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Abstract

Objective—The goal of this study was to explore the relationship between global brain activity, 

changes in whole-brain connectivity, and changes in brain states across subjects using resting-state 

functional magnetic resonance imaging.

Methods—We extended current methods that use a sparse set of co-activation patterns to extract 

critical time points in global brain activity. Critical activity time points were defined as points 

where the global signal is greater than one standard deviation above or below the average global 

signal. Four categories of critical points were defined along dimensions of global signal intensity 

and trajectory. Voxel-based methods were used to interrogate differences in connectivity between 

these critical points.

Results—Several differences in connectivity were found in functional resting-state networks 

(RSNs) as a function of global activity. RSNs associated with cognitive functions in frontal, 

parietal, and sub-cortical regions exhibited greater whole-brain connectivity during lower global 

activity states. Meanwhile, RSNs associated with sensory functions exhibited greater whole-brain 

connectivity during the higher global activity states. Moreover, we present evidence that these 

results depend in part upon the standard deviation threshold used to define the critical points, 

suggesting critical points at different thresholds represent unique brain states.

Conclusion—Overall, the findings support the hypothesis that the brain oscillates through 

different states over the course of a resting-state study reflecting differences in RSN connectivity 

associated with global brain activity.

Significance—Increased understanding of brain dynamics may help elucidate individual 

differences in behavior and dysfunction.
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I. Introduction

Resting-state functional magnetic resonance image (rs-fMRI) enables the investigation of 

spatial and temporal patterns of brain activity without the need for an explicit behavioral 
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task. These patterns of brain activity have been used to cluster distinct brain regions to form 

resting-state networks (RSN) [1, 2]. RSNs divide the brain along known anatomical and 

functional boundaries [3], are highly reliable across populations [4, 5], and are present under 

anesthesia [6, 7] and during sleep [8]. Canonical RSNs include the default mode network 

(DMN), sensory/motor network, visual networks, salience network, and several networks 

related to attention and cognitive control [2, 9, 10]. These networks have been correlated 

with many cognitive functions [11, 12] and dysregulation of RSNs may play a key role in 

clinical disorders [13, 14]. However, these RSNs often represent “average” patterns defined 

over relatively long, continuous periods of time [15, 16] which may not permit a complete 

characterization of the temporal dynamics of these RSNs [16].

To investigate these dynamics, recent studies have begun exploring the contribution of co-

activation patterns from a sparse set of critical points in time (defined as when a particular 

key node of a network enters periods of high activity) in establishing RSNs [17-20]. For 

example, the DMN can be established using only ~20 critical points when the posterior 

cingulate cortex (PCC; a key node in the DMN) is entering periods of activity one standard 

deviation above its mean activity [17-20]. These results suggest that RSNs arise from brief, 

dynamic interactions rather than average correlated activity over sustained periods.

However, studies to date have focused on critical points identified from the activity of single 

regions of interest (ROIs) and have not explored critical points defined in the context of 

whole-brain activity. Although this global brain signal is traditionally removed during 

analysis of rs-fMRI data [21], emerging evidence suggests that key information is embedded 

within this signal [22-24]. As such, critical points defined based the global signal, instead of 

single ROIs, may help elucidate the dynamics of whole-brain connectivity in RSNs.

We hypothesized that whole-brain connectivity in RSNs would vary with the level of global 

activity, as reflected by the blood oxygenation level dependent (BOLD) signal averaged 

across the grey matter. We analyzed 100 subjects with 48 minutes of rs-fMRI data and 

extracted critical time points from the fMRI timecourse, defined as points where the grey 

matter BOLD signal was entering or exiting periods of high or low activity [17, 18]. Our 

acquisition protocol collected 40 minutes of rs-fMRI data for each subject allowing a sparse 

temporal parcellation of critical time points (less than 20% of the data) while still retaining 

sufficient data to reliably estimate voxel-based connectivity. The intrinsic connectivity 

distribution (ICD) [31], a voxel-based connectivity method, was used to assess differences in 

whole-brain connectivity between these global activity levels.

II. EXPERIMENTAL DESIGN AND SETUP

A. Motivation

The goal of this work was to investigate the relationship between the global activity of the 

brain (i.e. the global signal) and functional connectivity between well-known RSNs. We 

hypothesized that RSNs would strengthen and weaken as the global signal, g(t), changed 

over time, t. We model specific points in the trajectory of g(t) where the signal enters and 

exits periods of higher and lower activity. If networks vary in their strength as a function of 

g(t), then more extreme values of the global signal (i.e high or low global activity) should 
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offer more power to detect these differences. Additionally, by selecting only points with the 

same magnitude of g(t) relative to the standard deviation, we ensure that data for all subjects 

are equally scaled and can therefore be combined. Finally, it is likely that entering and 

exiting periods of high/low activity represents different biological processes involving 

different RSNs. As such, we propose to separate these points based on the derivative of g(t), 
g′(t). In this work we focus only on the sign of g′(t) and do not incorporate the magnitude of 

g′(t). Given the slow and narrow frequencies used for rs-fMRI (~0.01-0.1 Hz), variations in 

the magnitude of g′(t) are expected to be small.

B. Participants and Imaging Protocols

One hundred healthy right-handed adults between the ages of 18 and 65 participated in the 

study. Participants were recruited (using posters and word of mouth) from the local area. 

Subjects were screened using self-reports, and had no history of psychiatric or neurological 

illness. All participants provided written informed consent in accordance with a protocol 

approved by the Human Research Protection Program of Yale University. The analyses 

included 50 females (age=33.6±12.4) and 50 males (age=34.9±10.1); all subjects were part 

of a previous study [25].

Participants were scanned on two identically configured Siemens 3T Tim Trio scanners at 

the Yale Magnetic Resonance Research Center and were instructed to rest with their eyes 

open, to not think of anything in particular, and to not fall asleep. The first 59 participants 

were scanned using a 12-channel head coil. The remaining 41 participants were scanned 

using a 32-channel head coil. There were no significant differences in the distribution of 

males and females or ages scanned between the two head coils (see [26] for further details).

Each session began with a localizing scan, followed by a low-resolution sagittal scan for 

slice alignment, and then the collection of 25 axial-oblique T1-weighted slices aligned with 

the AC-PC such that the top slice was at the superior brain. Resting-state functional data 

were collected at the same slice locations as the T1-weighted anatomical data, using a T2*-

sensitive gradient-recalled single shot echo-planar pulse sequence (TR = 1550 ms, TE = 30 

ms, flip angle = 80 degrees, FOV = 220×220 mm2, 64×64 matrix, resolution = 3.435 × 3.425 

× 6 mm). Eight functional runs were used, each containing 240 volumes (approximately 6 

minutes, for a total of approximately 48 minutes of resting-state data). The first six volumes 

of the functional runs were discarded to allow the signal to reach a steady state. Finally, a 

high-resolution anatomical image was collected using an MPRAGE sequence (TR = 2530 

ms, TE = 2.77 ms, TI = 1100 ms, flip angle = 7°, resolution = 1 mm3).

C. Preprocessing

Images were slice-time and motion corrected using SPM5 and were iteratively smoothed 

until the smoothness for any image had a full width half maximum of approximately 6 mm 

[27, 28]. All further analysis was performed using BioImage Suite [29] unless otherwise 

specified. Several covariates were regressed from the data including linear and quadratic 

drift, a 24-parameter model of motion [30], mean cerebral-spinal fluid (CSF) signal, and 

mean white matter signal. Finally, the data were temporally smoothed with a zero mean unit 
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variance Gaussian filter (cutoff frequency=0.12 Hz). A gray matter mask was applied to the 

data so that only voxels in the gray matter were used in the calculation.

D. Definition of critical points

Critical points were defined using a modified point-process method [17, 18]. After 

preprocessing, the average gray matter timecourse was extracted for each run and each 

participant. As a result of the bandpass filtering, this global signal has a mean of zero. This 

timecourse was then normalized by dividing by the standard deviation across all time points. 

This z-score-like normalization does not change the underlying patterns of activity in the 

gray matter but allows for the timecourse for each participant to be comparably scaled. 

Critical points of activity were defined as points where the normalized signal crosses time 

points either one standard deviation above or below the average signal. A threshold of one 

standard deviation is consistent with previous work [17, 18]. If networks vary in their 

strength as a function of global activity, then extreme values should offer more power to 

detect these differences.

Positive critical points (PCPs) were defined as time points where the global signal crossed 

the threshold marking one standard deviation above the mean signal. Likewise, negative 

critical points (NCPs) were defined as time points where the global signal crossed the 

threshold marking one standard deviation below the mean signal (Fig. 1). The PCPs and 

NCPs were further delineated based on the trajectory of the global signal at the critical point 

(i.e., the sign of the derivative of the signal). This slope distinguishes whether the signal was 

entering or exiting periods of high or low activity (i.e., PCPs with a positive slope are points 

where the signal is increasing to values greater than one standard deviation above the mean, 

see Fig. 1). We define a positive trajectory of the global signal as moving away from the 

mean signal. Thus, for PCPs, a positive trajectory indicates a positive slope while, for NCPs, 

a positive trajectory indicates a negative slope. For this initial study, we only include the 

sign, and not magnitude, of the trajectory in the critical point definition. Faster or slower 

crossings may represent meaningful differences. However, given the slow nature of the 

blood oxygenation changes that the rs-fMRI signal measures, faster crossings may represent 

some level of artifact likely from motion or other physiological noise.

Altogether, we defined four sets of critical points (Fig. 1). PCP(+)'s are points where the 

trajectory of the signal is moving away from the mean and crosses one standard deviation 

above the mean. PCP(−)'s are points where the trajectory of the signal is moving towards 

from the mean and crosses one standard deviation above the mean. NCP(+)'s are points 

where the trajectory of the signal is the moving away from the mean and crosses one 

standard deviation below the mean. NCP(−)'s are points where the trajectory of the signal is 

moving towards from the mean and crosses one standard deviation below the mean.

These critical points were identified using the following algorithm. First, the global grey 

matter signal was z-score normalized. Second, time points within one standard deviation of 

the mean were set to zero and time points beyond one standard deviation from the mean 

were set to 1. Third, the derivative of this binary timecourse was estimated with a backwards 

difference operator. Critical points were identified as time points associated with a derivative 

of 1 or −1. Fourth, these critical points were categorized as PCP(+)'s, PCP(−)'s, NCP(+)'s, or 
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NCP(−)'s based on their signal trajectory and normalized signal intensity as described above. 

This algorithm was performed independently for each run and each subject.

E. Whole-brain connectivity

For each participant, frames identified as critical points of each type were concatenated for 

further analysis, resulting in four sets of data for each participant. Next, to investigate 

differences between these four sets of data, voxel-wise whole-brain functional connectivity 

was calculated independently for each of the four types of critical points and for each 

individual participant as described previously [31]. This voxel-wise whole-brain functional 

connectivity can be measured by the intrinsic connectivity distribution (ICD) efficiently. 

Voxel-based functional connectivity measures involve correlating the timecourse for any 

voxel with the timecourse of every other voxel in the grey matter. Traditionally, these 

correlations are summarized using a network theory metric, such as degree or strength. Such 

metrics can be calculated from the distribution of correlations for any voxel x. First, f(x,r) is 

defined as the distribution of the correlations (r) for the timecourse at voxel x to the 

timecourse at every other voxel in the brain and can be estimated by computing the 

histogram of these correlations. Degree (d), based on a binary graph, can be estimated as the 

integral of this distribution from any threshold τ to 1, . Strength (s) can 

be estimated as the mean of this distribution or a distribution of transformed correlations, 

, where w(r) is generally the correlation coefficients or the Fisher 

transform of the correlation coefficients. In contrast, ICD models the entire survival function 

corresponding with f(x,r). Each point on the survival function is simply degree, based on a 

binary graph, evaluated at that particular threshold, τ. The ICD approach is to parameterize 

the change in a voxel's degree as the threshold defining whether voxels are connected (i.e., 

correlation threshold) is increased. Previously [31], we showed that a stretched exponential 

decay with unknown variance parameter (α) and shape parameter (β) was sufficient to 

model this survival function. Modeling the survival function with a stretched exponential is 

equivalent to modeling the underlying distribution as a Weibull distribution: 

, where x is the spatial location of a voxel, r is a 

correlation between two timecourses, α is the variance parameter, and β is the shape 

parameter. Thus, ICD models the distribution of correlations between a voxel and every 

other voxel in the brain, with α as the parameter of interest. No thresholds are needed to 

estimate the variance or model the distribution. This algorithm was performed for all voxels 

in the gray matter resulting in a parametric image of the alpha parameter for each 

participant.

To interrogate relative differences in connectivity, each participant's alpha map was 

normalized by subtracting the mean alpha value across all voxels and dividing by the 

standard deviation across all voxels. This z-score-like normalization does not affect the 

underlying connectivity pattern but does permit the investigation of relative differences in 

connectivity in the presence of large global differences in connectivity [32]. This 

normalization also has been shown to reduce the effects of confounds related to motion [33].
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F. Common space registration

To facilitate comparisons of imaging data, all single-participant ICD results were warped to 

a common template space through the concatenation of a series of linear and non-linear 

registrations. The functional series were linearly registered to the T1 axial-oblique (2D 

anatomical) images. The 2D anatomical images were linearly registered to the MPRAGE 

(3D anatomical) images. Finally, the 3D anatomical images were non-linearly registered to 

the template brain. All transformation pairs were calculated independently and combined 

into a single transform that warps the single participant results into common space. This 

single transformation allows the individual participant images to be transformed to common 

space with only one transformation, reducing interpolation error. All transformations were 

estimated using the registration algorithms in BioImage Suite.

G. Motion Analysis

As group differences in motion have been shown to confound functional connectivity results 

[34], the frame-to-frame displacement was calculated for each critical point. No significant 

differences (p>0.8, for all comparison) in motion were found between the PCP(+)'s, the 

PCP(−)'s, the NCP(+)'s, and the NCP(−)'s. Additionally, we employed regression of a 24 

parameter motion model, z-score-like normalization, and an iterative smoothing algorithm. 

All have been shown to minimize motion confounds associated with rs-fMRI [28, 33].

H. Statistical analysis

ICD maps were analyzed using voxel-wise paired t-test to examine the differences between 

the PCP(+)'s, the PCP(−)'s, the NCP(+)'s, and the NCP(−)'s. Imaging results are shown at a 

cluster-level threshold of p<0.05 using family-wise error (FWE) correction as determined by 

AFNI's 3dClustSim program. Anatomical locations were localized using the Yale Brodmann 

Atlas.

III. RESULTS

The Results section is organized in the following manner. First, we describe characteristics 

of the global signal and of the critical points. Second, we compare critical points with 

different trajectories but with the same signal value such that PCP(+)'s are compared with 

PCP(−)'s and NCP(+)'s are compared with NCP(−)'s. Third, we compare critical points with 

different signal values but the same trajectory (PCP(+)'s vs NCP(+)'s and PCP(−)'s vs 

NCP(−)'s). Next, we compare critical points that differ both in signal value and trajectory 

(PCP(+)'s vs NCP(−)'s and PCP(−)'s vs NCP(+)'s). We then quantify how connectivity in 

canonical RSNs changes at each of these critical points, derived from mean connectivity 

from ICD estimates of whole-brain connectivity. Finally, we present qualitative results 

examining the effect of different standard deviation thresholds used to define critical points.

A. Characterizing the global signal and critical points

To characterize which regions contribute to the global signal, the timecourse for each region 

in the Shen 268 functional atlas [10, 35] was correlated with the global signal and these 

correlations were averaged across participants. As shown in Fig. 2A, 265 out of the 268 

(>98%) regions showed significant correlation (p<0.05) with the global signal, exhibiting an 
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average correlation of 0.43±0.14. The three regions that did not contribute to the global 

signal were located in the brainstem. Fig. 2B shows the distribution of the standard deviation 

of the global signal across participants.

There was a similar number of instances of each of the four categories of critical points 

(PCP(+)'s=83.1±9.7, PCP(−)'s =82.3±9.7, NCP(+)'s=83.1±9.8, NCP(−)'s=82.2±9.7). On 

average, instances of each category of these critical points occurred less than 5% of the total 

time; when combined, instances of all critical points occurred less than 20% of the total 

time. There were no significant main effects of scanner or head coil for any category of 

critical point (p>0.2, all pairwise comparisons). Women had a greater number of critical 

points (Table 1). The number of critical points was not correlated with age (p>0.15 for all 

correlations). There was no difference in the number of critical points between the eight 

resting-states runs (p>0.2 for all types). No temporal clustering of critical points was 

observed and the amount of time between adjacent critical points appears follow a 

lognormal distribution.

B. Comparison between critical points with the same intensity but different signal 
trajectories

PCP(+)'s demonstrated significantly greater whole-brain connectivity in visual areas (BA7, 

fusiform), right BA22, left motor cortex, and left thalamus when compared to PCP(−)'s (Fig. 

3A). PCP(−)'s exhibited significantly greater whole-brain connectivity in medial and lateral 

prefrontal cortex (PFC), left inferior frontal gyrus (IFG), left BA39, and posterior cingulate 

cortex (PCC) when compared to PCP(+)'s (Fig. 3A). NCP(+)'s demonstrated significantly 

greater whole-brain connectivity in bilateral fusiform and BA19 compared to NCP(−)'s (Fig. 

3B). NCP(−)'s demonstrated significantly greater whole-brain connectivity in the medial 

frontal cortex and striatum when compared to NCP(+)'s (Fig. 3B).

C. Comparison between critical points with different intensities but the same signal 
trajectory

PCP(+)'s demonstrated significantly greater whole-brain connectivity in bilateral 

sensorimotor cortex (SMC), bilateral auditory cortex, bilateral thalamus, bilateral BA22, and 

the left putamen when compared to NCP(+)'s (Fig. 4A). NCP(+)'s demonstrated 

significantly greater whole-brain connectivity in lateral PFC, medial PFC, and right lateral 

parietal lobe when compared to PCP(+)'s (Fig. 4A). PCP(−)'s demonstrated significantly 

greater whole-brain connectivity in the SMC and right BA22 when compared to NCP(−)'s 

(Fig. 4B). NCP(−)'s demonstrated significantly greater whole-brain connectivity in lateral 

PFC, right lateral parietal lobe, and striatum when compared to PCP(−)'s (Fig. 4B).

D. Comparison between critical points with different intensities and different signal 
trajectories

PCP(+)'s demonstrated significantly greater whole-brain connectivity in bilateral SMC, 

visual cortex (including the fusiform), and bilateral BA22, when compared to NCP(−)'s (Fig. 

5A). NCP(−)'s demonstrated significantly greater whole-brain connectivity in the PFC, 

caudate, and bilateral lateral parietal lobe when compared to PCP(+)'s (Fig. 5A). PCP(−)'s 

demonstrated significantly greater whole-brain connectivity in right auditory cortex, PCC, 
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medial SMC, and left lateral PFC when compared to NCP(+)'s (Fig. 5B). NCP(+)'s 

demonstrated significantly greater whole-brain connectivity in the inferior frontal lobe 

compared to PCP(−)'s (Fig. 5B).

E. Split half analysis

As our results are dependent on subsampling a large amount of data per participant, we 

performed an exploratory analysis to investigate whether less data would produce similar 

results. For each participant, we split the data into halves (the first 4 runs and the last 4 runs) 

and repeated the main analysis, resulting in two sets of the six contrasts between different 

types of critical points defined above. Using the Shen 268 functional atlas [10, 35], we 

calculated the average contrast for each of the 268 ROIs in the atlas, creating a 268-entry 

vector for each contrast from each half of the data. For each contrast, the correlation 

between vectors from both halves of the data was computed to assess similarity. As shown in 

Table 2, given the same contrasts, the two halves were significantly correlated, suggesting 

that similar network differences are detected within each half of the data.

F. Association between canonical RSNs and critical points

The previous analyses of voxelwise whole-brain connectivity suggested that specific 

networks are particularly associated with each category of critical points perhaps reflecting 

particular brain states. For example, sensory networks tended to exhibit the greatest 

connectivity during PCP(+)'s. We quantified this using eight canonical RSNs defined in Finn 

et al. [10] by calculating the average whole-brain connectivity within each RSN for each 

type of critical point. As shown in Fig. 6, each network (with the exception of the inferior 

visual network, Fig. 6H) exhibited significantly (p<0.01) greater connectivity during one 

specific category of critical point than during the other critical points. For cognitive 

networks (medial frontal (MF), frontoparietal (FPN), and sub-cortical/salience networks), 

whole-brain connectivity was greatest during NCP(−)'s. For the PCC-PFC , whole-brain 

connectivity was greatest during PCP(−)'s (Fig. 6D). For sensory networks (motor, visual 

association and visual networks), whole-brain connectivity was the greatest during PCP(+)'s 

(Fig. 6E-G). The inferior visual network was the one network to exhibit similar whole-brain 

connectivity across several different critical points (Fig. 6H).

G. Critical points for other thresholds

As our definition of critical points relies on a threshold, we repeated our main analysis using 

three additional standard deviation thresholds (SD threshold=0.5, 1.5, and 2) to explore 

threshold-related effects. Unsurprisingly, using a standard deviation threshold of 0.5 resulted 

in a 1.5-fold increase in the number of critical points identified (PCP(+)'s=122.6±12.8, 

PCP(−)'s=122.7±13.4, NCP(+)'s=122.7±13.3, NCP(−)'s =122.5±13.4). Qualitatively, similar 

associations between the critical points and whole-brain connectivity were found using a 

threshold of 0.5 (Fig. 7) compared with a threshold of 1 (Figs. 3, 4, and 5). Notably, 

however, certain associations between the motor network and the critical points were 

observed at a threshold of 1 (Figs. 3A, 3B, 4A, and 4B) but not at the lower threshold of 0.5 

(Figs. 6C-F). When using a standard deviation threshold of 1.5, the number of critical points 

decreased (PCP(+)'s=44.0±5.9, PCP(−)'s=44.1±6.1, NCP(+)'s=43.3±6.0, 

NCP(−)'s=43.0±6.1). Qualitatively, similar associations between the critical points and 
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whole-brain connectivity were found using a threshold of 2 (Fig. 8) compared with a 

threshold of 1 (Figs. 3, 4, and 5). Notable differences between results using a threshold of 

0.5 vs. 1 were observed in the fusiform and the DMN. Differences in the fusiform were less 

prominent at the higher threshold; whereas, differences in the DMN were more prominent at 

the higher thresholds. When using a standard deviation threshold of 2, the number of critical 

points decreased (PCP(+)'s=18.1±3.3, PCP(−)'s=18.3±3.3, NCP(+)'s=18.1.7±3.6, NCP(−)'s 

=17.9±3.7). Comparison between the different types of critical points is not presented as the 

number of points available at this threshold may not be enough to reliably estimate voxel-

based functional connectivity or detect meaningful differences.

Finally, we repeated this analysis using a standard deviation threshold of 0, which represents 

the lowest possible threshold. At this threshold, only the sign of derivative of the global 

signal is used to define critical points as positive and negative critical points do not exist at 

this threshold. The average number of positive slope critical points, CP(+), was 140.2±15.2 

and the average number of negative slope critical points, CP(−), was 140.0±15.5. As shown 

in Fig. 9, the comparison of CP(+)'s vs. CP(−)'s was strikingly similar to the PCP(+)'s vs. 

PCP(−)'s comparison (Fig. 3A). Together, these results further suggest the stability of many 

of the observed differences across critical point definitions.

IV. DISCUSSION

Employing a temporal parcellation scheme driven by global brain activity and a voxel-based 

measure of functional brain organization, these data suggest that connectivity in well-

established resting-state networks varies with global brain activity. We defined four brain 

states—or “critical points”—where the brain was entering or exiting periods of activity more 

than one standard deviation above or below the mean. When comparing these critical points, 

regions associated with cognitive functions in the frontal and parietal lobes and sub-cortical 

regions displayed greater whole-brain connectivity during the low activity states. 

Conversely, regions of the brain associated with sensory functions displayed greater whole-

brain connectivity during the high activity states. Finally, we demonstrated that these results 

depend on the standard deviation threshold used to define the critical points.

In accordance with these results, previous studies have shown that a large portion of typical 

RSN patterns can be captured using only a small number of critical points in the BOLD 

timecourse where a region of interest enters periods of high activity [17-20]. An 

interpretation of the current and previous results is that RSNs arise from dynamic 

interactions between regions [8] occurring only at a few specific and discrete time points, 

rather than a continuous and sustained interaction. This work builds upon these recent 

studies by extending the critical point methodology to incorporate whole-brain connectivity, 

the global signal, negative critical points, and differences in signal trajectory. Our whole-

brain connectivity results suggest that RSNs dynamically change within and between 

network connections in accordance with previous reports [16, 36, 37]. Additionally, these 

connectivity results suggest that, for many of these RSNs, a single state is associated with 

the greatest level of whole-brain connectivity. Our results suggest that NCPs and critical 

points with trajectories towards the mean hold unique and possible biologically-relevant 

information. Contrasting these different critical points revealed additional dynamics that 
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may be missed by other methods. These results agree with other studies that include NCPs 

[20].

When comparing the average whole-brain connectivity in each of the 8 RSNs, a trend 

emerged suggesting that cognitive networks displayed the greatest connectivity during the 

NCPs and sensory networks displayed the greatest connectivity during the PCPs. This result 

also emerges from pairwise comparisons as the motor/somatosensory network consistently 

demonstrated greater connectivity during the PCPs compared to the NCPs (Figs. 3A, 3B, 

4A, and 4B) and the FPN consistently demonstrated greater connectivity during the NCPs 

compared to the PCPs (Figs. 3A, 3B, and 4A). Of interest, the striatum, which supports both 

motor and cognitive functions, has higher connectivity during the NCP(−)'s, as also occurs 

for the cognitive networks (Figs. 2B, 3B, 4A). A similar relationship between sensory and 

cognitive networks has been observed in a previous study [20] where co-activation patterns 

for sensory networks occurred at the opposite sign of global activity as cognitive and 

attention networks. In addition, it has been shown that the FPN dynamically alters its 

connectivity to sensory networks in order to exert cognitive control during tasks [36, 38]. 

This interaction between connectivity and global activity may be explained by a model in 

which the brain collects sensory information during periods of higher activity and 

subsequently directs attention to this collected information for further processing during 

periods of lower activity.

While the number of critical points did not vary with scanner, head coil, or age, we did 

observe an effect of sex. Across all four types of critical points, women displayed a greater 

number of critical points either at significance or trend levels compared to men. Sexual 

dimorphism is observed in a number of neuroimaging and brain studies [39], including rs-

fMRI [5, 26, 40-42]. Previously observed sex-related differences in RSNs may be related to 

the different number of critical points as a greater number of critical points could lead to 

stronger network and better network statistics. These results also suggest a greater amount of 

“state” changes in women compared to men. These differences in critical points between 

men and women should be considered preliminary and future studies should aim to more 

carefully characterize these effects.

Our main results were generated using a standard deviation threshold of 1, which is 

consistent with previous studies using critical point methods [17-20]. We qualitatively 

investigated the impact of varying this threshold by repeating our analysis using thresholds 

of 0.5 and 1.5. Using these two thresholds produced results qualitatively similar to the main 

analysis. However, potentially interesting differences emerged between thresholds. For 

example, differences in the DMN were more pronounced at higher thresholds, while 

differences in the fusiform were more pronounced at lower thresholds. There may be, 

however, pragmatic reasons to avoid higher thresholds than 1.5; a threshold of 2 produced 

only 18 critical points, which may not be enough to reliably estimate voxel-based functional 

connectivity or detect meaningful differences. Overall, these small differences across 

thresholds may indicate that the some portion of relationship between the global signal and 

the connectivity is threshold-dependent; that is, critical points at different thresholds may 

represent unique brain states.
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A unique aspect of this study is the large amount of data available per subject. Nearly 50 

minutes of data was acquired for each subject. The large amount of data enabled the use of a 

novel temporal parcellation scheme which produced a sparse set time points (less than 20% 

of the total data for each set) that still matched the amount of time points in a typical rs-

fMRI experiment. Split-half analysis of the data suggests that similar results are detected 

using less data. However, more data may be required for each subject to fully capture 

individual differences using rs-fMRI [10, 37].

Several limitations of this study exist. One limitation is the lack of behavioral measures to 

relate to PCPs and NCPs. It remains unclear if or how these dynamic changes in 

connectivity and brain state are associated with behavior. Additionally, while the repetition 

time (TR) used is this study (1.55 seconds) is relatively short compared with standard fMRI 

sequences, the TR may still be too long to completely uncouple the relationship between 

RSNs and global activity. More rapid interactions may therefore be missed but it should be 

noted that given the typical temporal response of the blood oxygenation signal there are 

unlikely to be high frequency changes that can be measured with this mechanism. For this 

reason, we expect results consistent with the ones present in this work when shorter TR's are 

used.

Future work includes the use of higher temporal resolution multiband sequences to estimate 

finer grain dynamics, incorporating the magnitude of the derivative of the global signal into 

the estimation of critical points, and modeling all points in the global signal instead of just 

the extreme values.

V. Conclusion

As the study of RSNs progresses, our ability to understand and characterize the interactions 

between distinct RSNs will continue to increase in importance. We demonstrated that global 

brain activity moderates the interactions between RSNs in the frontal lobe, SMC, and visual 

cortex. Future studies of global brain activity, interactions between RSNs, and the 

relationship between these networks and dynamic oscillations between brain states are 

promising avenues for elucidating individual differences in behavior and dysfunction.
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Fig. 1. 
Definition of critical points. The average gray matter signal was normalized by dividing by 

the standard deviation across all timepoints. Critical points of activity were defined as points 

where the normalized signal was either one standard deviation above or below the average 

signal. PCP(+)'s are defined as points where the trajectory of the signal is moving away from 

the mean and crosses the threshold marking one standard deviation above the mean (yellow 

X). PCP(−)'s are defined as points where the trajectory of the signal is moving towards from 

the mean and crosses the threshold marking one standard deviation above the mean (green 

X). NCP(+)'s are defined as points where the trajectory of the signal is the moving away 

from the mean and crosses the threshold marking one standard deviation below the mean 

(blue X). NCP(−)'s are defined as points where the signal is trajectory of the moving towards 

from the mean and crosses the threshold marking one standard deviation below the mean 

(red X).
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Fig. 2. 
Characteristics of the global signal. A) Greater than 98% of the grey matter showed 

significant correlations with the global signal, with an average correlation of r=0.43±0.14. 

Warmer colors represent greater correlation with the global signal. B) The distribution of the 

standard deviation of the global signal showed a heavy tail. The black line represents a 

kernel density estimate of the distribution.
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Fig. 3. 
Comparison between critical points with the same intensity but different signal trajectories. 

A) PCP(+)'s compared to PCP(−)'s. Warmer colors indicate regions with greater whole-brain 

connectivity during PCP(+)'s. Cooler colors indicate regions with greater whole-brain 

connectivity during PCP(−)'s. B) NCP(+)'s compared to NCP(−)'s. Warmer colors indicate 

regions with greater whole-brain connectivity during NCP(+)'s. Cooler colors indicate 

regions with greater whole-brain connectivity during NCP(−)'s. All results shown for p<0.05 

corrected for multiple comparisons. Graphs on the right indicate which critical points are 

being compared.
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Fig. 4. 
Comparison between critical points with the same intensity but different signal trajectories. 

A) PCP(+)'s compared to PCP(−)'s. Warmer colors indicate regions with greater whole-brain 

connectivity during PCP(+)'s. Cooler colors indicate regions with greater whole-brain 

connectivity during PCP(−)'s. B) NCP(+)'s compared to NCP(−)'s. Warmer colors indicate 

regions with greater whole-brain connectivity during NCP(+)'s. Cooler colors indicate 

regions with greater whole-brain connectivity during NCP(−)'s. All results shown for p<0.05 

corrected for multiple comparisons. Graphs on the right indicate which critical points are 

being compared.
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Fig. 5. 
Comparison between critical points with different intensities and signal trajectories. A) 

PCP(+)'s compared to NCP(−)'s. Warmer colors indicate regions with greater whole-brain 

connectivity during PCP(+)'s. Cooler colors indicate regions with greater whole-brain 

connectivity during NCP(−)'s. B) PCP(−)'s compared to NCP(+)'s. Warmer colors indicate 

regions with greater whole-brain connectivity during PCP(−)'s. Cooler colors indicate 

regions with greater whole-brain connectivity during NCP(+)'s. All results shown for p<0.05 

corrected. Graphs on the right indicate which critical points are being compared.
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Fig. 6. 
RSN analysis of critical points. Whole-brain connectivity averaged across eight canonical 

RSNs revealed that specific networks exhibit the greatest connectivity during specific critical 

points. A) The medial frontal (MF) network, B) the frontoparietal (FPN) network, and C) the 

sub-cortical/salience network showed the greatest whole-brain connectivity during 

NCP(−)'s. D) The PCC-PFC network showed the greatest whole-brain connectivity during 

PCP(−)'s. E) The motor network, F) visual association network, and G) visual network 

showed the greatest whole-brain connectivity during PCP(+)'s. H) The inferior visual 

network was no associated with any critical point in particular.
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Fig. 7. 
Critical point analysis using a standard deviation threshold of 0.5. Pairwise comparisons of 

A) PCP(+)'s and PCP(−)'s, B) NCP(+)'s and NCP(−)'s, C) PCP(+)'s and NCP(+)'s, D) 

PCP(−)'s and NCP(−)'s, E) PCP(+)'s and NCP(−)'s, and F) PCP(−)'s and PCP(+)'s revealed 

similar differences as in the main analysis. All results shown for p<0.05 corrected for 

multiple comparisons.
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Fig. 8. 
Critical point analysis using a standard deviation threshold of 1.5. Pairwise comparisons of 

A) PCP(+)'s and PCP(−)'s, B) NCP(+)'s and NCP(−)'s, C) PCP(+)'s and NCP(+)'s, D) 

PCP(−)'s and NCP(−)'s, E) PCP(+)'s and NCP(−)'s, and F) PCP(−)'s and PCP(+)'s revealed 

similar differences as in the main analysis. Notably, regions in the DMN are more prominent 

whereas the fusiform is less prominent at the higher threshold of 1.5 compared to the lower 

threshold of 0.5 in Fig. 7. All results shown for p<0.05 corrected for multiple comparisons.
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Fig. 9. 
Critical point analysis using a standard deviation threshold of 0. At this threshold, only the 

sign of derivative of the global signal is used to define critical points as no distinction 

between above or below the mean is made. This comparison of CP(+)'s to CP(−)'s was 

strikingly similar to the PCP(+)'s vs PCP(−)'s comparison (Fig. 3A). All results shown for 

p<0.05 corrected for multiple comparisons.
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TABLE I

THE NUMBER OF CRITICAL POINTS FOR MEN AND WOMEN

Type Men Women p-value

PCP(+) 80.56±0.19 85.56±0.12 0.009

PCP(−) 80.58±0.14 83.72±0.05 0.110

NCP(+) 80.48±0.18 85.78±0.10 0.006

NCP(−) 80.60±0.15 83.94±0.09 0.085
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TABLE 2

SIMILARITY OF CONTRASTS USING THE 1ST AND 2ND HALVES OF THE DATA

Contrast Correlation Contrast Correlation

PCP(+)-PCP(−) 0.69 PCP(−)-NCP(−) 0.51

NCP(+)-NCP(−) 0.82 PCP(+)-NCP(−) 0.50

PCP(+)-NCP(+) 0.73 PCP(−)-NCP(+) 0.31
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