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Sequestration of CO,, either from gas mixtures or
directly from air (direct air capture), is a technological
goal important to large-scale industrial processes
such as gas purification and the mitigation of
carbon emissions. Previously, we investigated
five porous materials, three porous metal-organic
materials (MOMs), a benchmark inorganic material,
Zeolite 13X and a chemisorbent, TEPA-SBA-15,
for their ability to adsorb CO, directly from air
and from simulated flue-gas. In this contribution,
a further 10 physisorbent materials that exhibit
strong interactions with CO, have been evaluated
by temperature-programmed desorption for their
potential utility in carbon capture applications: four
hybrid ultramicroporous materials, SIFSIX-3-Cu,
DICRO-3-Ni-i, SIFSIX-2-Cu-i and MOOFOUR-
1-Ni; five microporous MOMs, DMOF-1, ZIF-8,
MIL-101, UiO-66 and UiO-66-NH,; an ultra-
microporous MOM, Ni-4-PyC. The performance
of these MOMs was found to be negatively impacted
by moisture. Overall, we demonstrate that the
incorporation of strong electrostatics from inorganic
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moieties combined with ultramicropores offers improved CO, capture performance from even
moist gas mixtures but not enough to compete with chemisorbents.

This article is part of the themed issue ‘Coordination polymers and metal-organic
frameworks: materials by design’.

1. Introduction

Anthropogenic emissions of carbon dioxide (CO;) are accepted as a significant risk to global
climate. Atmospheric CO; concentration has surpassed 400 ppm on several occasions since 2013,
which represents an increase of over 100 ppm since pre-industrial revolution levels [1]. At the 2015
United Nations Climate Change Conference, the 196 parties in attendance signed an agreement
calling for zero net anthropogenic greenhouse gas emissions to be reached during the second
half of the twenty-first century [2]. There are two pathways currently being considered for the
reduction of CO, emissions: (i) CO; removal from COs-rich post-combustion industrial point
sources (i.e. flue-gas capture) and (ii) the removal of CO, from the atmosphere via direct air
capture (DAC) [3]. Although addressing the increase in global CO, concentrations presents a
scientific and technological challenge of the highest order [4], it also presents an opportunity
because DAC becomes more viable at higher CO; levels and CO; is a useful commodity. Carbon
capture and storage technologies focus on capturing and storing CO,. Carbon capture and
utilization looks to exploit the large volumes of CO; produced by industrial practices for use in
other applications [5]. For example, CO; is currently used as a feed gas in the chemical industry
for the production of various alcohols [6], dimethyl ether [7], biodiesel [8] and polymers [9]. These
large-scale processes are suited to the high volumes of CO, associated with post-combustion
CO; capture. However, other niche applications such as the use of CO; gas in greenhouses
to encourage photosynthesis or in algae farms to promote biofuels production may be more
applicable to smaller scale CO, capture via DAC technologies. DAC may also be feasible for
mitigating emissions from mobile sources and, if recycling costs are minimal, might represent
an approach to the introduction of new carbon negative technologies. The catch is that DAC is
handicapped by the relative availability of CO; in the atmosphere (0.0004 atm versus 0.15atm
in post-combustion capture) and, in the case of physisorption, by competition with other gases
and vapours, such as N and HO [10]. DAC is therefore much more challenging to physisorbents
than post-combustion CO, capture, but it may be practical if an adsorbent offers optimum uptake,
appropriate CO; selectivity over N and H,O and facile recyclability [11].

At present, DAC systems typically employ solid supported amine-based adsorbents, wherein
amine functional groups are tethered to the surface of cellulose [12,13], porous polymer networks
[14,15] and porous silica materials [10,16-19]. Chemisorption of CO is feasible but in order for
chemisorbents to be recycled one must reverse the chemical reaction that captures CO,. Therefore,
although chemisorbents achieve moderate CO, adsorption capacities (0.5-3.6mmolg™!) for
DAC, they also typically require elevated temperatures for sorbent regeneration (more than
100°C). It has also been found that gas constituents such as NOy, SOy and CO; itself can
negatively impact amine-modified solids by poisoning the chemisorbent and deactivating the
amine adsorption sites [20-22]. Furthermore, amine-modified materials are sometimes subject to
thermal and oxidative degradation [23,24]. DAC using physisorbent materials has been much
less studied, presumably due to the lack of suitable candidate materials. In principle, advanced
sorbents that capture CO, through highly selective physisorption offer great promise, because
they require much less energy for recycling. Unfortunately, existing classes of physisorbent
materials do not meet the requirements for DAC, mainly high CO; selectivity over Ny (Scn)
and H>O (Scw), which are major constituents of air.

Recently, we reported a systematic study of DAC performance for a number of benchmark
physisorbents [10]; prototypal metal-organic materials (MOMs) HKUST-1 and Mg-MOF-74,
a zeolite, Zeolite 13X, and a hybrid ultramicroporous material (HUM) [25], SIFSIX-3-Ni. A
highly adsorbent amine-modified chemisorbent material, TEPA-SBA-15, was included in the
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Figure1. Ten physisorbent materials were evaluated in this study. Elements C, 0, N, Si, F, Cu, Cr, Ni, Mo, Zn and Zr are represented
by grey, red, blue, yellow, pink, salmon, dark red, sky blue, orange, brown and purple, respectively; H atoms have been omitted
for clarity. The dark green net represents the second interpenetrated network in SIFSIX-2-Cu-i and DICRO-3-Ni-i.

study for comparison. All four physisorbent materials were observed to exhibit a dramatic
decrease in performance with respect to CO, uptake in the presence of water vapour. SIFSIX-
3-Ni exhibited the highest CO, uptake from DAC of the physisorbent materials at 4.071 CO, kg™
adsorbent. While the chemisorbent TEPA-SBA-15 was unaffected by water vapour, its energetics
and recyclability were not as favourable as those of SIFSIX-3-Ni. In this contribution, we
examine the performance of 10 additional benchmark physisorbent materials for capturing CO,
from flue-gas and DAC using a combination of temperature-programmed desorption (TPD),
thermogravimetric analysis (TGA) and mass spectrometry (MS). SIFSIX-3-Cu [26], DICRO-3-Ni-
i[27], MOOFOUR-1-Ni [28], SIFSIX-2-Cu-i [26], Ni-4-PyC [29], ZIF-8 [30], DMOF-1 [31], UiO-66
[32], UiO-66-NH; [33] and MIL-101 [34] were evaluated for their performance with respect to
DAC and five other CO;-rich gas mixtures. The 10 physisorbents studied herein represent two
classes of MOMs that have been widely studied for carbon capture (figure 1).

The rich structural and functional diversity of MOMs means that they can be tuned for
specific purifications and separations of gas mixtures [35]. SIFSIX-3-Cu [26], SIFSIX-2-Cu-i [26],
DICRO-3-Ni-i [27] and MOOFOUR-1-Ni [28] are hybrid ultramicroporous materials (HUMs)
[11,25,26,28,36], which exhibit ultramicropores (less than 0.7 nm) and comprise metal cation nodes
linked by two types of linkers: neutral organic ligands and anionic inorganic pillars. The use of an
appropriately charged inorganic pillar means that the resulting network is uncharged and creates
a relatively high electrostatic contribution that, when combined with tight binding sites, enables
strong interactions between adsorbent and adsorbate (large Qst) and ultra-high selectivity for
polarizable gases such as CO; versus less polarizable gases such as Np. ZIF-8 [30], DMOF-1 [31],
Ui0-66 [32], UiO-66-NH; [33] and MIL-101 [34] are prototypal examples of physisorbent MOMs,
also known as metal-organic frameworks, MOFs [37,38], or porous coordination polymers, PCPs
[39-41]. Ni-4-PyC [29] is a recently reported example of an ultramicroporous MOM and, being
built from a single small ligand; Ni-4-PyC exhibits similar pore dimensions to HUMs (0.35 and
0.48nm). However, there is a reduced electrostatic contribution due to the lack of an inorganic
pillar. These sorbents were synthesized following the literature methods (see the electronic
supplementary material). Each of the sorbents was characterized via powder X-ray diffraction
(PXRD; electronic supplementary material, figures S3-S12) to verify phase purity. Sorbents were
then subjected to solvent exchange and activation using published procedures; details for the
exchange process and activation protocols are given in the electronic supplementary material.
After activation, each sorbent was subjected to sorption experiments to verify a match with their
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Table 1. TPD coupled with mass spectrometry.

DAC (1atm; 49% RH) moist €0, (0.15 atm; 75% RH)P dry (0, (0.15 atm)
(0, I kg
—|
sorbent (="
SIFSIX-3-Ni? <8% >%% 4.07 548 62% 38% 38.69 027 100% 5549
(8.0) (93) (6.55) (76) (46) (62.29) (109)  (89.34)
T e oo L o e TR I
(VX)) (178) (0.95) (12.8) (137) (5.78) (70) (31.61)
MgMOF74a<4% ......... o S o T o e
(6.3) (1) (2.94) (68) (65) (31.71) (235)  (109.59)
T e o e T T TR
(1.5) (146) (0.99) (26.3) (93) (17.54) (140)  (93.36)
e o R T o i e
(158) (12) na.‘ (130.3) (1) na‘ (152)  nal
e T e e e e
(14.7) (88) (1.55) (101) (54) (82.68) m9)  (97.41)
TR e e T i
(1.9) (80) (1.40) (192) (172  (14.08) (3.9 (17.54)
e o o T T o TR
(1.6) (155) (1.247) (18.1) (12.3) (1.48) (31 (19.68)
s T i ow e e
(2.5) (49) (1.60) (39) (26) (25.01) (58) (37.21)
N|4Py e T T L R T R TR T ey
(33) (154) (1.74) (15.6) (10.1) (8.20) (26) (13.68)
TR R T e P won e
(13) (56) (0.83) 9.7) (77 (4.08) (17.3) (7.28)
TR T e S R T o TR
(23) (7.6) (1.10) (2.5) (>1) (1.16) (1.8) (0.84)
T o o e
(<1.0) (95 (0.62) Mm.2) (16.8) (3.53) (33.1)  (10.45)
e i T
(07) (195) (1.45) (8.4) (19.6) (5.30) (31.8)  (20.04)
T 2<2% ......... TR e T T
Mm.2) (237) (7.38) (513) (58.5)  (33.83) (59) (38.90)

3Previously reported adsorbents [10].
bWater saturated gas feeds were obtained by bubbling each pure gas through deionized water.
“Density for TEPA-SBA-15 is indeterminable. Mass of analyte in mg g .

reported apparent surface area, uptake capacity and isosteric enthalpy of adsorption for CO,
(Isotherms; electronic supplementary material, figures 513-522).

The CO, adsorption performance of each physisorbent was evaluated using pristine, activated
samples exposed to a specific gas mixture for a prescribed time period before being subjected to
TPD. In a typical TPD experiment, a sample was placed in a quartz reactor cell positioned within
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a tube furnace. This cell was heated to a temperature that promotes expulsion of guest molecules
from the host in the presence of He carrier gas. The exhaust gas was continuously monitored
using a mass spectrometer. These experiments provide the identity and relative quantity of gases
and vapours desorbed by the sample as a function of temperature, or, if temperature is held
constant, as a function of time. They also afford an understanding of the energy required for
recycling the adsorbent. In short, TPD experiments address relative CO, /H,O uptake and afford
at least a qualitative indication of the ease with which the sorbent can be recycled. In conjunction
with the DAC experiments where the material was exposed to laboratory atmosphere, the 10
physisorbents were also subjected to TPD-TGA experiments in which each material was exposed
to five additional gas mixtures following a protocol previously established [10]. Each of the five
gas mixtures was selected to address a different aspect of the sorbent’s performance with respect
to CO, sorption. Data from the DAC and TPD-TGA experiments on the 10 adsorbents, as well
as the five previously studied materials [10], are presented in table 1 (for full dataset of results,
see the electronic supplementary material).

2. Results and discussion

In terms of DAC from laboratory atmosphere, SIFSIX-3-Cu exhibits the highest gravimetric
uptake of CO, (7.181 COkg™!) of the 10 physisorbents examined during this study,
outperforming SIFSIX-3-Ni, the top physisorbent from our previous study. SIFSIX-3-Cu was
previously found to exhibit a high Qs (56k] mol~1) and high CO, uptake at low partial
pressure (1.24 mmol g_l) during single-component CO, adsorption experiments [11]. SIFSIX-
3-Cu exhibits a higher Qst and gravimetric uptake at 400 ppm than SIFSIX-3-Ni (50.8 kJ mol~?,
1.10mmol g~ ! respectively), which explains why the DAC uptake of CO; for SIFSIX-3-Cu (7.18
1 COykg™) is larger than that of SIFSIX-3-Ni (4.07 1 CO,kg™'). The ultramicroporous pore
channel and high electrostatic contribution of the inorganic SiFg>~ pillar is key to the DAC
performance of the SIFSIX-3-M compounds [26]. However, whereas pristine SIFSIX-3-Cu
performs best in terms of DAC performance, it was found to be inherently unstable when
exposed to elevated temperature and humidity (40°C, 75% RH). Indeed, the PXRD pattern
was completely changed (electronic supplementary material, figure S100) and surface area lost
(electronic supplementary material, figure S101).

UiO-66-NH, was observed to exhibit the next highest gravimetric uptake of CO
(5.71CO, kg™ 1) of the 10 physisorbents examined during this study. The ‘decoration’ of the
terephthalic acid linker with an amine group to form UiO-66-NH, has a significant effect
on the CO; uptake by this adsorbent compared with the parent material, UiO-66 (DAC < 1.0
1 CO, kg™1), under all adsorption conditions. The reason UiO-66-NH, outperforms UiO-66 is
again correlated with isosteric enthalpy of adsorption (Qst). UiO-66 and UiO-66-NH; exhibit Qs
values of 25.5k] mol~! and 35.1kJ mol~?, respectively [42,43]. High Qs values are reflective of
stronger adsorbate/adsorbent interactions, but they also require higher regeneration energies
during the desorption process to liberate the adsorbed CO, [44]. The improvement in CO;
adsorption and increase in enthalpy of adsorption of UiO-66-NH, over UiO-66 is attributed
to the addition of the highly polar amine group; this in turn increases the affinity of UiO-66-
NH,; towards polarizable gases such as CO; [43,45]. The addition of highly polar ligands also
leads to a considerable enhancement of CO, /N selectivity (Scn) [46,47]. The affinity of UiO-
66-NH, towards CO, SiF¢2~ has previously been observed to increase with an increase in the
amine density [48]. This phenomenon also has been observed in other amine functionalized
MOMs [49-53]. The increase in the amount of CO, adsorbed may also be as a result of a
quasi-chemisorption interaction between CO; and the functional amino group in UiO-66-NHb,
whereby CO; interacts with the amine to form anhydrous carbamates in the absence of H,O or
bicarbonate species under moist conditions as observed in other amine functionalized porous
materials [54]. This increased affinity towards CO; also improves Scw compared with that of
the parent UiO-66 material and is supported by TPD experiments, which estimate the relative
ease of regeneration of the sorbent. The DAC plot in figure 2 reveals that UiO-66-NH; requires
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Figure 2. TPD plots for DAC for the 10 sorbents studied. The red curve depicts the temperature profile used for desorption.
The MS signal for CO, and H,0 are given by the black and blue curves, respectively.

notably more energy and time to liberate CO, compared with UiO-66 and the other physisorbents
studied herein.

Comparing SIFSIX-3-Cu and Ni-4-PyC provides insight into the relative impact of two key
aspects of HUMSs: the presence of ultramicropores and the strong electrostatics by use of inorganic
pillars. The use of ultramicropores alone has been shown to significantly enhance the selective
adsorption of Hy over CO; [55] or CO, over other gases [17,56,57] via size-selective exclusion.
However, size exclusion requires very precise and uniform pore size, which is difficult to design
and has only been observed in a few instances. While both adsorbents exhibit similar pore
dimensions (3.5 and 4.8 A for Ni-4-PyC and 3.5A for SIFSIX-3-Cu), Ni-4-PyC lacks inorganic
pillars (SiF¢%~ anions), which results in a reduced electrostatic contribution and Qs values (34
versus 56 k] mol~1) [29]. This, in turn, results in lower CO; uptake at very low partial pressures
such as those in the atmosphere [26]. Ni-4-PyC exhibits lower CO, uptake (1.68 1 COrkg™!)
from the laboratory atmosphere compared with SIFSIX-3-Cu (7.18 1 CO, kg™!), which further
suggests that electrostatics plays an important role in the performance of physisorbent materials
in terms of Scn and Scw and that pore size alone does not determine the adsorption performance
of ultramicroporous materials.

SIFSIX-2-Cu-i and MOOFOUR-1-Ni performed only marginally better than the non-HUM
physisorbents. While MOOFOUR-1-Ni (1.271 CO;kg™!) has a very high Qg (56 k] mol~1), its
larger pores (ca 7 A) are borderline supermicroporous [36]. Comparing SIFSIX-2-Cu-i (less than
1.0 1 CO, kg™ 1) with SIFSIX-3-Cu, we see the former has a somewhat larger pore size (ca 5A),
but also a lower density of inorganic pillars than the latter due to the interpenetrated nature of
this compound. These two factors combine to create a lower Qst (31.9 k] mol ') for SIFSIX-2-Cu-i
and presumably account for the decreased DAC performance. Of the non-HUM physisorbents
in this study, UiO-66-NH; aside, ZIF-8 performed the best, adsorbing 1.2 1 CO, kg_1 from the
laboratory atmosphere. DMOF-1, MIL-101 and UiO-66 all adsorbed less than 1.0 1 CO kg™!
under these conditions.

When the materials were exposed to simulated flue-gas (moist 0.15 atm CO,/0.85 atm Nj),
SIFSIX-3-Cu was again the top performer of the 10 adsorbents studied herein in terms of
gravimetric CO, uptake, adsorbing 51.42 1 CO, kg™!. This is comparable to SIFSIX-3-Ni and
Mg-MOF-74, which were previously found to adsorb 38.69 1 CO, kg™! and 34.62 1 CO, kg™!,
respectively [10]. UiO-66-NH (26.12 1 CO, kg~!), MOOFOUR-1-Ni (19.85 1 CO,kg™!) and
Ni-4-PyC (12.57 1 CO, kg~!) were the next best materials under simulated flue-gas conditions.
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The addition of moisture to the gas stream significantly impacts CO, uptake by the
physisorbent materials studied herein. The gravimetric CO, uptake from moist simulated flue-
gas was reduced by up to 62% when compared with dry flue-gas results obtained for the 10
physisorbents examined in this study. The presence of water vapour in CO, containing gas
streams can have a detrimental effect on physisorbent materials both in terms of CO; adsorption
performance [10,58] and overall stability of the adsorbent [59-62]. The selectivity of sorbent
materials for CO, over HyO (Scw) is an important aspect in determining the suitability of sorbent
materials for CO;, capture via post-combustion and DAC methods. From the current study,
ZIF-8 performed best in terms of Scw for both DAC (Scw ~ 18.7) and moist simulated flue-gas
(Scw ~0.5). ZIF frameworks are inherently hydrophobic as long as the imidazolate linkers do
not contain hydrophilic functional groups [63-65]. Despite the high Scw for ZIF-8, it exhibits
low overall gravimetric CO, uptake for both DAC (1.2 1 CO, kg™!) and simulated flue-gas (1.27
1CO, kg_1 )- SIFSIX-3-Cu was the next best physisorbent in terms of CO, /HO selectivity (DAC
Scw ~10.03), which is almost double that of our previous benchmark physisorbent, SIFSIX-3-Ni
(DAC Scw ~5.43).

The regeneration performance of the 10 materials studied in this contribution was also
examined using TPD experiments (figure 2). The results of these experiments correlates well
with the isosteric enthalpy of adsorption (Qst) determined from pure CO, adsorption isotherms.
However, while pure gas isotherms can be used as an indicator of a material’s likely ability to
selectively adsorb CO; over competing gases such as Ny, TPD studies are necessary to examine
the adsorption performance of MOMs when exposed to specific adsorption conditions such
as atmosphere and simulated flue-gas conditions. The results of TPD experiments illustrate
that water competition is a significant issue when carrying out adsorption studies under
humid conditions on physisorbent materials. Consequently, chemisorbents are still the current
benchmark materials for CO capture via DAC, with CO, uptakes of up to 80.441CO, kg™!
reported in previous studies [10,12,16]. TEPA-SBA-15 exhibits the highest Scw under all
adsorption conditions. However, as mentioned previously, chemisorbent materials can suffer
from a high-energy penalty in terms of sorbent regeneration.

3. Conclusion

Capture of CO, either from flue-gas or directly from air presents a challenge but also an
opportunity to play a significant role in tackling greenhouse gases such as CO; over the coming
century. In this contribution, we examine the use of benchmark MOMs for their potential use
in CO; adsorption processes under humid conditions, particularly DAC and moist-simulated
flue-gas. Competition with water vapour was found to significantly reduce the CO; adsorption
performance of the physisorbent materials compared with anhydrous conditions. However, there
was quite a wide range in performance, with both pore size and pore chemistry affecting the
performance of physisorbents studied herein. Humid conditions exacerbated the situation and
even wider ranges of uptakes and selectivity were observed. The functionalization of organic
ligands with hydrophobic decoration, such as methyl groups in the case of ZIF-8, may be an
approach that could be used to improve Scw of physisorbents. However, our results indicate
that increased electrostatics generated by inorganic pillars in HUMs or grafted amines are most
effective at improving Qst and overall CO, adsorption performance. In conclusion, competition
with water vapour is a significant challenge for implementation of physisorbent materials in CO,
capture, either from DAC or from flue-gas. Control of pore size and pore chemistry through
crystal engineering may be a successful strategy to improve CO; capture performance even in
the presence of water vapour and must be further addressed if physisorbents are to compete
with chemisorbents in terms of uptake. However, the best physisorbents studied herein were
found to be much easier to recycle than the benchmark chemisorbent TEPA-15-SBA, suggesting
that faster and less energy intensive recycling of physisorbents could compensate for the lower
uptake values.
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