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Abstract
Breast cancer is one of the most common malignancies among women worldwide. Genetic factors have been shown to play an
important role in breast cancer aetiology. We conducted a two-stage genome-wide association study (GWAS) including 14 224
cases and 14 829 controls of East Asian women to search for novel genetic susceptibility loci for breast cancer. Single nucleotide
polymorphisms (SNPs) in two loci were found to be associated with breast cancer risk at the genome-wide significance level.
The first locus, represented by rs12118297 at 1p22.3 (near the LMO4 gene), was associated with breast cancer risk with odds ra-
tio (OR) and (95% confidence interval (CI)) of 0.91 (0.88–0.94) and a P-value of 4.48�10� 8. This association was replicated in an-
other study, DRIVE GAME-ON Consortium, including 16 003 cases and 41 335 controls of European ancestry (OR¼0.95, 95%
CI¼0.91–0.99, P-value¼0.019). The second locus, rs16992204 at 21q22.12 (near the LINC00160 gene), was associated with breast
cancer risk with OR (95% CI) of 1.13 (1.07–1.18) and a P-value of 4.63�10� 8. The risk allele frequency for this SNP is zero in
European-ancestry populations in 1000 Genomes Project and thus its association with breast cancer risk cannot be assessed in
DRIVE GAME-ON Consortium. Functional annotation using the ENCODE data indicates that rs12118297 might be located in a re-
pressed element and locus 21q22.12 may affect breast cancer risk through regulating LINC00160 expressions and interaction
with oestrogen receptor signalling. Our findings provide additional insights into the genetics of breast cancer.

Introduction
Breast cancer is the most common malignancy among women in
the United States and many other countries around the world (1).
Genetic factors have been shown to play an important role in
breast cancer aetiology (2,3). Since 2007, genome-wide associa-
tion studies (GWAS) have identified approximately 100 common
genetic susceptibility loci for breast cancer risk (3–32). To date,
most GWAS have been conducted primarily among women of
European ancestry, and genetic risk variants identified in these
studies explain approximately 16% of familial breast cancer risk
in European descendants (5). Many variants discovered in
European ancestry populations showed a weak or no association
with breast cancer risk in other ethnic groups (14,33–36).
Therefore, it is necessary to conduct GWAS in non-European pop-
ulations to discover additional genetic risk variants for breast
cancer. In 2008, we initiated the Asia Breast Cancer Consortium
(ABCC), a GWAS in East Asians to search for novel genetic suscep-
tibility loci for breast cancer risk. Over the years, this consortium
has grown into a large collaboration involving cases and controls
recruited in studies conducted in multiple Asian countries (13).
We have identified 10 novel susceptibility loci for breast cancer
risk (13,15,19–22,29,37), and many of these loci were subsequently
replicated in studies of European descendants (13,15,20,38).
Studies from African and Latino-ancestry populations also have
identified novel susceptibility variants associated with breast
cancer risk (30,32). In this paper, we report novel findings from an
expanded ABCC that included additional samples in the discov-
ery stage and imputed the genome-wide scan data using data
from the 1000 Genomes Project as reference (39).

Results
Association analyses among East Asian women

The current study included data from 29 053 women (14 224
cases and 14 829 controls) as part of the ABCC. All study

participants were of East Asian ancestry and recruited from
eight studies conducted in multiple countries (Table 1,
Supplementary Material, Text S1). Our discovery stage (stage I)
included three studies with genome-wide scan data comprising
a total of 7619 cases and 6286 controls, including 4866 Chinese
women (SBCGS) (13,29), 4298 Korean women (SeBCS1)(40), and
4741 Japanese women (BBJ1) (41,42). Imputation was performed
within each study using Minimac2 (43). SBCGS and BBJ1 were
imputed with the 1000 Genomes Project Phase 3 as reference
and SeBCS1 was imputed with the 1000 Genomes Project Phase
1 as reference. Only single nucleotide polymorphisms (SNPs)
imputed with high imputation quality (RSQR� 0.5) and minor
allele frequency (MAF)� 0.01 were included in the discovery
stage analyses. A meta-analysis of imputed data from SBCGS,
SeBCS1 and BBJ1 was conducted using fixed-effects, inverse var-
iance meta-analysis using the METAL software (44). In the dis-
covery stage, we have evaluated the association of risk variants
in 106 loci identified previously for breast cancer risk via GWAS.
Among those 106 SNPs, 80 SNPs were available among all three
breast cancer datasets in our current GWAS. We found that the
35 SNPs were associated with breast cancer risk at P-value< 0.
05 with the same direction as observed in previous reports
(Supplementary Material, Table S1).

In order to select SNPs for fast-track replication (stage II), we
used the following criteria: (i) an imputation score of RSQR> 0.8
in at least two studies with genome-wide scan data; (ii) an MAF
of> 0.05 in all stage I studies with available data; (iii) P< 1.0 x
10� 4 in the stage I meta-analysis; (iv) the same direction of as-
sociation in all stage I studies; and (v) no strong linkage disequi-
librium (LD) (r2<0.3 in Asians) with any of the known breast
cancer susceptibility loci (5,13–15,19,20,29). The top 32 SNPs
were selected for replication in an independent set of 6605 cases
and 8543 controls from five studies participating in the ABCC.
After filtering out SNPs with low quality among designable
SNPs, 28 SNPs were evaluated in stage II, in which 5 SNPs were
associated with breast cancer risk at P< 0.05 (Supplementary
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Material, Table S2). In the combined data from both stages, the
association for two SNPs reached the genome-wide significance
level (P< 5.0 x 10� 8): rs12118297 at 1p22.3 with OR (95% CI) of 0.
91 (0.88–0.94) and P¼ 4.48� 10� 8, and rs16992204 at 21q22.12
with OR (95% CI) of 1.13 (1.07–1.18) and P¼ 4.63� 10� 8 (Table 2).
With the exception of the Nagoya study for rs12118297, the di-
rection of the association between breast cancer risk and each
of the two SNPs was consistent across all studies included in
the present analysis (P for heterogeneity> 0.05) (Fig. 1).

In analyses stratified by study population, although the as-
sociations of both SNPs rs12118297 and rs16992204 were stron-
ger for Chinese than for Korean and Japanese participants,
heterogeneity tests were not statistically significant
(Supplementary Material, Table S3). Both SNPs showed a stron-
ger association for ER-positive breast cancer than ER-negative
breast cancer, and the difference was statistically significant for
rs16992204 (P¼ 0.05) (Supplementary Material, Table S4).

Evaluation of the two SNPs in European-ancestry
women

To investigate the association of these two SNPs with breast
cancer risk in women of European ancestry, we accessed data
from the DRIVE GAME-ON Consortium (45), consisting of 16 003

cases and 41 335 controls. SNP rs12118297 showed a significant
association with breast cancer risk in women of European an-
cestry at P¼0.019. The OR for the association was 0.95 (95%
CI¼ 0.91–0.99), consistent with the association observed in the
East Asian population. The MAF of this SNP was much lower in
European descendants (0.18) than in East Asians (0.38), and the
strength of the association was weaker in European than in East
Asian women (P for heterogeneity¼ 0.03). We were not able to
evaluate rs16992204 in the DRIVE GAME-ON Consortium since
this SNP showed an allele frequency of 0 in European ancestry
in the 1000 Genomes Project. Therefore, it is likely that this SNP
cannot be imputed to 1000 Genomes project for GWAS of
European ancestry, like the DRIVE GAME-ON Consortium.

Expression quantitative trait loci (eQTL) analyses and
functional annotation

To explore potentially regulated target genes for the newly iden-
tified loci, we conducted eQTL analysis to evaluate the associa-
tion of rs12118297 and rs16992204 with the expression levels of
genes within 1 Mb region in breast tumour tissue using data
from The Cancer Genome Atlas (TCGA) (46) and the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) (47) (see Methods). Additionally, two publicly

Table 1. Selected characteristics of studies included in the current analysis from the Asia Breast Cancer Consortium

Study Cases Controls Population Study designa Age (years)b ER(þ) (%)c Postmenopausal (%)d

Stage I 7619 6286
SBCGS 2731 2135 Chinese Population-based 51/50 55 41/41
SeBCS1 2246 2052 Korean Hospital-based 48/51 63 36/56
BBJ1 2642 2099 Japanese Hospital-based 57/56 63 79/72
Stage II 6605 8543
KOHBRA/KoGES 1397 3209 Korean Hospital-based 40/50 63 23/NA
HCES-Br 3387 3186 Korean Population-based 50/57 64 45/81
SeBCS2 776 1,103 Korean Hospital-based 48/48 63 36/37
Nagoya 644 644 Japanese Hospital-based 51/51 73 49/49
Nagano 401 401 Japanese Hospital-based 54/54 75 55/65
Total 14 224 14 829

Abbreviations: ER, Estrogen receptor; NA, Not available.
aCase-control study design was used.
bMean age of cases/controls with available data.
cProportion of ER-positive women among cases.
dProportion of postmenopausal status of cases/controls with available data.

Table 2. Results for the association of two newly identified genetic loci with breast cancer risk

SNP (allelesa) Locus EAFc Stage Per-allele association NearestGenes

(Positionb) OR (95% CI)d P e

rs12118297 1p22.3 0.38 Stage I 0.90 (0.85–0.94) 1.54 x 10�5

(T/G) 87,779,217 Stage II 0.92 (0.88–0.97) 6.00 x 10�4

Combined 0.91 (0.88–0.94) 4.48 x 10�8 LMO4
rs16992204 21q22.12 0.12 Stage I 1.17 (1.10–1.25) 8.79 x 10�7

(C/T) 36,111,201 Stage II 1.09 (1.02– 1.16) 4.40 x 10�3

Combined 1.13 (1.07–1.18) 4.63 x 10�8 LINC00160

aEffect/reference alleles.
bChromosome position (bp) based on NCBI Human Genome Build 37.
cEffect allele frequency based on controls from the current study.
dPer-allele OR (95% CI) was adjusted for age and the principal components in each study in stage I, and age and study sites in stage II; combined OR (95% CI) was ob-

tained using fixed-effect meta-analysis in each stage.
eObtained from a weighted z statistic-based meta-analysis.
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available eQTL databases, GTEx database (48) and HaploReg V4
(49) were also examined. To investigate whether nearby genes
may be involved in breast carcinogenesis, we performed differ-
ential gene expression analysis between breast tumour tissue
and adjacent normal tissue using data from 87 patients in-
cluded in TCGA. The functional significance of both newly iden-
tified loci was evaluated using the Encyclopedia of DNA
Elements (ENCODE) Project (50), HaploReg V4 (49), and
RegulomeDB (51).

For locus 1p22.3, SNP rs12118297 is located 14 934 bp up-
stream of the LMO4 gene (LIM-only protein 4) (Fig. 2A). No signif-
icant associations were found between this SNP and expression
of genes within 1 Mb region based on the eQTL analysis in GTEx,
TCGA, or METABRIC data. However, a search of eQTL results
from both HaploReg V4 and RegulomDB showed that this SNP
was correlated with LMO4 gene expression in human mono-
cytes (52) and brain tissue (cerebellum and temporal cortex)
(53). The expression level of the LMO4 gene was significantly
lower in tumour tissue than in adjacent normal tissue
(P¼ 5.71� 10� 5) among breast cancer cases included in TCGA
(Supplementary Material, Table S5). We also found some evi-
dence of eQTLs for nearby genes. They were associated with ex-
pression levels of CLCA2 (chloride channel accessory 2) gene
and SH3GLB1 (SH3-Domain GRB2-Like Endophilin B1) gene
(P< 0.05), located �857 kb and �565 kb upstream of rs12118297,
respectively (Supplementary Material, Table S7). The expression
levels of both genes were significantly lower in tumour tissues
than in adjacent normal tissues (CLCA2 gene, P¼ 1.10� 10� 4

and SH3GLB1 gene, P¼ 1.25� 10� 23) (Supplementary Material,
Table S5). These findings support possible roles of CLCA2 and
SH3GLB1 as potential tumour suppressors in breast carcinogen-
esis (54,55). ChromHMM annotation using ENCODE data sug-
gests that rs12118297 might be located in a polycomb-repressed
element. In RegulomeDB, this SNP has been annotated as a po-
tentially functional SNP with a score of 1f, indicating that it may

lie within a region containing a transcription factor (TF) binding
site, matched TF motif and DNase I hypersensitive site.
Consistently, the annotation using HaploReg indicated that it
might be located in a predicted LRF motif (Supplementary
Material, Table S6).

For locus 21q22.12, SNP rs16992204 is located 1722 bp up-
stream of the LINC00160 gene (Long Intergenic Non-Protein
Coding RNA 160) (Fig. 2A). We could not evaluate whether this
SNP was an eQTL in GTEx, TCGA, and METABRIC data because
the MAF of this SNP is less than 0.01 in European populations.
The expression level of the LINC00160 gene was significantly
higher in tumour tissue than in adjacent normal tissue
(P¼ 1.13� 10� 4) among breast cancer cases included in TCGA
(Supplementary Material, Table S5). At the 21q22.12, we exam-
ined nearby genes and found some evidence of eQTLs with
MAF� 0.01 (Supplementary Material, Table S7). SNP rs16992204
was associated with expression of a nearby gene, KCNE1 (P¼ 0.
03), which is located �283 kb downstream of this SNP at 21q22.
12 (Supplementary Material, Table S7). The expression level of
the KCNE1 gene was significantly lower in tumour tissues than
in adjacent normal tissues (P¼ 4.97� 10� 24) (Supplementary
Material, Table S5). Our analysis showed some evidence of
eQTLs for nearby genes, including RUNX1 (Runt-Related
Transcription Factor 1) gene and RCAN1 (Regulator Of
Calcineurin 1) gene (P< 0.05), located �49 kb upstream and
�124 kb downstream of rs16992204, respectively
(Supplementary Material, Table S7). Expression levels of RUNX1
gene were significantly higher in tumour tissues than in adja-
cent normal tissues (P¼ 1.92� 10� 8) (Supplementary Material,
Table S5). This result is consistent with recent studies showing
that RUNX1 expression was correlated with breast cancer pro-
gression and metastasis (56,57). Furthermore, we found that the
expression level of the RCAN1 gene was significantly lower in
tumour tissues than in adjacent normal tissues (P¼ 5.
18� 10� 22) which supports the role of RCAN1 as a potential

Figure 1. Forest plots for risk variants in the two newly identified breast cancer risk loci by study site and stage. Per-allele OR estimates and fixed-effect summary OR

estimates are presented. The size of the square box is proportional to the number of cases and controls in each study site.
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breast cancer suppressor reported from previous studies (58,59).
The function of the SNP rs16992204 is still not known.

Discussion
In this two-stage GWAS based on 14 224 cases and 14 829 con-
trols of East Asian women, we identified two new breast cancer
susceptibility loci at 1p22.3 (rs12118297) and 21q22.12
(rs16992204). The association of SNP rs12118297 with breast
cancer risk was replicated in 16 003 cases and 41 335 controls of
European ancestry from the DRIVE GAME-ON Consortium. We
also found that SNP rs16992204 showed stronger association for
ER-positive breast cancer than ER-negative breast cancer with
statistically significant difference. These SNPs were not in LD
with any of the previously reported GWAS loci for breast cancer.

Our first SNP, rs12118297 in the 1p22.3 region, is located 14
934 bp upstream of the LMO4 gene. The LMO4 gene belongs to a
family of LIM-only transcriptional regulators that function as
molecular adaptors for protein-protein interactions. The mech-
anism of LMO4 function is not yet fully known. Several studies
indicated a role for the LMO4 gene as an oncogene (60,61) which
is inconsistent with our differential gene expression results us-
ing TCGA data: decreased expression among breast tumour tis-
sues with Log2 fold changes¼ -0.53 (Supplementary Material,
Table S5). However, the expression level of LMO4 is largely af-
fected by the change in the stoichiometry of LMO4-containing
complexes, such as those comprising CtIP, BRCA1, DEAF1, and/
or Ldb1 (62,63). Thus, given the primary function of LMO4, which
is an adaptor for protein-protein interactions, it remains to be
established whether LMO4 is amplified or deregulated by other
means in breast cancer. Our finding about SNP rs12118297

Figure 2. Regional plots of association results for the two newly identified risk loci for breast cancer. (A) rs12118297. (B) rs16992204. Each plot shows the -log10 P-values

(y-axis) for each SNP in a given genomic region on the x-axis based on NCBI Build 37. The marker SNPs are shown in purple circles and Refseq genes are shown beneath

each plot. The top SNPs (rs12118297 and rs16992204) with purple circles are from the meta-analyses of all studies conducted among East Asians, and data shown for all

other SNPs are from Stage I only. Pairwise LD with adjacent SNPs as measured by r2 values (according to the 1000 Genomes Project Phase 3 Asian data) is indicated by

the color of each circle. (a) rs12118297. (b) rs16992204. Combined P-values for SNPs rs12118297 and rs16992204 were 4.48 x 10� 8 and 4.63 x 10� 8, respectively.

3365Human Molecular Genetics, 2016, Vol. 25, No. 15 |

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw164/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw164/-/DC1


identified in the present study for breast cancer risk was not as-
sociated with LMO4 expression level in breast tissues using data
from GTEx, TCGA or METABRIC, however, it has been shown to
be an eQTL for LMO4 in human monocytes (52) and brain tissue
(53). Therefore, even though the underlying biology is still not
known, our study suggests that it is possible that SNP
rs12118297 affects breast cancer risk through genetic mecha-
nisms associated with the LMO4 gene.

Our second SNP, rs16992204 in the 21q22.12 region, is located
1722 bp upstream of the LINC00160 gene. The LINC00160 gene
has numerous classes of non-protein coding transcripts longer
than 200 nucleotides. Recently, Jonsson et al. (64) reported that
LINC00160 is a direct target of ER-a, and 17b-estradiol treatment
up-regulated LINC00160 expressions in breast cancer MCF-7 and
T47D cells. The ChIP-qPCR experiments confirmed that ER-a
binds to LINC00160 in both MCF-7 and T47D cells (64). The
LINC00160 was expressed at higher levels in ERa-positive
tumours, compared with both ERa-negative tumours and nor-
mal tissue among TCGA samples (64). Furthermore, silencing of
LINC00160 using siRNA reduces MCF-7 cell proliferation (64). We
also found that the association of SNP rs16992204 with breast
cancer risk was mainly observed in ER-positive breast cancer.
Taken together, genetic variation at the locus 21q22.12 may af-
fect breast cancer risk through regulating LINC00160 expres-
sions and interaction with ER signalling. Our analysis showed
no evidence for rs16992204 as cis-eQTL for this gene due to the
very low MAF in European populations. However, we found
some evidence of eQTLs for nearby genes with MAF� 0.01 at
21q22.12 (Supplementary Material, Table S7). In particular,
many studies have demonstrated a possible link of the RUNX1
gene with breast cancer development (46,65), and we found evi-
dence of eQTLs for nearby genes.

In summary, we report common variants at two genomic
loci as new genetic risk factors for breast cancer in East Asian
populations, providing additional insights into the genetics and
biology of breast cancer. We have explored possible biological
mechanisms for the observed associations. In particular, in silico
analyses support a functional significance of one of these
common SNPs at 1p22.3/LMO4. However, the other biological
mechanism may also be involved. Future studies, including
fine-mapping and functional experimental investigations, are
needed to gain additional insights into the biological basis for
the genetic associations with breast cancer risk in these two loci
identified in our study.

Materials and Methods
Study populations

All study participants provided written informed consent, and
the protocols for all participating studies were approved by the
relevant institutional review boards. Detailed descriptions of
participating studies are included in the S1 File. Briefly, as part
of the ABCC, this study includes 14 224 cases and 14 829 controls
from eight studies (Table 1), including 4866 Chinese, 17 356
Korean, and 6831 Japanese women. Data for Chinese women
came from four studies based in Shanghai (n¼ 4866; the
Shanghai Breast Cancer Study (SBCS), the Shanghai Breast
Cancer Survival Study (SBCSS), the Shanghai Endometrial
Cancer Study (SECS; controls only) and the Shanghai Women’s
Health Study (SWHS)) (13,66–68). Data for Korean women came
from four studies: the Seoul Breast Cancer Study (SeBCS;
n¼ 6177) (40), the Korea Genome Epidemiology Study (KoGES;
n¼ 3209) (69), the Korean Hereditary Breast Cancer study

(KOHBRA; n¼ 1397) (70), and the Hwasun Cancer Epidemiology
Study-Breast (HCES-Br; n¼ 6573) (71–73). Data for Japanese
women came from three studies: the Biobank Japan Project
(BBJ1; n¼ 4741) (41), the Nagoya Study (n¼ 1288) (74), and the
Nagano Breast Cancer Study (n¼ 802) (75) (Table 1).

Genotyping and quality control

Three GWAS were included in stage I, in which 4866 Chinese
women, 4298 Korean women, and 4741 Japanese women were
genotyped. Genotyping protocols for stage I have been described
elsewhere (13,15,19,20,29,40–42). In the Chinese GWAS (SBCGS),
samples were scanned primarily using Affymetrix Genome-
Wide Human SNP Array 6.0, and the initial 300 samples were
scanned using the Affymetric GeneChip Mapping 500K Array
Set. In the present study, only data from Affymetrix SNP Array
6.0 were used to perform imputation. After quality control ex-
clusions, the final data set included 2731 cases and 2135 con-
trols for 668 499 markers. For the Korean GWAS (SeBCS1),
Affymetrix Genome-Wide Human SNP Array 6.0 was used. After
quality control exclusions, the final data set included 2246 cases
and 2052 controls for 555 117 markers. For the Japanese GWAS
(BBJ1), Illumina OmniExpress BeadChip was used. A total of 550
026 SNPs from 2642 cases and 2099 controls were included after
quality control exclusions.

Genotyping in stage II was completed at the Vanderbilt
Molecular Epidemiology Laboratory using the iPLEX Sequenom
MassArray platform for 15 148 samples from the KOHBRA/
KoGES, HCES-Br, SeBCS2, Nagoya, and Nagano studies. QC sam-
ples were used in the Sequenom assay, including one negative
control (water), two blinded duplicates and two samples from
the HapMap project in each 96-well plate. We excluded samples
or SNPs that had a genotyping call rate of< 95%. We also ex-
cluded SNPs that had a concordance with the QC samples
of< 95% or an unclear genotype call.

Statistical analysis

Imputation and haplotype estimation (phasing) were carried
out for autosomal SNPs using Minimac2 and SHAPEIT(76) with
the 1000 Genomes Project Phase 3 as the reference data for the
Chinese and Japanese GWAS. The Korean GWAS was imputed
using the 1000 Genomes Project Phase 1 as the reference. We
only included SNPs with an MAF� 0.01 and high imputation
quality (RSQR� 0.5) in three GWAS in the analyses. Association
analyses of dosage data for imputed SNPs in each stage I study
were analysed using the Mach2dat for SeBCS1 and Rvtests for
SBCGS and BBJ1 (see URLs). The first five principal components
estimated through EIGENSTRAT software (see URLs) (77) were
included in the logistic regression models for adjustment of
population structures. ORs associated with each SNP and 95%
CIs were estimated under a log-additive model. To analyze ge-
notype data, we used SAS version 9.3, which provides results
identical to those generated with dosage data using Mach2dat
and Rvtests. Summary ORs and 95% CIs for SNPs were obtained
using fixed-effect inverse variance meta-analysis using METAL
software (see URLs). Stratified analyses by ancestry and ER sta-
tus were carried out. Heterogeneity across studies, among an-
cestry groups, and according to ER status was assessed with a
Cochran’s Q test. In the combined analysis, a significant thresh-
old P-value of< 5� 10� 8 was used to determine GWAS SNPs.

In collaboration with the DRIVE GAME-ON Consortium, data
from 16 003 cases and 41 335 controls were assessed to conduct
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in silico replication of the SNPs included in stage II analyses
(Supplementary Material, Text S1). Forest plots were generated
using STATA version 23 and regional association plots were
generated using LocusZoom (see URLs). To identify proxy SNPs,
pairwise LD r2 was calculated based on the 1000 Genomes
Project Phase 3 Asian populations. All genomic references are
based on NCBI Human Genome Build 37, and P-values presented
are based on 2-sided tests.

Imputation accuracy

In the current study, 714 individuals from stage I SBCGS data
were genotyped for 28 SNPs using the iPLEX Sequenom
MassArray platform. These genotypes were used to evaluate the
imputation accuracy by examining the correlation between ar-
ray genotypes and imputed dosages. Accuracy was calculated
using Pearson correlation coefficient. The imputed data were
highly consistent with the genotype data from Sequenom for
the two SNPs identified in this study (Supplementary Material,
Table S8, squared correlation coefficient (r2)¼ 0.99 for both loci).
Similarly, imputated data and genotype data were consistent
for the remaining 26 SNPs (squared correlation coefficient
(r2)> 0.8).

eQTL analysis

We extracted the RNA-Seq V2 data (level 3) of 1006 breast cancer
tumour tissues and 94 adjacent normal tissues from the TCGA
data portal (see URLs). We also downloaded DNA methylation
data which were measured by the Illumina
HumanMethylation450 BeadChip from TCGA level 3 data. SNP
data genotyped using the Affymetrix SNP 6.0 array were also re-
trieved. Genotype data within the 1 Mb regions flanking the two
loci were extracted and then imputed using Minimac2 and
SHAPEIT with the 1000 Genomes Project Phase 3 as the refer-
ence data. Copy number variation (CNV) data for genes within a
1Mb region of the two loci for TCGA samples were collected
from the cBioPortal (see URLs) for tumour tissues. We analyzed
a total of 621 breast tumour tissues in the European population
and 55 breast tumour tissues for the Asian population sepa-
rately, including matched CNV, genotype, methylation and ex-
pression data. The eQTL analysis was performed in tumour
tissue as previously described (78,79). Briefly, we transformed
the RNA-Seq by the Expectation Maximization (RSEM) value of
each gene, and performed principal component correction in
gene expression data to remove potential batch effects.
Residual linear regression analysis was then used to detect
eQTLs while adjusting for methylation and CNV, according to
the approach proposed by Li et al. (78,79).

In addition to TCGA, we conducted eQTL analyses using the
GTEx database (see URLs), and data from the METABRIC project
(47). We extracted matched genotypes and gene expression lev-
els in a total of 1981 breast cancer tumour tissues from the
METABRIC project. Gene expression profiling was generated on
the Illumina HT12 arrays and downloaded from the Synapse
(syn1757063, see URLs). A total of 49 576 transcripts are included
in gene expression profiling and have been normalized as de-
scribed previously (47). Genotype data using the Affymetrix SNP
6.0 array were downloaded from EBI (EGAD00010000164, see
URLs). We used R package CRLMM (see URLs) to process geno-
type calls from the original image array-based data for
METABRIC (80,81). Only probes of high qualities with intensities
more than 3000 at 95% calling rate were included. Imputation

was performed on the genotypes for the 1Mb regions flanking
the two loci using Minimac2 and SHAPEIT with the 1000
Genomes Project Phase 3 as the reference data. The eQTL analy-
sis was performed using Matrix eQTL (82) to evaluate the associ-
ation between genotypes and gene expression levels. In the
current study, we focused only on the SNPs imputed with high
imputation quality (RSQR� 0.5) and an MAF� 0.01 within the
1Mb regions flanking the two newly identified risk loci to iden-
tify cis-eQTLs.

Differential gene expression analysis

To perform differential expression analysis on genes near the
newly identified loci, we extracted their expression values from
a total of 87 patients, consisting of tumour tissue sample and
the corresponding adjacent normal tissue sample from TCGA.
We first performed surrogate variable analysis on gene expres-
sion between tumour and normal tissues to reduce potential
batch effects and other artefacts (83). The full model includes
the tumour-normal comparison of interest adjusted for the
paired design, and a null model was adjusted only for the paired
design. The total number of latent factors and the values of the
surrogate variables were identified and estimated using the two
models. After adjusting for the surrogate variables, limma soft-
ware package from Bioconductor was used to extract differen-
tial expression of genes (84). False discovery rate-adjusted
(Benjamini and Hochberg method) P-values are presented (85).

Assessment of regulatory functions

We investigated the potential function of the two newly identi-
fied loci using epigenomic data from ENCODE (see URLs). First,
we investigated whether they are located in regulatory ele-
ments (i.e. promoter and enhancer) using ChromHMM annota-
tion tracks in ENCODE from the UCSC Genome Browser (see
URLs) including nine cell lines: HMEC (breast normal cell line),
GM12878, H1-hESC, K562, HepG2, HSMM, HUVEC, NHEK, and
NHLF (86). We also evaluated DNase I hypersensitive and TF
binding sites in all cell lines analyzed by ENCODE, including
breast normal cell line, HMEC, and breast cancer cell lines, T-
47D and MCF-7. We assessed the histone modification markers
H3K4Me1, H3K4Me3, and H3K27Ac in all cell lines analyzed by
ENCODE using the layered histone tracks from the UCSC
Genome Browser. Two publicly-available tools, RegulomeDB
(see URLs) (51) and HaploReg V4 (see URLs) (49), were also used
to evaluate candidate functional variants.

URLs.
UCSC Genome Browser, http://genome.ucsc.edu/ last

accessed on March, 2016
DRIVE GAME-ON Consortium, http://gameon.dfci.harvard.

edu last accessed on March, 2016.
Minimac2 & SHAPEIT, https://imputationserver.sph.umich.

edu/ last accessed on March, 2016.
The Cancer Genome Atlas (TCGA), http://cancergenome.nih.

gov/ last accessed on March, 2016
cBioPortal, http://www.cbioportal.org/public-portal/ last

accessed on March, 2016.
Genotype-Tissue Expression (GTEx), http://www.ncbi.nlm.

nih.gov/gtex/GTEX2/gtex.cgi last accessed on March, 2016.
ENCODE Project, http://genome.ucsc.edu/ last accessed on

March, 2016.
EIGENSTRAT, http://genepath.med.harvard.edu/�reich/

EIGENSTRAT.htm last accessed on March, 2016.
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HapMap Project, http://hapmap.ncbi.nlm.nih.gov/ last
accessed on March, 2016.

Rvtests, http://genome.sph.umich.edu/wiki/RvTests last
accessed on March, 2016.

Mach2dat, http://genome.sph.umich.edu/wiki/Mach2dat:_
Association_with_MACH_output last accessed on March, 2016.

METAL, http://www.sph.umich.edu/csg/abecasis/metal last
accessed on March, 2016.

Synapse, https://www.synapse.org/ last accessed on March,
2016.

EBI, https://www.ebi.ac.uk/ last accessed on March, 2016.
R version 3.2.0, http://www.r-project.org/ last accessed on

March, 2016.
Genotype Calling (CRLMM) R package, http://bioconductor.
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SAS version 9.3, http://www.sas.com/ last accessed on

March, 2016.
STATA version 23, http://www.stata.com/ last accessed on
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