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Refractory angina pectoris is a chronic disabling condition affecting approximately 850,000 

patients in the United States.1 It is characterized by frequent angina attacks unresponsive to 

maximal medical therapy and obstructive coronary artery disease not amenable to coronary 

revascularization.2 Although major progress has been made in medical therapy and 

cardiovascular interventions,1 up to 43% of patients continue to experience symptoms and 

33% have positive exercise tests after angioplasty.3 It is now well recognized that these 

patients have concomitant microvascular disease, with reduced coronary and systemic flow 

reserve at a microvascular level and impaired endothelium-mediated vasorelaxation, i.e., 

endothelial dysfunction.4 Currently, the treatment of these patients remains a major clinical 

challenge.

To address this large unmet therapeutic need, research has focused on biological strategies 

for refractory angina. A key effort is the use of cell therapy, which has the potential to 

restore the microcirculation and improve myocardial tissue perfusion by stimulating 

neoangiogenesis.5 In this regard, accumulating evidence supports the idea that cell-based 

therapy can improve clinical outcomes, including frequency of angina episodes, myocardial 

infarction (MI) rate, and exercise tolerance, in patients with refractory angina,5, 6 and thus 

should be subject to further trials to evaluate this treatment option for this patient population.

In this issue of Circulation Research, Khan and colleagues present a comprehensive meta-

analysis of cell-based therapy for refractory angina. Importantly, their analysis addresses the 

heterogeneity of the included trials, the problem of missing data, and limitations of the 

study.5 Six single- and double-blinded, randomized clinical trials were included in this meta-

analysis, comprising a patient population that had class III–IV Canadian Cardiovascular 

Society (CCS) angina, were refractory to medical therapy, and were not coronary 

revascularization candidates (Table 1). The study included 192 patients that received cell 

therapy plus standard medical treatment and 161 patients who received only standard 

medical therapy. All six trials exhibited safety and efficacy. Three different cell types were 

examined: peripheral blood- or bone marrow-derived CD34+ cells in three trials, bone 

marrow-derived mononuclear cells (BM-MNCs) in two trials, and peripheral blood derived 
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CD133+ cells in one trial. Only the PROGENITOR7 trial was a negative trial, as it did not 

meet its primary endpoints of cardiovascular death, non-fatal MI, ischemic stroke, need for 

revascularization, and procedure-related complications. Five studies used the NOGA 

mapping navigation system for intramyocardial cell injections, and the remaining study used 

intracoronary delivery of CD34+ cells during cardiac catheterization.5

The efficacy outcomes were frequency of angina episodes, CCS angina class, exercise 

tolerance, left ventricular function, change in anti-anginal medications, and quality of life. 

The effect of stem cell treatment on myocardial perfusion was assessed by single photon 

emission computed tomography (SPECT). Clinical end-points were combined into major 

adverse cardiac events (MACE) and included MI, cardiac-related hospitalization, and 

mortality.5

Notably, the investigators found that cell-based therapy led to an improvement in myocardial 

perfusion (Figure 1). Pooled analysis from clinical trials demonstrated notable improvement 

in CCS angina class, left ventricular ejection fraction (LVEF), use of anti-anginal 

medications, and a decreased risk of MACE. Finally, the occurrence of atrial and ventricular 

arrhythmias was also significantly decreased in the cell therapy group.5 Previous meta-

analyses6,8 reported similar results of decreased angina frequency and MI rate and improved 

exercise tolerance. However, the meta-analysis by Khan et al. advances the field by 

expanding the clinical parameters of the study and including results of myocardial perfusion 

as assessed by SPECT.

Mechanisms of cell therapy for refractory angina

Cell-based therapy represents a potent biological drug that promotes tissue regeneration 

through mechanisms including direct tissue transdifferentiation, cell-cell interaction with 

host tissue, and paracrine signaling.9–12 Because cell therapy promotes neoangiogenesis, 

therein lies the potential to restore the microvasculature and ameliorate refractory anginal 

symptoms. Mechanisms underlying promotion of neoangiogenesis with cell therapy involve 

release of paracrine factors, such as vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), angiopoietin-1, and 

others. Many of these angiogenic factors are also expressed by stem cells, and various 

studies have shown direct involvement of stem cells in neoangiogenesis in ischemic tissues, 

by increasing capillary density and creating anastomoses with the host circulation.13, 14

Bone marrow-derived mononuclear cells (BM-MNCs) represent a heterogeneous population 

composed of hematopoietic stem cells, mesenchymal stem cells (MSCs), and endothelial 

progenitor cells (EPCs). In preclinical studies, BM-MNCs augmented neoangiogenesis in a 

rabbit ischemic limb model by inducing collateral vessel formation and blood perfusion.15 

Consistent with these findings, BM-MNCs injected into swine ischemic hearts produced a 

significant increase of regional blood flow and capillary density. The cardiac levels of bFGF, 

VEGF, and angiopoietin were significantly increased after stem cell injection compared with 

control.13 Moreover, angiogenic cytokines, like cardiac interleukin-1β and tumor necrosis 

factor-α, were significantly increased after BM-MNC administration and contributed to 

angiogenesis.14
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Asahara and coworkers first isolated EPCs from peripheral blood in 1997. EPCs are a 

specific population of progenitor cells that home to sites of tissue injury and participate in 

angiogenesis, by integrating with the host capillary vessels and forming capillaries.16 These 

cells are characterized by expression of surface markers, including FLK1 (VEGFR2), 

CD133, and CD34, and within a few weeks in tissue culture they begin expressing 

endothelial markers such as von Willebrand Factor and VE-cadherin.14 Their implantation 

has resulted in favorable effects on myocardial capillary density, perfusion, collagen 

deposition, and contractile function in a rodent MI model. Even in the setting of 

compromised macrovascular supply, improvement in microvascular and collateral perfusion 

can augment contractile function.17 A key mechanism for cell therapy is the stimulation of 

endogenous precursor cells,10, 11 and in this regard our group has shown that allogeneic 

MSCs injected into cardiac tissue stimulate EPC bioactivity and restore endothelial function 

in patients with idiopathic dilated and ischemic cardiomyopathy.12 Accordingly, cell therapy 

may directly activate neoangiogenic pathways by direct activation of endogenous precursor 

cells.

Other therapeutic stem cells for patients with refractory angina

What is the best cell-based treatment for the patients with refractory angina? Despite the 

positive results of the meta-analysis by Khan et al, previous clinical trials with BM-MNC 

treatment failed to show efficacy in patients with acute MI18, 19 and chronic ischemic 

cardiomyopathy,20 therefore other cell types should be investigated in future clinical trials. 

Numerous clinical and pre-clinical studies demonstrated the therapeutic efficacy of MSCs. 

For instance, in the TAC-HFT trial, MSCs improved cardiac function and structure in 

patients with chronic ischemic cardiomyopathy as compared to BM-MNCs and placebo.21 

There is accumulating data from previous studies supporting a multifactorial mechanism of 

action by MSCs.11 These cells, when applied into a region of myocardial ischemia, can 

differentiate into smooth muscle cells and endothelial cells leading to increased vessel 

density and improved cardiac function.22 While preclinical data support substantial 

trilineage transdifferentiation (cardiomyocytes, vascular smooth muscle cells, endothelial 

cells) of MSCs in the porcine infarcted heart,23 the angiogenic effects of MSCs are enhanced 

by their paracrine actions involving secretion of VEGF, bFGF, and platelet-derived growth 

factor that influence adjacent cells and result in improvement of left ventricle remodeling, 

neovascularization, tissue repair, and decreased cell apoptosis, mitochondrial dysfunction, 

and microvascular dysfunction.11 The results of the PROMETHEUS clinical trial showed 

that MSCs injected into scarred myocardial segments that were not surgically revascularized 

produce significant improvement in myocardial perfusion, contractility, and reduction in scar 

size at 18 months after treatment.24 Additionally, MSCs can be important regulators of neo-

vascularization by acting as pericytes, cells that stabilize the newly formed vasculature. 

Moreover, the paracrine mediators may also elicit autocrine effects on the biology of stem 

cells themselves. Therefore, the paracrine/autocrine mechanism extends the concept of the 

stem cell niche and includes the factors released by stem cells into the microenvironment 

controlling stem cell biology and tissue regeneration.11

Cardiac stem cells (CSCs) are a cell population that reside in the heart and are characterized 

by the expression of c-kit (CD117), stem cell antigen 1 (Sca-1), and Islet-1. In response to 
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cardiac injury, CSCs promote increased vessel density, a mechanism associated with 

improved cardiac function.25 Interestingly, transplanted bone marrow-derived MSCs 

establish cell-cell interactions with host myocardium and stimulate endogenous c-kit+ CSC 

differentiation and cardiomyocyte cell cycling.10 In preclinical studies, interactions between 

MSCs and CSCs enhance cardiac performance to a greater extent than MSCs alone and are 

associated with increased cardiac perfusion assessed by CMR.9, 26 These findings support 

the novel hypothesis that cell interactions activate stem cell niches and modulate the 

microenvironment toward regeneration.9, 26

Induced pluripotent stem cells (iPSCs) are a novel cell type, derived by reprogramming 

somatic cells via expression of exogenous transcription factors. iPSCs can differentiate into 

mature cell types, including vascular endothelial cells, which can be used for treatment of 

myocardial and limb ischemia, increasing capillary density through activation of paracrine 

mechanisms.27 Thus this cell population is a potential candidate to treat refractory angina.

Allogeneic cell therapy

To date, clinical studies have used autologous cells to treat patients with refractory angina. 

There is intriguing evidence that allogeneic cell-based therapy produces similar safety and 

potentially greater efficacy in patients with ischemic and non-ischemic heart disease.11 

Indeed, the POSEIDON clinical trial compared transendocardial injection of autologous vs. 

allogeneic bone marrow-derived MSCs, and reported similar safety profiles in the two 

groups and a significant reduction in left ventricular end diastolic volume in the allogeneic 

MSC treatment.28 Moreover, patients from the POSEIDON-DCM (NCT01392625) and 

TRIDENT (NCT02013674) trials showed improved endothelial function 3 months after 

transendocardial administration of allogeneic, but not autologous, MSCs.12 The advantages 

of allogeneic cell products also include the relative ease of accessibility from young healthy 

donors, ability to expand in high volumes, and availability for infusion. Therefore, 

allogeneic cell therapy may be a superior alternative that can be used as an “off-the shelf” 

product for patients with cardiovascular and other diseases.

Conclusion and future perspectives

Future studies should be designed to define the optimal cell type(s) to treat refractory 

angina, including combination cell therapy. One of the challenges in clinical trials has been 

the selection of appropriate time points and patient population. Most cell therapy studies 

have not examined the most important clinical end points, i.e., recurrent MI, cardiac related 

hospitalizations, and mortality, and have only followed-up the patients for 6 and/or 12 

months. Longer follow-up would allow for a better understanding of the long-term effects of 

cell therapy and mechanisms of neoangiogenesis activated by stem cells.

In summary, the meta-analysis by Khan et al. showed promise for cell-based therapy for 

patients with refractory angina who are not candidates for revascularization. While cell 

therapy is not yet a cure, it may provide benefits in terms of quality of life and longevity. 

The time for Phase 3 clinical studies has arrived in order to determine the most effective 

stem cell treatment for patients with refractory angina and also to understand the 
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mechanisms by which the cells exert their therapeutic effects. Well-designed human studies 

with meaningful endpoints will help supplement the unanswered questions and provide 

support to keep this promising innovative field of research moving forward.
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Figure 1. 
Schematic illustration of the benefits of cell-based therapy in patients with refractory angina
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Table 1

Cell therapy trials for refractory angina included in the meta-analysis by Khan et al 2016

Trial Cell type

Number 
of patients 

Total/
Treated Improved Endpoints Unchanged Endpoints

Jimenez-Quevedo et 
al 2014; Spain

Autologous
peripheral blood-
derived
CD 133+ cells

28/19 myocardial perfusion
CCS angina class
angina episodes/month
nitroglycerin use/month

cardiovascular death
non-fatal MI
ischemic stroke
need for revascularization
procedure-related 
complications

Losordo et al 2011; 
USA

autologous
peripheral blood-
derived
CD 34+ cells

167/111 angina frequency/week (low cell dose)
exercise tolerance test (low cell dose)
myocardial perfusion (low cell dose)

nitroglycerin use/day
CCS angina class
MACE

Wang et al 2010; 
China

autologous
bone marrow-
derived
CD 34+ cells

112/56 arrhythmia monitoring – no risk angina 
frequency nitroglicerine use/week exercise 
tolerance time CCS angina class

myocardial perfusion

Jan van Ramshorts 
et al 2009; 
Netherlands

autologous
BM-MNCs

50/25 arrhythmia monitoring – no risk
myocardial perfusion
left ventricle ejection fraction
CCS angina class
quality of life score

end systolic volume
end diastolic volume

Losordo et al 2007; 
USA

autologous
peripheral blood-
derived
CD 34+ cells

24/18 arrhythmia monitoring – no risk

angina frequency*

nitroglycerine use*

exercise tolerance*

CCS angina class*

myocardial perfusion*

quality-of-life testing*

Hung-Fat Tse et al 
2007; Hong Kong
Australia

Autologous
BM-MNCs

28/19 arrhythmia monitoring – no risk
intramyocardial tumor or calcification – 
absent
total exercise time
myocardial perfusion
left ventricle ejection fraction
% of regional wall thickening
NYHA functional class

LV end-systolic volume
LV end-diastolic volume
CCS angina class

*
probability values were not shown, because no power calculations to determine sample size were done

CCS = Canadian Cardiovascular Society; MACE = major adverse cardiac events; LV = left ventricular.
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