information that does not differ by participant. Thus, there is greater flexibility in our model 

to account for the potential for participants to differ in how they combine categorical and 

continuous information in WM. This flexibility, as well as other aspects of our model, may 

not be desired by some researchers who may instead see advantages of the Bae et al. model 

for their application. It should be noted that our overarching interest is not to compare our 

model to the Bae et al. model, but rather to examine the difference between the between-

item and within-item assumptions in two variants of our model. By comparing two very 

similar variants of our model, we avoid having the comparison of the between-item and the 

within-item assumptions confounded by extraneous differences between our model and the 

Bae et al. model.

Results

In this section, we will begin by presenting the raw data in scatterplots and describe the 

patterns seen in the data. We will then compare our two models variants and the ZL model to 

select the best model. We will then present the parameter estimates we obtained from the 

winning model, which was the between-item model. Next, we analyze our results from the 

perspective of the number of categorical and continuous representations remembered by 

participants (i.e. WM capacity). Finally, we will present some approaches we used to 

validate our between-item model.

Raw Data

The raw data from the experiments are plotted in Figure 4. This representation was used by 

Rouder et al. (2014) and allows for a thorough examination of the patterns in the data. Our 

data show patterns of categorical responding. A “correct” categorical response is a response 

that is reasonably near the studied value, but which does not depend on the exact studied 

value. Thus, categorical responses should look like clusters of responses near the line of 

ideal responding (the line with intercept 0 and slope 1). In practice this looks like a staircase 
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pattern on the scatterplot with each step representing a color category. Correct categorical 

responses are near the line of ideal responding because they are based on categorical 

information about the studied color. However, categorical responses are uncorrelated with 

the specific studied color due to the lack of fine-grained information. A lack of correlation 

implies that the slope of the best fit line through the responses to each color category should 

be 0 (i.e. the stairs of the staircase should be level). For example, a studied color in the 

yellow range of colors would typically be categorized as yellow. When a response for an 

item in the yellow category is made, that response would be based only on the color 

category, but not the specific shade of yellow that was studied, because only the category is 

known.

Of the three predicted patterns of memory responses shown in Figure 3, the aggregated raw 

data in Figure 4 looks most similar to either the between-item or within-item models. Only 

at set size 1 in Experiment 1 does responding looks fairly continuous, like the ZL model 

predictions. The categorical memory responding stair steps appear to be fairly horizontal, 

which is more in line with our between-item model than our within-item model, but note that 

it is possible for the within-item model to predict horizontal steps if PO = 0. Thus, it is 

difficult to distinguish between our two model variants by visual inspection, so we turn to 

formal modeling to select the best model. Once the best model is selected, we will examine 

its parameter estimates in detail.

Parameter Estimation

The parameters of the three models were estimated using a Bayesian MCMC approach that 

was implemented in C++. Details about the specification of the Bayesian model, including 

priors, can be found in the Appendix. Note that for the parameters that were common 

between models (including the ZL model), we used the same priors, which were 

uninformative. For each data set, we ran three parallel chains of 5000 iterations of a Gibbs 

sampler and verified convergence with the Brooks, Gelman, and Rubin (Brooks & Gelman, 

1998; Gelman & Rubin, 1992) diagnostic as implemented in the boa (Smith, 2007) package 

for R. Convergence was slow for our model variants, so the first 1000 iterations of each 

chain were discarded as burn-in, then the remaining 4000 iterations per chain were collapsed 

together for analysis. For two participants in Experiment 2, some of the parameters of the 

between-item model did not converge according to the convergence diagnostics (the 

parameters appeared to possibly have bimodal posterior distributions). The analyses were 

repeated excluding those two participants, but this did not change our results or conclusions, 

so we elected to keep those participants in the reported analyses.

Model Selection

Comparing the Between- and Within-item Models—We want to know which of our 

between-item and within-item model variants is the better model. We do not, however, have 

a fully Bayesian way to compare the model variants, which is due in large part due to the 

complexities of the models. For an example of the complexity, the category location and 

category active parameters (see the Appendix for more on these parameters) do not have 

meaningful posterior means, so measures like the deviance information criterion that require 

the use of meaningful posterior means cannot be used with our models. Conveniently, 
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however, the between- and within-item variants of our model have the same number of 

parameters and most of the parameters have the same role in both models. Given the 

similarities of the model variants, it is reasonable to compare them by simply comparing the 

likelihoods of the models.

We calculated the likelihood of the model for each participant for each iteration of the 

MCMC chain, by which we were able to take the parametric uncertainty in the posterior 

distributions into account. Then, we took the average of the likelihoods across all iterations 

of the MCMC chain (excluding the burn-in iterations) for each participant. These average 

likelihoods were compared for the two model variants for each participant. Note that we do 

not compare the models at each set size or cognitive load because many of the parameters of 

the models are the same for a participant across all the levels of those factors. As such, 

comparisons between the variants at each factor level would be dependent on one another, so 

it is best to perform the comparisons for each participant over all factor levels (participants 

are also dependent on one another to some extent because we use hierarchical priors on most 

of the parameters, but the dependence caused by hierarchical priors is smaller than the 

dependence caused by using the same parameter values for one participant across 

conditions). Another option would have been to fit the model separately to each set size, but 

we did not have enough data at each set size to do this (for example, we had only 60 

responses at set size 1).

We found that in Experiment 1 the between-item model had a better likelihood for 10 of the 

12 participants. In Experiment 2 the between-item model had a better likelihood for 22 out 

of 24 participants. Thus, there is good support for the between-item mixture model over the 

within-item model for most of our participants. As such, we will not use the within-item 

model variant further. Note, however, that we do not believe that this is a final rejection of 

the within-item assumption, because we have only tested it with our data, which is based on 

mostly moderately high set sizes. As we indicate in the Discussion, we believe that the 

within-item assumption may hold under some circumstances, including lower set sizes, and 

we welcome further research in this area.

Comparing the Between-Item and ZL Models—Now that we have selected the 

between-item model as the better of our two models, we will compare the between-item 

model to the ZL model to determine which is the better model. The likelihood-based 

approach used to compare the within-item and between-item model variants is not applicable 

here because the between-item model and the ZL model differ substantially in terms of the 

number of free parameters in the models, which prevents a direct comparison of model 

likelihoods. Instead, we used an approach based on the fact that the ZL model can be 

thought of as a simplification of our between-item model. The ZL model assumes that 

participants make only continuous responses. If that is true, PO in our model should be 1. 

Thus, it is possible to test the ZL model assumption that participants make only continuous 

responses by checking whether PO was 1 in our between-item model. If participants make 

only continuous memory responses, then the added complexity of our model is unnecessary 

and our model should be discarded in favor of the simpler ZL model. We used a Bayesian 

hierarchical model with estimated normal distribution prior on PO, which allows us to 

perform inference on the estimated value of the mean of PO test the ZL model (see the 
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Appendix for more information on the model specification). If PO ≠ 1, then the ZL model 

can be rejected in favor of our more complex model.

It is difficult to test the value of 1 for the mean of PO because, due to the model 

specification, PO exists in a latent space on the interval (–∞, ∞). We transformed from the 

latent space to the manifest probability space with the logit transformation, which means 

that a probability of 1 corresponds to ∞ in the latent space. It is not possible to test equality 

with ∞, so we instead tested the hypothesis that the mean of PO = 0.99, which corresponds 

to a finite value in the latent space. We performed this test using data from Experiment 1 

with the Savage-Dickey procedure as suggested by Wagenmakers, Lodewyckx, Kuriyal, and 

Grasman (2010). The Savage-Dickey procedure involves comparing prior and posterior 

densities at the point hypothesized to be the true parameter value, with the result of the test 

being a Bayes factor related to the hypothesis. We found strong evidence that the mean of 

PO is not 0.99, with a Bayes factor of 3.7 · 1023 in favor of a difference. Due to the model 

specification, the mean of PO is the mean at set size 5, which was 0.30, indicating high levels 

of categorical responding. Thus, there is clear evidence that the ZL model, which assumes 

no categorical memory responding, is not sufficient to account for our data and our between-

item model is the best of the three models we compared. Thus, we will go on to interpreting 

parameter estimates from our between-item model and not present results from either the 

within-item or ZL models.

Parameter Estimates

Task Condition Effects—The three primary parameters of the between-item model, PM, 

σO, and PO, were allowed to vary as a function of task condition (set size or cognitive load) 

through the use of task condition main effect parameters. One of the conditions (the 

cornerstone condition) had its condition effect parameter set to 0, which means that the 

condition effects can be interpreted as a difference from the cornerstone condition. The 

effects of task condition were examined by testing whether the condition effect parameters 

were equal to 0, which was done using the Savage-Dickey density ratio. The priors on the 

condition effects were Cauchy distributions with location 0 and a scale that differed for 

different parameter types (see the prior specifications in the Appendix for more 

information). Testing any one condition effect is straightforward and comparing two non-

cornerstone conditions simply requires calculation of the marginal prior on the difference 

between two non-cornerstone conditions, which is just the difference between the priors. 

The difference between two zero-centered Cauchy distributions is a Cauchy distribution with 

location 0 and scale equal to the sum of the scales of the two distributions. The Bayes factors 

resulting from the tests of condition effects can be found in Table 1. A Bayes factor greater 

than 1 is evidence that difference between the conditions is not zero and we will interpret 

Bayes factors greater than 3 as evidence of a difference. The subscripts on the Bayes factor 

(BF10) indicate that the alternative hypothesis that there is a difference (denoted 1) is in the 

numerator and the null hypothesis of no difference (denoted 0) is in the denominator. The 

ordering of numbers in the subscript indicates numerator or denominator, where the first 

number indicates which hypothesis is the numerator hypothesis. The Bayes factor reflects 

evidence in favor of the numerator hypothesis versus the denominator hypothesis, so a larger 
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BF10 gives evidence in favor of the alternative hypothesis of a difference between 

conditions. The results shown in Table 1 are summarized below.

In Experiment 1, there were clear effects of set size for all three of the primary parameters. 

These differences can be seen in Panels A, B, and C of Figure 5. Like most studies in this 

area, we found that the probability that an item is in WM decreases as set size increases (e.g. 

Zhang & Luck, 2008). The proportion of categorical memory responding that is present in 

the data can be seen in the plots for Experiment 1. At set size 1 (Panel A of Figure 4), very 

little categorical responding is apparent. At higher set sizes, responses appear to become 

increasingly categorical in nature. This is visually apparent due to the staircase pattern in the 

data that becomes more pronounced at higher set sizes. For example, see the cluster of 

responses near 180 degrees in Panel C of Figure 4. These results suggest that at low memory 

loads, participants are able to remember precise color information, but that at higher 

memory loads, most of the colors in WM are stored categorically. The modeling results 

confirmed the visual inspection: We found that the proportion of responses that were 

continuous in nature decreased with set size, down to about a third of responses at set size 5.

We also found that WM imprecision increased with set size, which is in agreement with 

some studies (e.g. Bays et al., 2009; van den Berg et al., 2012), but not with some other 

studies which have found that WM imprecision plateaus past set size 3 (e.g. Zhang & Luck, 

2008). Either pattern of data can be predicted by various theories about the structure of WM, 

but we think that the difference in findings may be related to an issue of statistical power. 

We fit the ZL model to our data and found ambiguous evidence as to whether memory 

imprecision increased from set size 3 to set size 5, BF10 = 1.0, with the posterior mean of the 

difference being 1.2 degrees. With our model we found clear evidence for just such a 

difference, BF10 = 15. The major difference between our model and the ZL model is that our 

model separates categorical and continuous memory, which gives our model greater power 

to selectively detect effects in continuous memory. More importantly, in the ZL model, it is 

not possible to tell the difference between 1) changes in WM precision and 2) changes in the 

proportion of categorical responses. In prior studies that used the ZL model, these two 

changes are confounded.

In Experiment 2, there were only effects of cognitive load for PM, with no effect of cognitive 

load for σO and PO. Plots of these results can be found in Panels A, B, and C of Figure 6. 

There were only differences for PM between cognitive loads 2 and 6 (BF10 = 3.3 · 105 ) and 

4 and 6 (BF10 = 4.4 · 102), with ambiguous evidence related to a difference between 

cognitive loads 2 and 4 (BF10 = 1). This cognitive load effect on PM is in line with many 

previous studies that find that cognitive load reduces the amount of information that can be 

stored in WM, including visuo-spatial information (e.g. Barrouillet et al., 2007; Ricker & 

Cowan, 2010; Vergauwe, Barrouillet, & Camos, 2009, 2010). However, there was no effect 

of cognitive load for either σO and PO. This suggests that cognitive load does not 

differentially affect categorical and continuous information within a memory set. If there 

was a differential effect, we would expect that PO would change with cognitive load. In 

addition, the fact that σO does not change with cognitive load indicates that WM precision 

does not depend on cognitive load. This set of results is interesting because it suggests that 

cognitive load affects the number of items that can be stored in WM, but not the precision 
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with which those items are known or the proportion of items for which continuous 

information is known. These results are surprising because it might be expected that 

cognitive load would be a general effect that would impact all aspects of WM performance, 

including continuous precision, but that does not appear to the be case.

Color Categories—As can be seen in Panel D of Figures 5 and 6, the number of color 

categories used by participants was consistent across experiments, being near 10 for both 

experiments. The specific colors that were used by participants as the centers of their 

categories can be examined in the E panels of Figures 5 and 6. Those panels show the 

posterior distributions of the category centers collapsed across all participants. Most 

participants tended to use similar color categories, which can be seen from the fact that the 

distribution of color categories has strong peaks in a number of locations. If participants all 

used idiosyncratic color category centers, the distributions in the E panels would be uniform 

distributions. Some possible names for the eight most commonly used categories are red, 

orange, yellow, green, cyan, blue, purple, and pink. With the exception of cyan (near 240 

degrees in Experiment 1 and 180 degrees in Experiment 2), these color categories are the 

same categories identified by Rosch (1973) as natural color categories that are easily learned 

by participants regardless of past exposure to the colors or the participant's native language. 

Of our 8 categories, cyan is the least-consistently-used category, which is in line with 

Rosch's results. As the average number of categories used by participants was approximately 

10, it seems likely that most of our participants used these 8 categories, plus about 2 more 

idiosyncratic categories.

As described in the method section, following their experimental session in Experiment 1, 

participants were asked about their strategy use during the experiment. One participant did 

not provide answers to the questionnaire. For the question about the use of a color naming 

strategy, the mean response was 4 (out of a maximum of 5), indicating high levels of color 

naming as a strategy. For the question about visualizing exact colors, the mean response was 

2.36, indicating moderate levels of color visualization. These self-report data suggest that 

color naming was used as a strategy by participants, which goes along with the finding that 

participants consistently used easily-named color categories.

Category Parameters—Categorical selectivity, categorical imprecision, and the 

probability of making a categorical guess had similar values in both of our experiments. 

Histograms of these parameters can be found in Panels F, G, and H of Figures 5 and 6. The 

values we obtained for categorical selectivity suggest that participants are quite good at 

categorizing colors. The simulated participant used to create the data in Figure 2 had σS = 

20. Our participants had values of σS nearer to 10, which would make the transitions 

between categories, as illustrated in Panel G of Figure 2, substantially more abrupt than is 

pictured, indicating that most colors had a probability near 1 of being assigned to the most 

likely category. The categorical imprecision, σA, was fairly low (about 6 degrees), which 

seems reasonable for a response based on a categorical representation. Finally, the 

probability of a guess being categorical in nature was near 0.5, suggesting that a substantial 

proportion of guesses are categorical. This is evidence that it is appropriate to include 

categorical guessing in the model.
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Number of Categorical and Continuous Items in WM

It is possible to examine our results from the perspective of the number of items that can be 

held in WM, commonly denoted K (e.g. Cowan, 2001). The PM and PO parameters of our 

model can be used in combination with the set size to calculate the number of continuous 

and categorical items in WM. The number of continuous items used by participants is given 

by N · PM · PO, where N is the set size, and the number of categorical items is given by N · 

PM · (1 – PO). This was done at each set size for Experiment 1 and at each cognitive load for 

Experiment 2. The results of these calculations are plotted in Figure 7. As can be seen in that 

figure, the number of items stored with continuous information appears to be approximately 

1 in Experiment 1 and near, but below, 1 in Experiment 2.

We tested whether the number of continuous items in WM was equal to 1 using one-sample 

Bayesian t-tests (Rouder, Speckman, Sun, Morey, & Iverson, 2009) as implemented in the 

BayesFactor package (Morey & Rouder, 2015) for R (R Core Team, 2015). For Experiment 

1, we only used set sizes 3 and 5 in the analysis, because at set size 1, the maximum number 

of continuous items that could be in WM was 1, which artifactually forces the estimated 

number of items in WM to be less than or equal to 1. For Experiment 1, there was some 

evidence that the number of continuous items in WM was 1 at set sizes 3 and 5, BF01 = 3.2. 

For Experiment 2, there was evidence that the number of continuous items was not 1, BF10 = 

104. Thus, in Experiment 1, participants tended to have 1 continuous item in WM, but in 

Experiment 2 participants sometimes did not maintain a continuous representation.

We did not find any effect of cognitive load on continuous WM precision or the probability 

that an item was stored continuously. However, as can be seen in Figure 7, the number of 

continuous items in WM appears to be lower in Experiment 2 than in Experiment 1, which 

could reflect an effect of the existence of the cognitive load task. Thus, we examined 

whether having any cognitive load task at all had an effect on WM capacity, which was done 

by comparing the average of set sizes 3 and 5 in Experiment 1 with the lowest cognitive load 

condition in Experiment 2 (which had a set size of 4). We found that the total K did not 

differ (BF10 = 0.43), but that there was some evidence for differences in both categorical and 

continuous K estimates (BF10 = 2.3 for categorical K and BF10 = 3.2 for continuous K). The 

means of the total K estimates were 3.05 and 3.20 for Experiments 1 and 2, respectively. The 

means of the categorical K estimates were 2.02 and 2.45, while the means of the continuous 

K estimates were 1.04 and 0.75. Although changing the level of cognitive load in 

Experiment 2 did not affect the proportion of items that were stored categorically or 

continuously, it appears that the addition of the cognitive load task between Experiments 1 

and 2 does change the nature of representations maintained. When a cognitive load task was 

present, participants stored a greater portion of colors categorically without decreasing the 

total number of remembered colors. This conclusion has one important confound that should 

be noted, which is that another difference between Experiments 1 and 2 is the length of the 

maintenance interval, which was 1.5 s in Experiment 1 and 6 s in Experiment 2. It could be 

that trace decay of continuous memory representations (Ricker & Cowan, 2010; Ricker, 

Vergauwe, & Cowan, 2014) provides an alternative explanation for the observed difference, 

although that does not explain how participants were able to remember the same total 

number of items.
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Model Validation

We performed three different procedures to validate our models. The results of the model 

validation procedure are reported only for the between-item model, but we also verified that 

the within-item model was behaving appropriately. The first procedure is verifying that data 

with only continuous responding is identified as such by our model. The second is verifying 

that when data is generated by our model, that the model can effectively recover the 

parameter estimates. The third is checking that the model is able to produce data that looks 

like the data that was given to the model.

Identifying Fully Continuous Responding—We tested the possibility that the data 

could have been generated under the ZL model's assumption of fully continuous memory 

responding but that our model spuriously suggests that there is categorical memory 

responding present in the data. We did this by simulating data for 20 virtual participants 

whose behavior matched the ZL model predictions (i.e. all responses were continuous in 

nature) and then fitting our model to the simulated data. If we find that PO = 1 for the 

simulated data, it would indicate that our model correctly identifies that the simulated 

participants are fully continuous in their responding pattern (note that this is essentially the 

same as testing whether or not the ZL model is appropriate for the data, as we did above). 

For this simulation, we found that the mean of PO was indistinguishable from 0.99 (BF01 = 

5.6), which indicates nearly completely continuous memory responding. This test shows that 

our model correctly identifies data that contains only continuous responding, proving that if 

our actual data had contained only continuous responding, then the parameter estimates 

would have reflected that fact.

Parameter Recovery—We tested the ability of our model to recover the parameter values 

that were used to generate data similar to our actual data (i.e. with categorical and 

continuous responding present). To do this, we simulated data from 20 virtual participants 

with known parameter values. The parameter values were randomly sampled in such a way 

that the simulated participants had parameter values similar to the actual parameter estimates 

from our experiments. We included effects of task condition of similar magnitudes to those 

we found in our experiments for PM, σO, PO. Each simulated participant “performed” a 

number of trials equal to the actual number of trials used in Experiment 1 at the same 3 set 

size conditions, resulting in a simulated data set. We then fit our model to the simulated data, 

which resulted in recovered estimates of the parameters that were used to generate the data. 

If our model is poorly identified, perhaps due to an excessive number of parameters, then the 

recovered parameter values would have little relationship with the known parameters that 

were used to generate the data.

We found that the recovered parameters were strongly related to the known parameter values 

we used to generate the data. The correlations between the known participant parameters and 

the posterior mean of the recovered parameters ranged from 0.76 to 0.99. The number of 

color categories correlated 0.88. The regression slopes ranged from 0.87 to 1.15, where 1 is 

ideal. The average difference in mean level between the true and recovered parameters was 

about 2% of the true values. In addition, the differences between task conditions were 

effectively recovered, with the errors being on the order of 10% of the true values (e.g. a true 
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difference was 2 and the recovered difference was 1.8). It should be remembered that some 

noise is introduced during the data simulation process, so without a large sample of data, we 

would not expect to necessarily recover the exact parameter values that were used to 

generate the data. Our recovered parameters are close enough to the true parameter values 

that the parameter estimates can be trusted to be reasonably accurate.

Reproducing Data—One way to examine the validity of a model is to compare data 

generated from the fitted model to the real data. Once a participant's parameters have been 

estimated, data can be generated from the model using those parameter estimates by 

sampling from the posterior predictive distribution of the data. This sampled data can be 

compared to that participant's real data to determine whether the model is capable of 

reproducing the patterns in the data. We show the results of this process for one participant 

in Figure 8. As can be seen by comparing the left and right columns of scatterplots, the data 

generated from the model (right column) closely matches the patterns in the real data (left 

column). These results for the selected participant are fairly typical and support the claim 

that our model is appropriate for the data.

Discussion

There are a number of important conclusions that can be made on the basis of the novel 

model we used in this study. These conclusions are related to 1) constraints on models of 

WM and the data representations used for those models, 2) our finding of a continuous WM 

capacity of one item, 3) mechanisms of information storage in WM, 4) cognitive load 

effects, and 5) the color categories used by participants. These issues are discussed in detail 

below. We also discuss the possibility that our method may have biased participants toward 

using categorical representations, some ways in which our model could be extended, and 

other studies that have provided evidence for categorical WM.

Constraints on Models and Data Representations

We found that our model quite effectively accounts for participant data, in contrast to the ZL 

model. In particular, we found clear evidence that a large proportion of memory responses 

were categorical in nature. The ZL model does not account for categorical memory 

responses, which makes it unable to differentiate between changes in WM imprecision and 

changes in the proportion of categorical responses: A change in the proportion of categorical 

responses could appear to the ZL model to be a change in WM imprecision. This fact makes 

the ZL model unsuitable for estimating WM imprecision when categorical memory 

responding is present in the data. Given this, we believe that the ZL model should not be 

used to estimate the parameters of WM for color delayed estimation data unless it can be 

verified to be an appropriate model for a specific data set. To verify this, it would be 

necessary to show that a data set has no categorical memory responding present, which may 

be possible to do by looking for clusters of responses, or the absence thereof, such as those 

that are present in our data. It would, of course, be even better to use a model-based 

approach to verify the absence of categorical responding.

Although the choice of model is important, the choice of data representation is even more 

important. In most work using delayed color estimation, the data representation that is 
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modeled is the response error, which is the difference between the study angle and the 

response angle (e.g. Fougnie & Alvarez, 2011; Zhang & Luck, 2011). Using the response 

error results in averaging out the categorical memory responses, which are only detectable if 

raw study and response angles are used. Plotting study and response angles, as we did in 

Figures 4 and 8, allows for the detection of patterns of categorical responding in the data. 

These patterns would be lost if response error were plotted instead. Models of response 

errors cannot reveal the categorical memory responses that we observed in the present work 

because of this aggregation problem. Even if future researchers do not use our exact model, 

they should carefully consider whether it is justified to use response errors rather than study/

response pairs. Examining memory responses from the perspective of response error is 

justified as long as the distribution of responses is independent of the studied angle. In that 

case, nothing is lost by taking the difference between the study and response angle.

Our preceding discussion has focused on how our model has a better fit than the ZL model 

specifically for categorical memory responses. Here we turn our attention to categorical 

guesses. In our model, we have to account for the fact that participants may make categorical 

guesses because we use the raw response angle. Thus, the location of a response relative to a 

category location is relevant and must be modeled. The ZL model has the computational 

advantage of being able to account for categorical guesses, or any complex guessing 

distribution, without having to explicitly model that distribution. It is able to do this because 

of the fact that it uses a uniform distribution of response errors as the guessing distribution. 

To illustrate how a uniform distribution of response errors can account for unusual guessing 

distributions in the raw response space, imagine the extreme case of a participant who 

always responds at angle 0 when guessing (i.e. at a specific place on the response wheel). 

Given that the distribution of study angles is uniform, as it is in most experimental designs, 

the response errors between the guessing angle 0 and the studied angles will also be a 

uniform distribution. Thus, the ZL model's uniform distribution of response errors can 

account for a non-uniform distribution of guesses in the response space. This basic logic 

extends to any guessing distribution, where a guessing distribution for a response is by 

definition not dependent on the studied angle. Thus, the ZL model is able to account for 

complex guessing distributions with a simple uniform distribution of guessing response 

errors. This is a computational advantage for the ZL model, because our model on raw 

responses must explicitly account for any complexities in the guessing distribution.

Potential Categorization Biases

There are three ways in which it is possible that our method might have led to a greater use 

of categorical memory representations than might be found in other studies. These are 1) the 

sequential presentation of stimuli, 2) the use of multiple responses per trial, and 3) the 

potential for distortions in presented colors. On point 1, we presented colors in serial order, 

but it is more common for delayed-estimation tasks to present a whole array of stimuli at 

once (e.g. Fougnie, Asplund, & Marois, 2010; Zhang & Luck, 2008). In our method of 

presenting colors one at a time, participants might have been encouraged to name each color 

as it was presented. When colors are presented in a briefly-presented array, participants may 

not have time to name the colors, which could result in reduced use of categorical memory 

representations than in our study. On point 2, we had participants respond to every color on 

Hardman et al. Page 19

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each trial, while it is more common to require participants to respond to only one color per 

trial (e.g Bays et al., 2011; Zhang & Luck, 2008). It is possible that making multiple 

responses per trial causes output interference that disrupts continuous color memory. In that 

case, the amount of categorical memory responses we observed in our tasks would be higher 

than in tasks which only require a single response. In addition, the combination of serial 

presentation and multiple responses might reduce the amount of continuous memory 

available due to decay or interference that arises during the delay between study and test for 

any one item. With shorter study-test delays, more continuous information might be 

available in WM at test.

On point 3, the colors seen be participants were likely different from those we intended to 

present. Recent work by Bae, Olkkonen, Allred, Wilson, and Flombaum (2014) 

demonstrates that standard computer monitors do not always present the color intended by 

the experimenter, but instead have systematic distortions in the color rendered by the 

monitor due to hardware and software limitations. As we did not test the accuracy of 

rendered colors in our study, these distortions may be present in our data. Further, they show 

that these distortions in color do account for some, but not all, stimulus specific effects. For 

example, they found that certain colors were associated with higher imprecision than others 

even when the task required no memory component. In our data, it is hard to see how this 

could account for our clear finding that people maintain categorical representations. Indeed 

Bae et al. (2014) did observe color category effects on precision above and beyond the effect 

of rendering errors in their own work. It may be though that some of the color values that 

tended to be neglected in our study (yellow-green, purple-blue) had luminance values that 

causes participants to be less likely to initially attend to the memory stimulus or to that 

portion of the color wheel. This could result in reinforcing the categorical nature of our 

findings, but cannot account for the totality of our findings in favor of categorical memories 

as there was clearly a large range of differing color values presented by the monitor in our 

study. Additionally, we found evidence that the color categories chosen by participants 

corresponded to easily-named colors. It seems unlikely that color presentation errors would 

happen to bias participants toward using easily named-colors because those colors differ 

substantially in terms of many characteristics, including luminance.

Since our methods may have biased participants to use categorical memory more than more 

standard methods, it will be important to explore to what extent method influences the 

amount of categorical memory maintained. Conveniently, our model can be applied to 

existing data sets to explore this issue. We think it is entirely possible that at least some 

categorical memory is used by participants in many experimental designs, but this is an 

empirical question that we would hope would be addressed in future studies.

Continuous WM Capacity of One Item

We found that the number of continuous items used by participants was 1 in Experiment 1 

and slightly below 1 in Experiment 2, regardless of set size or cognitive load. One possible 

explanation for these results is that continuous color information is maintained in a special 

way by the one-item focus of attention that is postulated by some models of WM (e.g. 

McElree, 2006; Nee & Jonides, 2013; Oberauer, 2002). When participants were allowed to 
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use attention entirely for maintenance in Experiment 1, they were able to store an average of 

1 continuous item in WM. When the attention-demanding secondary task was added in 

Experiment 2, the average number of continuous items in WM decreased. This could be 

because the focus of attention, which may be used for the maintenance of continuous colors, 

is less available for maintenance in the presence of the attention-demanding secondary task. 

An alternative possibility is that something about the experimental design, such as the serial 

presentation of stimuli, coincidentally resulted in an average of approximately a single 

continuous item being held in WM. It could be that different continuous capacity limits 

would be found with other experimental designs, which should be examined in future 

research.

In Experiment 1, continuous memory precision decreased as set size increased. This result 

indicates that even if continuous items are maintained by a specialized WM process, this 

process is not independent of the amount of information maintained by other processes. 

Thus, it seems likely that if the single continuous item is maintained by the focus of 

attention, the focus of attention is also used for maintenance of the categorical items in WM 

to some extent. Future work examining the relationship between continuous precision of 

WM and the number of categorical representations maintained in WM should be a high 

priority.

Mechanisms of WM Storage

We found that 1) the number of items in WM that were continuous in nature was 

approximately one regardless of set size and 2) about two items in WM were categorical in 

nature at higher set sizes. These results are consistent with a model of WM in which there 

are at least two qualitatively distinct, fixed-capacity storage mechanisms in WM. One 

storage mechanism can maintain about one continuous item and another storage mechanism 

can maintain about two categorical items. As discussed in the previous section, however, 

these two potential storage mechanisms do not appear to be independent, which brings into 

question whether they are in fact different memory systems. Finally, as we have noted, our 

method may have led participants to use categorical memory more than other methods. It 

could be that different task demands than were present in this study could cause participants 

to remember more than one continuous item. As such, we believe that additional evidence 

from studies with a variety of methods is required before concluding that there are two 

qualitatively distinct WM systems.

Related to how information is stored in WM, we were interested in whether categorical and 

continuous information were used separately, as in our between-item model, or in concert, as 

in our within-item model that we based on the Bae et al. (2015) model. We compared these 

two possibilities with two variants of our model and found that between-item assumption 

that categorical and continuous information were used separately was the better assumption 

for our data. This suggests either 1) that participants do not tend to store information both 

categorically and continuously, rather storing information in only one of the two forms or 2) 

that participants do store information in both ways, but do not integrate the information from 

both forms when making their response, rather just selecting one type of information when 

responding. Future research may be able to differentiate between these two possibilities. 
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Note that although the between-item model variant was best for our data, there may be some 

experimental conditions for which a within-item mixture of information would be a better 

assumption. For example, when a set size of only one or two items is used, participants 

might store both categorical and continuous information about the items and have sufficient 

WM resources available to combine those pieces of information at test. Future research 

could determine if and when a within-item mixture of information occurs.

Cognitive Load Effects

We found that level of cognitive load that participants are placed under only affects the 

probability that an item was in WM, and not continuous precision or the probability that a 

response is continuous. Thus, it does not appear that the cognitive load level differentially 

impacts categorical and continuous representations in WM, instead affecting both kinds of 

representations equally. However, cognitive load did not affect continuous WM precision at 

all, which suggests that cognitive load affects only the number, but not the quality, of 

representations in WM.

We also examined the effect of the mere presence of the secondary task by comparing across 

experiments. The total number of items in WM was constant between the higher set sizes of 

Experiment 1 and the lowest cognitive load of Experiment 2, indicating that the addition of 

the secondary task does not affect the total amount of information in WM. However, the 

addition of the secondary task caused the number of continuous items to decline and the 

number of categorical items to increase. This leads to the conclusion that the presence of a 

secondary task, but not its difficulty, may cause a trade-off between continuous and 

categorical information. This relates to the idea that the focus of attention is less able to 

maintain continuous representations when attention is captured by the secondary task. 

However, another difference between the experiments is that the maintenance interval in 

Experiment 2 (6 s) was longer than in Experiment 1 (1.5 s), which could have also had an 

effect on the maintenance of continuous colors. Elsewhere we have proposed that continuous 

information may decay over time because it cannot be actively maintained, while categorical 

information does not because it can be actively maintained (Ricker & Cowan, 2010; 

Vergauwe et al., 2014). Future experiments should focus on disentangling the effects of 

maintenance interval duration and secondary task cognitive load.

Color Categories

As can be seen in Figures 5 and 6, the colors that people use for category locations are fairly 

consistent across participants and also across manipulations of the color distribution. The 

colors that were used for the stimuli differed somewhat between experiments. The clearest 

difference is that the range of warm colors (red, orange, and yellow) is wider in Experiment 

1 than Experiment 2. It might be expected that participants would evenly distribute their 

color categories around the response ring so as to maximize the angular distance between 

categories. Another possibility is that participants’ categories are based on location rather 

than color. Instead, it appears that the categories used by participants tend to focus on a set 

of eight main colors and that these colors are used regardless of their locations. In addition, 

seven of the eight color categories used by our participants match those identified by Rosch 

(1973) as natural color categories. Finally, our participants reported fairly high levels of 
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color naming as a strategy. Thus, our results are clearly suggestive of a color naming 

strategy, which necessarily leads to categorical rather than continuous WM representations.

Possible Extensions of our Model

Future research could potentially extend our model to answer other theoretically-motivated 

questions. One such question relates to whether the order of encoding or the order of 

responding differentially affects categorical or continuous memory. We were unable to 

examine this issue with our design because responses were always made in the order of 

stimulus presentation, which fully confounds encoding and response order. Future studies 

could 1) deconfound encoding and response order and 2) add encoding order or response 

order effects to our model to examine this issue.

In the version of our model used in this study, we constrained the following parameters to be 

the same across all task conditions for each participant: the number and location of 

categories, categorical imprecision, categorical selectivity, and the proportion of categorical 

guesses. These constraints were reasonable given that 1) the model was complex enough as 

to require substantial constraint and 2) we did not have clear theoretically motivated reasons 

to lift these constraints. Future researchers, however, may have sufficient data as to allow a 

relaxation of model constraints or good reasons to examine a less-constrained model. For 

example, researchers may be interested in how effectively participants categorize stimuli and 

would want to examine how the categorical selectivity parameter changes across task 

conditions. Another example is that it may be possible for participants to use more 

categories at lower set sizes because they have more resources available to precisely 

categorize stimuli. We encourage future research on the parts of our model that we 

constrained, but note that reducing constraint on a model as complex as ours can easily 

result in a reduction of the identifiability of model parameters.

In this study, we compared the between-item and within-item variants of our model and 

found that the between-item model had a better fit to the data. Logically, however, the two 

model variants are not mutually exclusive: Different proportions of responses could be fully 

categorical, fully continuous, and combined categorical-continuous responses. We attempted 

to fit such a model, but found that it was not identifiable, possibly due to the amount of data 

we had per participant, but the exact cause of the unidentifiability is unknown to us. Future 

researchers could attempt to use such a version of our model with a data set with more 

responses per participant, with the caveat that identifiability of the parameters must be 

carefully verified.

Related Work on Categorical Memory Representations

Evidence for categorical representations within visual working memory has recently been 

provided by several other research groups. Our work is not the first to show evidence for this 

assertion, but rather provides converging evidence and a sophisticated, agile model. We also 

apply our model to directly testing the fitness of the ZL model and to several other important 

questions in the field of working memory, demonstrating the importance of understanding 

the full data representation. Finally we stress the importance of considering the full 

dimensionality of the data and not just the response errors. Having discussed the novel 
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contributions of our own work, we now discuss the convergence of our findings with similar 

findings by other researchers.

In a recent study, Bae et al. (2015) used a delayed color estimation task and found that there 

was evidence for categorical storage of colors in WM. In this work, Bae et al. asked 

participants to perform a delayed estimation task and also collected data from a perceptual 

categorization task in which participants identified the best examples of certain canonical 

colors and the best exemplars of these colors on a color wheel. They then used these color 

category estimates as biases, modeling the effect of color categories as biasing responses 

away from the presented color and toward the category location. For example, when a light 

blue color was presented the Bae et al. model predicts that the general blue color category 

would bias the response toward the most relevant category exemplar, likely “blue”, resulting 

in a remembered color that was darker than the presented color. Our results corroborate their 

fundamental finding: color categories exist within visual working memory, distorting the 

expected pattern of responses away from a distribution of errors around the presented 

stimulus value. Critically, we come to this conclusion on the basis of a model that, as we 

have discussed, differs substantially from the model of Bae et al. (2015). Still, we think that 

our model and the model of Bae et al. (2015) share many common features. Both are 

significant improvements over standard models of response error in the field and incorporate 

reasonable categorical representations in useful ways. Thus, there is convergence from 

differing paradigms and model implementations demonstrating the existence of categorical 

color effects on delayed estimation performance.

The concept of stimulus-specific effects on memory fidelity, whether due to the categorical 

nature of the stimuli, as we show here (see also Bae et al., 2015; Olsson & Poom, 2005), or 

to rendering errors (Bae et al., 2014) is an important one that has thus far been neglected in 

studies of working memory quality. The modeling of response errors while ignoring the 

presented stimuli leads to improper generalization and aggregation of data. This over-

aggregation necessarily leads to improper modeling and erroneous conclusions. This is of 

critical importance in the field considering the dominance of variable precision models of 

visual working memory in accounting for delayed estimation data. These models are similar 

to other continuous resource models of visual working memory (Fougnie, Suchow, & 

Alvarez, 2012; van den Berg, Awh, & Ma, 2014; van den Berg et al., 2012) in that they 

propose that a single resource that can be spread over an unlimited number of memory items 

and that precision decreases as the number of items maintained increases. They go beyond 

this though and argue that the amount of the central resource available to memory varies 

from trial to trail and between different items within a trial. This has the effect that different 

stimuli are assumed to have different amounts of precision within visual working memory. 

Variable precision models tend to have better fits than other competing models, but the 

validity of the variable precision assumptions is questionable given the existence of 

categorical memory states. In addition, variable precision models can support their claim 

that all responses are based on memory by explaining away what we would call uniformly 

distributed guesses as instead being very low precision memory responses. This same 

argument, however, cannot explain categorical guessing because there is no reason for very 

low precision memory responses to be made at specific category locations in the response 

Hardman et al. Page 24

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space. Thus, categorical guessing bands are evidence against variable precision models 

(Rouder et al., 2014).

Bae et al. (2014, 2015) and Pratte, Park, Rademaker, and Tong (2015) point out that these 

models ignore stimulus-specific variance, instead erroneously attributing it to variation in the 

amount of central resource deployed across stimuli and trials. Colors that are farther away 

from the center of a categorical representation will have greater measures of imprecision, 

leading to the appearance of variation in precision across items and trials. This is likely a 

large part of the model fit success found with variable precision models even though it is not 

the variance intended to be fit by the model. Our study gives more evidence for the 

assessment of Bae et al. and Pratte et al., showing that there is stimulus-specific variation 

due to color categories. Clearly, variable precision models cannot be adequately tested on 

aggregated error distributions because these distributions obscure stimulus-specific effects. 

Instead model testing must incorporate stimulus-specific effects such as color category 

effects in order to discover if there is any latent variability in central resources.

In a recent study, Donkin et al. (2015) found evidence for verbal labeling in a delayed-

estimation task with color stimuli. They obtained an estimate of the precision of 

participants’ verbal labels independently of a main memory task. They then analyzed the 

memory task data with a model that included a mixture of categorical memory based on the 

verbal labels and continuous memory. They found that the model performed worse when the 

verbal labeling component of the model was removed, which is evidence that participants 

use verbal labeling. Interestingly, Donkin et al. required participants to remember only a 

single color at a time, yet they still found evidence for verbal labeling. Thus, Donkin et al. 

provide additional support for the claim that categorical representations of colors are used by 

participants.

Using a change-detection paradigm, Olsson and Poom (2005) found evidence that visual 

WM capacities are substantially higher when stimuli are easily categorized. They used this 

as evidence that visual WM is heavily supported by the use of categorical representations. In 

particular, they found that for easy-to-categorize stimuli the WM capacity was about 3 items 

while for hard-to-categorize stimuli the WM capacity was about 1 item. This result suggests 

that 1) participants take advantage of opportunities to categorize stimuli, which allows more 

stimuli to be remembered and 2) when participants are unable to categorize stimuli, only a 

very limited number of continuous stimuli are remembered. These results of Olsson and 

Poom are similar to our results in which we found a total WM capacity of 3 items, about 1 

of which was continuous in nature. Thus, our findings about WM capacity are basically in 

agreement with Olsson and Poom.

Our findings, however, go far beyond those of Olsson and Poom in that 1) our model 

accounts for both categorical and continuous representations, whereas the model used by 

Olsson and Poom cannot separate the two types of representation, 2) because of 1), we are 

able to estimate the number of both categorical and continuous memory representations at 

once, while Olsson and Poom could only estimate the total number of representations in 

WM, and 3) we are also able to estimate the precision of continuous representations in WM, 

which Olsson and Poom did not do. Finally, one limitation of Olsson and Poom is that their 
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stimulus sets differed in a variety of ways, not just categorizability, which makes it 

impossible to definitively conclude that the differences in WM capacity they found were due 

to differences in the use of categorical representations by their participants. In contrast, our 

results are based on a single stimulus set, which avoids this confound. Thus, our work 

provides important methodological improvements over Olsson and Poom.

The findings in favor of categorical memories do not appear to be limited to color. In a study 

using delayed estimation of orientation stimuli, Rouder et al. (2014) found evidence for the 

use of categorical memory representations and categorical guessing by participants. In their 

design, the orientations were confined to a range around the top of a circle. In this design, it 

is natural to categorize studied orientations as left or right of center, which participants 

appeared to do with some regularity. In addition, guesses were often to the left or right of 

center. The results of our study indicate that the basic findings of Rouder et al. (2014) extend 

to color stimuli on a circular space. Thus, we corroborate their finding that participants seem 

to be categorical in terms of both memory-based responses and guesses.

The strong converging of evidence in favor of categorical memory representations across 

methodologies points toward categorical responding as a basic cognitive tool in human 

cognition. There is converging evidence that categorical responding is present in tasks 

thought to involve purely continuous representations, possibly based upon categorical 

representations of the perceptual stimuli themselves (Bae et al., 2014) or naming of the 

stimuli (Donkin et al., 2015). Future research should examine whether categorical 

responding is present in WM delayed estimation tasks when a variety of stimulus sets are 

used and how these categories correspond to those found in perception.

Final Conclusions

In this work we have presented a new computational model of visual working memory. This 

model emphasizes the importance of categorical representations to understanding the nature 

of human memory performance. Our model is a much better fit to the data collected from 

two versions of the delayed color estimation task than the widely used ZL model. These 

tasks were representative of those used in the literature, although there were some 

differences from the most commonly used designs, as we have explained. An important 

factor that sets our conclusions apart from past studies is that our conclusions are based on a 

model that accounts for both the categorical and continuous response patterns that are 

apparent in the data. Past studies that used response error and the ZL model were unable 

account for categorical memory responding, which makes their results unreliable if a 

substantial amount of categorical memory responding was present in their data.

There has been substantial debate over whether visual working memory is based upon fixed 

slots (Fukuda et al., 2010; Zhang & Luck, 2008) or a variable resource (Bays et al., 2009; 

Ma et al., 2014). We think that this debate has been hampered by models and data 

representations that do not capture the true nature of the data. Much of the slots versus 

resources debate has been based on models which utilize response errors, such as the ZL 

model. As we have argued, representing the data as response errors distorts the true nature of 

the data by averaging out the categorical responding present in the data. Thinking of data in 

their natural form, as study angle and response angle rather than response error, brings one 
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closer to the basic truth of cognition. Here the basic truth is clear: There are multiple kinds 

of visual working memories, some continuous in nature and others categorical.
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Appendix

Model Specification

Between-Item Variant

The overviews of both model variants are given in the main text. Starting with Equation 1 

below, we provide the equations for the basic likelihood function of the between-item model 

variant. Note that the complete specification of the model requires additional information, 

such as the priors, that is presented in the following sections. With the obvious substitutions, 

the following equations can all be combined into one equation, but the parts of the equation 

are presented separately for clarity.

See Table A1 for a reference for the parameters of the model. For mnemonic purposes, note 

that “a” is the second letter of “categorical” and “o” is the second letter of “continuous”. 

Also note that superscripted letters should be thought of as helping to specify the identity of 

the parameter or variable; there are no variables or parameters in exponents in this model. 

For example, the σO, σA, and σS parameters are continuous imprecision, categorical 

imprecision, and category selectivity, respectively.

(1)

(2)

(3)

(4)
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(5)

(6)

(7)

Parameters are subscripted as follows: i indexes participant; j indexes condition; k indexes 

category; t indexes trial within participant and condition. As indicated by the subscripts, μik, 

νik, , and  are the same regardless of which condition a participant is in. Thus, the 

categories that are used by participants are assumed to be the same in all conditions. In 

addition,  and  are not subscripted with k, indicating that they are the same for each 

category. Thus, the different categories for a participant differ in terms of their location and 

whether or not they are active, but not σS or σA.

Equation 1 gives L(Rijt|Sijt), the likelihood for a response, R, given the item that was studied, 

S, and, implicitly, all of the parameters of the model. The equation is a mixture between 

memory responses and guesses. A memory response happens with probability PM and a 

guess happens with probability 1 – PM. The likelihood for a memory response is  and the 

likelihood for a guess is .

Equation 2 gives , the likelihood for a memory response. This equation is a mixture of 

continuous responses, which happen with probability PO, and categorical responses, which 

happen with probability 1 – PO.  is the likelihood for a continuous response and  is 

the likelihood for a categorical response.

Equation 3 gives , the likelihood for a continuous response.  is the 

likelihood of a von Mises density function for the response angle R given the study angle S 

with imprecision . This part of the model is equivalent to memory responding in the ZL 

model. Note that von Mises distributions are typically parameterized in terms of precision, 

κ. We have instead parameterized our von Mises distributions in terms of imprecision, σ, 

which we define as the square root of the reciprocal of precision: .

Equation 4 gives , the likelihood for a categorical memory response. This equation sums 

up the likelihoods for the response angles, R, across all of the category locations, μ, 
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weighting the probability that the studied item would have been encoded into that category 

with the weights function Wijkt(Sijt). The likelihood for the category location nearest the 

study angle is given the greatest weight, with the weights decreasing as the category 

locations get farther from the study angle. This likelihood also depends on the imprecision 

of a categorical response, . If  is low (indicating high precision), a high likelihood 

value will only be assigned to a response that is very near a category location. Note that M is 

the maximum number of categories a participant can have, which is set to a relatively large 

constant value before parameter estimation. We chose M = 20, which is safely above the 

highest number of categories estimated to be used by any of our participants.

Equation 5 gives Wijkt(Sijt), which is the weights function. This function is plotted for all 

values of S and multiple categories in Panel G of Figure 2. This function gives the relative 

probability that an item that is in the process of being categorically encoded will be assigned 

to each of the categories. The weights function is the ratio of the density for the study angle 

for category k to the sum of the densities across all categories. The denominator scales the 

result so that the weight is a probability between 0 and 1. The numerator gives a density for 

the kth category and is highly dependent on the value of νik, which is an indicator parameter 

for the kth category. νik can be either 0 or 1, where 0 means that the category is inactive and 

1 means that the category is active. Note that the number of categories used by participant i 

is given by . If the category is not active (i.e. νik = 0), there is 0 weight assigned to 

category k, which has the effect of disallowing study angles from being assigned to that 

category, which effectively removes the category from this part of the model.

Equation 6 gives , the likelihood for a guess. This equation is a mixture of categorical 

guesses, which happen with probability PAG, and uniform guesses, which happen with 

probability 1 – PAG. The likelihood for a categorical guess is  and the likelihood of a 

uniform guess is 1/360.

Equation 7 gives , the likelihood for a categorical guess. For a categorical guess, the 

probability that the guess is from category k does not depend on the study angle. Thus, each 

category is given equal weight and the likelihood is the average likelihood across all 

categories. Like with the weights function, inactive categories are ignored.

Condition Effects

Three of the parameters – PM, PO, and σO – were allowed to vary between conditions, where 

the conditions were set size in Experiment 1 and cognitive load in Experiment 2. Rather than 

allowing the parameters to freely vary, we constrained the parameters by assuming that for 

each parameter, there was a main effect of condition applied to the latent parameters 

underlying each manifest parameter (see the Priors section below for more information on 

the latent parameters). The application of the main effect to a latent parameter is represented 

by the following template for a generic parameter P
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where Pij is the manifest parameter for participant i in condition j, TP is a transformation 

function that converts the latent parameter into a manifest parameter,  is the latent 

parameter for participant i, and  is the latent main effect on the parameter for condition j. 
The transformation function, TP, depends on whether the parameter is a probability 

parameter, in which the transformation is the inverse logit function, or a standard deviation 

parameter, in which case the transformation is the max(P, 0.5) function, where P is the 

parameter.

Because the manifest parameters are the sum of unbounded, latent participant parameters 

and unbounded condition effects, it is possible for the participant and condition parameters 

to trade off with one another perfectly. This would result in arbitrarily diffuse posterior 

distributions that are of no use for inference. We prevented a perfect trade off from occurring 

by using a cornerstone parameterization in which one of the condition effects was set to 0. 

We chose to use the last condition (set size 5 and cognitive load 6 for Experiments 1 and 2, 

respectively).

The parameters that were not able to vary between conditions were μ, ν, σA, σS, and PAG, 

which is indicated in the likelihood function by the fact that they are not subscripted with j.

Priors

The parameters of the model were estimated using Bayesian MCMC techniques, which 

requires that priors be specified for the parameters of the model.

Probability Parameters—Several of the parameters of the models are probabilities (PM, 

PO and PAG) and exist on the interval [0, 1]. Is it not easy to put hierarchical priors on 

parameters that exist on a finite interval. To simplify the priors, we transformed the manifest 

probability parameters that exist on the [0, 1] interval into latent parameters that exist on the 

interval (–∞, ∞) using logit transformation. We then placed hierarchical priors on the latent 

parameters. The prior on each of the probability parameters is given by the following 

template in which the generic parameter P is replaced by each of the probability parameters 

in turn.

(8)

(9)

(10)
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(11)

The first equation is the manifest to latent transformation. The second equation is the prior 

on the participant-level parameters. The third and fourth equations are the hierarchical priors 

on the mean and variance of the prior on .

Standard Deviation Parameters—The standard deviation parameters (σO, σS, and σA) 

are strictly non-negative and also require some work in order to have simple hierarchical 

priors placed on them. We used latent standard deviation parameters that exist on the interval 

(–∞, ∞) that were transformed by taking the maximum of the latent parameter and 0.5 

(standard deviations less than 0.5 were prevented because of problems with numerical 

precision). The prior on each of the latent standard deviation parameters is given by the 

following template in which the generic parameter S is replaced by each of the standard 

deviation parameters in turn.

(12)

(13)

(14)

(15)

The latent standard deviation parameters were typically far enough from the truncation point 

(0.5 degrees) that there was very little difference between the latent and manifest parameters.

Condition Effects—The condition effect parameters , , and  had moderately 

informative priors placed on them. Cauchy priors with location 0 were used for each of the 

parameters, except of course for the parameters of the cornerstone condition, which were set 

to 0 (i.e. the prior was a point mass on 0). The scale of the Cauchy was 2 for both  and 

 and was 5 for . The use of moderately informative, zero-centered priors reflects the 

fact that our prior belief is that we would expect no effect of condition on the condition 

effect parameters.
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Category Center and Active Parameters—We have the prior belief that if two 

category centers are very close together, that those category centers do not represent 

different categories. Rather, it seems more plausible that two very close category centers 

represent the same category. Thus, our prior on the category centers should push category 

centers away from one another or deactivate one of them when they are very close together, 

but not affect them if they are reasonably far apart. This can thought of as a penalty for 

category location parameters that are too close together. The category centers, μ, and the 

category active parameters, ν had the following priors placed on them.

(16)

(17)

(18)

(19)

(20)

(21)

The parameter σ0μ is set to a constant value (discussed below). In function h (Equation 20), 

the term νkνk′ evaluates to 0 unless both categories are active. Thus, if either category k or 

category k′ is inactive, then h evaluates to 1 and has no effect on the value of g. In h, the 

term V(0, 0, σ0μ) gives the maximum possible density for a von Mises distribution with 

standard deviation σ0μ. The term V(μk, μk′, σ0μ) gives a density that depends on the distance 

that the kth category center is from the k′th category center. When the distance between the 

kth and k′th category centers is 0, μk = μk′, and as a result V(μk, μk′, σ0μ) = V(0, 0, σ0μ), so 

their ratio equals 1 and h evaluates to 0 (as long as νk = νk′ = 1). Thus, the closer that μk is 

to other category centers, the less likely that the prior finds μk to be.

As a result of the behaviors of g and h, the prior on μk is a notched distribution with a notch 

with low density at each μk′. The prior on νk is a Bernoulli distribution, where the 
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probability of a “success” (νk = 1) depends on the value of f, scaled so that the probability of 

a success and the probability of a failure sum to 1.

In general, g does not integrate to 1 with respect to μk, but there exists some function SF(νk) 

that scales g so that f integrates to 1 with respect to μk. Because g does not integrate to 1 

with respect to μk, that makes it improper. The form of SF is unknown, but it depends on νk 

(among other things) which means that it is not constant with respect to νk. Because the 

form of SF is unknown, its value must be estimated, which we did with each evaluation of f. 
The value of SF was estimated by evaluating g at 50 evenly-spaced values of μk in the 

interval [0, 360), which we found to provide acceptable precision. Because it is 

counterintuitive, we note that g may be used as the prior for μk (although we did not do so 

for the sake of simplicity), but f (and not g) must be used for the prior on νk.

We chose σ0μ = 12 so that there was very little penalty unless the category centers were 

fairly close together. We found that it is necessary to use priors of the sort we used. When 

uniform priors on μk and νk were used, all of the possible categories were active nearly all of 

the time and some category centers were very close to one another (less than 5 degrees), 

neither of which are reasonable results.

Within-Item Model Variant

Our within-item model variant makes a different assumption about how categorical 

information is used than our between-item model variant. The within-item variant assumes 

that 1) if a item is in WM, both categorical and continuous information about that item is 

available, 2) the categorical and continuous components of each representation contain some 

amount of noise, and 3) when making a response, the two noisy representations are 

combined with a weighted average. A supplementary assumption is that the imprecision of 

categorical memory is the same as the imprecision of categorical guesses.

We will say that the continuous representation is a von Mises random variable denoted y and 

the categorical representation is a von Mises random variable denoted z. Because y 
represents continuous information, the location of y (i.e. the center of the distribution) is the 

location of the studied color. Because z represents categorical information, the location of z 
is the location of the category that the memory item was put into. The variances of y and z 
are reflected by the σO and σA parameters, respectively. For a single studied color on a 

single trial, that color is assigned a category, which determines the location of z. Then, 

realizations of y and z are taken, with the variance of the realizations depending on σO and 

σA. Finally, the two realizations are combined by taking a weighted average of the 

realizations, with the weighting depending on PO: The larger PO is, the more weight is put 

on the continuous component of WM.

The response made by a participant is a von Mises random variable denoted x. The random 

variable x is the weighed average of two random variables, y and z. The weighting is 

controlled by PO and the equation for x is x = WCM((y, z), (PO, 1 – PO)), where WCM is the 

weighted circular mean function, defined below, which takes into account transitions across 

0 degrees. For example, if y = 355 and z = 5, the linear mean is 180, which is incorrect when 

considering the circular space, but the circular mean is 0, which is correct. The weighted 
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linear mean equation for x would be x = PO y + (1 – PO)z. Thus, in the within-item variant, 

PO means the proportion of each response that is continuous, whereas in the between-item 

variant, it meant the probability that a response is fully continuous.

The aforementioned process is the process assumed to be used by participants and is 

straightforward to simulate. It is more difficult, however, to estimate the parameters of the 

process by working backwards from the data because the responses, x, are based on the 

weighted average of two components of WM which are not directly observable: Only the 

response, and not the process leading to the response, are emitted by participants. Thus, 

some statistical theory must be applied.

We will make two simplifying assumptions that make this problem statistically tractable. 

First, given the range of standard deviations observed in our designs, that there is little 

difference between a circular mean and a linear mean. Second, that the variance of a von 

Mises distribution, when it is treated as existing in a linear space, is equal to the inverse of 

the precision of the distribution. On the first assumption, when combining y and z to get x, 

the model uses a weighted circular mean, the definition for which is given in Equation 24. 

The weighted linear mean is much simpler to work with, but produces values very similar to 

the circular mean as long as angular distance between the two values is small enough (less 

than 100 degrees), which it typically is for our model. The second assumption is related to 

the fact that, for typical data used with our model, the von Mises distributions are fairly 

precise, which results in them having very thin tails. If a fairly precise von Mises distribution 

were to be split at the point opposite from the center of the distribution and unrolled into a 

linear space, it can be treated as a linear distribution because the tails have effectively 0 

density. Little is lost in the circular to linear transformation because the tails are so thin. 

Once this linearizing is done, the variance of the linearized von Mises distribution is 

approximately equal to the inverse of the precision of the original distribution. We have 

verified that both of these assumptions are reasonable in that they are approximately true. 

Without these assumptions, it would be difficult to perform the required calculations.

With these two assumptions is place, it is straightforward to combine the variances of y and 

z to get the variance of the distribution of x. When dealing with linear variance, the variance 

of the weighted sum of two independent random variables is the sum of the variances times 

to squared weights. By our first assumption, we can use this rule. If the sum is weighted by 

P, then Var(x) = Var(P · y + (1 – P)z). Because y and z are assumed to be independent,

Following from our second assumption, it is approximately true that  and 

. Equation 25 follows directly. Although Equation 25 provides an 

approximation for , it is an accurate enough approximation to allow for fairly accurate 

parameter recovery in simulations in which data is directly generated from the model. The 

location of x is simply the weighted circular mean of the locations of y and z. Thus, the 

linearization assumption is used to calculate the variance, but not the location.
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The within-item mixture model variant we used is mathematically very similar to the 

between-item mixture model. The only modification is to replace Equation 2 from the 

between-item model with the equation for LM below. The rest of the model is unchanged. 

Given the preceding derivations, the following equations follow in a straightforward way.

(22)

(23)

(24)

(25)

Equation 22 gives the likelihood for a single response by taking a weighted average across 

the categories that the studied item, Sijt, might have been categorized into. The weights 

function, Wijkt, is the same as used by the between-item model as given in Equation 5. The 

likelihood of each response is given by the von Mises density function, V, for the response 

angle, Rijt, the mean response angle, , and the standard deviation of the response . 

The interesting parts of this equation happen within  and , as discussed below.

Equation 23 gives , which is the center of the memory response distribution for an item 

put into the kth category. It is based on the study angle, Sijt, and the location of the kth 

category, μijk. These locations are averaged with WCM with weights based on PO, where the 

weight used for Sijt is PO and the weight used for μijt is 1 – PO.

Equation 24 gives the weighted circular mean function, which produces the angular mean of 

a vector of angles  where the contribution of each angle is weighted by the weight vector 

. The atan2 function is the arctangent function of two arguments, which uses the signs of 

the arguments to determine which quadrant the resulting angle is in, which allows it to return 

a result in the interval [0, 360).

Equation 25 gives , which is the imprecision of the combination of the categorical and 

continuous WM representations. The logic of this equation was given prior to the equations.
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Figure 1. 
Schematic of a single trial with 3 stimuli for Experiment 1. Each trial began with a fixation 

cross, followed by the to-be-studied colors for that trial. Following a maintenance interval, 

participants made their responses to each of the color stimuli in the order of stimulus 

presentation. The feedback display showed the studied colors in their locations, with order 

indicated with numbers. The participant's responses were indicated with white markers and 

the correct responses were indicated with gray markers with backgrounds filled with the 

studied color. In this example, for color 3, the correct response is just above the given 

response. The trial structure for Experiment 2 was very similar, with the main difference 

being that the maintenance interval contained the secondary tone discrimination task and 

was longer (6 s).
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Figure 2. 
Multinomial process tree for the model and related plots. For the scatterplots in Panels A to 

E and H, the x-axis is the study angle and the y-axis is the response angle. The points in 

those scatterplots are data sampled from an imaginary participant with 5 color categories. 

Panels A to D show individual response types and Panel E shows the points in Panels A 

through D in one panel. Panel H shows the same points as Panel E, but without information 

about the type of the response. Panel F shows the response densities for the different 

response types for a single study angle, indicated by the vertical line in Panel E. Panel G 

shows the function that gives the probability that a given study angle will be assigned to the 

given category.
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Figure 3. 
Data generated from A. the ZL model, B. the between-item variant of our model (the 

primary model), and C. the within-item variant of our model. No guesses are plotted: Only 

the memory distributions. For the ZL model, response angles are centered on the studied 

angle with some error. For the between-item model, responses are either categorical and 

appear as horizontal steps or continuous and, like the ZL model, are centered around the 

studied angle. For the within-item model, responses are a mixture of categorical and 

continuous information, which results in responses that are between the fully categorical flat 

stair step and the fully continuous line of ideal responding (an intercept of 0 and a slope of 

1).
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Figure 4. 
Scatterplots of data from Experiment 1 (top row) and 2 (bottom row) across manipulations 

of set size (SS) and cognitive load (CL). Horizontal response bands near the line of ideal 

responding (intercept 0 and slope 1) are indicative of categorical memory responses. 

Horizontal response bands that cross the entire space are indicative of categorical guessing.
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Figure 5. 
Parameter summary from Experiment 1. Error bars in Panels A, B, and C are 95% credible 

intervals. In the histograms in Panels D, F, G, and H, the dashed vertical line is at the mean. 

Panel E shows the posterior distributions of category centers collapsed across all 

participants.
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Figure 6. 
Parameter summary from Experiment 2. See the caption of Figure 5 for explanation of the 

figure elements.
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Figure 7. 
Plot of the number of items in working memory by set size (Experiment 1; left panel) or 

cognitive load (Experiment 2; right panel). The total number of items in working memory is 

also divided into the categorical and continuous items in working memory. As can be seen, 

the number of continuous items in working memory is very near to 1 (indicated with the 

dashed horizontal lines) in Experiment 1 and slightly below 1 in Experiment 2. Error bars 

are 95% credible intervals.
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Figure 8. 
Plots of data from one participant in all three set size (SS) conditions of Experiment 1 (left 

column) and data generated by sampling from the posterior predictive distribution of the 

model (right column). As can be seen, data sampled from the fitted model effectively 

captures the primary characteristics of the data.
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Table 1

Effects of Task Condition on the Three Primary Parameters for Both Experiments

Exp. Parameter Comparison
a

BF10
b

1 PM 1 - 3 6.8 · 103

1 PM 1 - 5 2.1 · 108

1 PM 3 - 5 3.7 · 1012

1 σ O 1-3 1.8 · 1012

1 σ O 1-5 2.6 · 1013

1 σ O 3-5 1.5 · 101

1 PO 1-3 2.5 · 106

1 PO 1-5 2.8 · 1025

1 PO 3-5 7.2 · 100

2 PM 2 - 4 1.0 · 100

2 PM 2 - 6 3.3 · 105

2 PM 4 - 6 4.4 · 102

2 σ O 2-4 1.6 · 10–1

2 σ O 2-6 2.2 · 10–1

2 σ O 4-6 2.8 · 10–1

2 PO 2-4 2.9 · 10–2

2 PO 2-6 7.2 · 10–2

2 PO 4-6 9.6 · 10–2

a
Experiment 1: The set sizes that were compared; Experiment 2: The cognitive loads that were compared.

b
Bayes factor in favor of the hypothesis that the compared conditions differed.
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Table A1

Symbol Meanings

Symbol Meaning

S The study angle in degrees.

R The response angle in degrees.

PM Probability that the tested item is in WM.

PO Probability that a memory item is continuous in nature. 1 – PO is the probability that a memory item is categorical in nature.

σ O Continuous WM imprecision in degrees 1 precision . Serves the same function as the WM imprecision parameter in the ZL 
model.

μ k The category center of the kth category.

ψ k An indicator of whether or not the kth category is active, i.e. used by the participant. Is equal 1 if the category is active, 0 
otherwise.

σ S Category (in)selectivity. Lower values result in more abrupt transitions between categories for the weights function.

σ A Categorical WM imprecision 1 precision : Determines how close a categorical response it to the category center.

PAG Probability of a categorical guess (versus a uniform guess).

V(x, μ, σ) Probability density function of the von Mises distribution for observation x with center μ and precision 1/σ2 (i.e., we have 
parameterized V in terms of, roughly speaking, standard deviation rather than precision).
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