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Abstract

The effort to personalize treatment plans for cancer patients involves the identification of drug 

treatments that can effectively target the disease while minimizing the likelihood of adverse 

reactions. In this study, the gene-expression profile of 810 cancer cell lines and their response data 

to 368 small molecules from the Cancer Therapeutics Research Portal (CTRP) are analyzed to 

identify pathways with significant rewiring between genes, or differential gene dependency, 

between sensitive and non-sensitive cell lines. Identified pathways and their corresponding 

differential dependency networks are further analyzed to discover essentiality and specificity 

mediators of cell line response to drugs/compounds. For analysis we use the previously published 

*This work was supported in part by the National Cancer Institute, National Institutes of Health [1U01CA168397] and a grant from 
Dell, Inc. via its Legacy of Good program that seeks to put technology and expertise to work where it can do the most for people and 
the planet.
†D. Mahendra and H. Tran were supported by the Helios Education Foundation through the Helios Scholars at TGen summer 
internship program in biomedical research at the Translational Genomics Research Institute in Phoenix, AZ.

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 23.

Published in final edited form as:
Pac Symp Biocomput. 2016 ; 22: 497–508.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method EDDY (Evaluation of Differential DependencY). EDDY first constructs likelihood 

distributions of gene-dependency networks, aided by known gene-gene interaction, for two given 

conditions, for example, sensitive cell lines vs. non-sensitive cell lines. These sets of networks 

yield a divergence value between two distributions of network likelihoods that can be assessed for 

significance using permutation tests. Resulting differential dependency networks are then further 

analyzed to identify genes, termed mediators, which may play important roles in biological 

signaling in certain cell lines that are sensitive or non-sensitive to the drugs. Establishing statistical 

correspondence between compounds and mediators can improve understanding of known gene 

dependencies associated with drug response while also discovering new dependencies. Millions of 

compute hours resulted in thousands of these statistical discoveries. EDDY identified 8,811 

statistically significant pathways leading to 26,822 compound-pathway-mediator triplets. By 

incorporating STITCH and STRING databases, we could construct evidence networks for 14,415 

compound-pathway-mediator triplets for support. The results of this analysis are presented in a 

searchable website to aid researchers in studying potential molecular mechanisms underlying 

cells’ drug response as well as in designing experiments for the purpose of personalized treatment 

regimens.

1. Introduction

The effort to personalize treatment plans for patients involves the identification of drug 

treatments that can effectively target the disease while minimizing the likelihood of adverse 

reactions. The advent of high-throughput –omics and drug-screening data has given rise to 

the development of complex analytical approaches to identify biomarkers and drug-targets) 

[1]. Considering complex molecular mechanisms underlying complex diseases such as 

cancer, the discovery of such biomarkers and subtype-specific drug targets must be based on 

activities of multiple genes rather than individual genes. Gene Set Enrichment Analysis 

(GSEA) [2] is one popular method of testing for differential expression of gene sets between 

conditions. As pathways are capable of complex rewiring between conditions, network-

based analyses have become increasingly attractive for extraction of biological hypotheses 

from big data [3]. For example, the approaches to identify individual differential 

dependencies‡ [4–8] or condition-specific sub-networks from genome-wide dependency 

networks such as a protein-protein interaction networks have gained much interest [9–11] 

for the determination of biomarkers and subtype-specific therapeutic vulnerabilities.

Recently, we developed a novel computational method Evaluation of Differential 
DependencY (EDDY) that identifies pathways enriched with differential dependencies and 

that discovers mediators as potential therapeutic targets. The method has been further 

improved by incorporating known gene interactions as prior knowledge. The method has 

been successfully applied to the study of glioblastoma (GBM) [12, 13] and adrenocortical 

carcinoma (ACC) [14].

In this study, we present results from an integrated analysis of large-scale transcriptomic 

data of 810 cancer cell lines and large-scale high-throughput screening data of the same 

‡In this manuscript, we use ‘dependency’ to denote statistical dependencies derived from data such as co-expression, conditional 
dependencies, and ‘interaction’ to denote known relationships between genes or related molecules.
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cancer cell lines across 368 compounds using EDDY algorithm. The analysis not only 

identified the pathways enriched with differential dependencies between sensitive and non-

sensitive cancer cell lines to each compound, but also discovered mediators as potential 

novel targets of the compound via graphical analysis of differential dependency networks. 

Identified compound-pathway-mediator triplets were further queried across known drug-

gene database as well as a known gene-gene interaction database to identify corroborating 

evidence to support newly discovered compound-pathway-mediator triplets. We also 

developed a searchable website to aid researchers in studying potential molecular 

mechanisms underlying cells’ drug response and in designing experiments for the purpose of 

personalized treatment regimens, publicly available at http://biocomputing.tgen.org/

software/EDDY/CTRP.

2. Methods

2.1. High-Throughput Drug Screening of Cancer Cell Lines

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct detailed genetic 

characterization of a large panel of human cancer cell lines. The CCLE provides public 

access to DNA copy number, mRNA expression, and mutation data for 1,000 cancer cell 

lines, encompassing 36 different tumor types [15].

The Center for the Science of Therapeutics at Broad Institute performed analysis of 

sensitivity of CCLE cell lines using ~500 small molecules as perturbagens, and made the 

data available at the Cancer Therapeutics Response Portal (CTRP; http://

www.broadinstitute.org/ctrp/). The “Informer Set” consists of 481 small compounds, 

including 70 FDA approved drugs, 100 clinical candidates and 311 small-molecule probes. 

In this study, we used the transcriptomic profile and CTRP drug-response data to identify 

pathways with condition-specific rewiring of gene dependencies in the context of drug 

sensitivity [16, 17]. All of these aforementioned processed data is publicly available on the 

CTD2 data portal (https://ctd2.nci.nih.gov/dataPortal/).

2.2. EDDY: Evaluation of Differential Dependency

EDDY is a statistical approach that combines pathway-guided and differential dependency 

analyses in a probabilistic framework [12, 13]. The algorithm queries each pathway (gene 

set) in a database such as BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) or 

REACTOME [18] to test for differential dependencies across the set of genes between two 

or more conditions, by comparing gene-dependency networks constructed for each 

condition. In evaluating differential dependency, EDDY uses a network likelihood 

distribution over multiple networks constructed via resampling for each condition and 

compares the distributions between the conditions, instead of just using the single, most 

probable network from each condition. The statistical significance of the divergence is then 

estimated using asymptotic approximation of Jensen-Shannon divergence based on a beta 

distribution whose parameters are estimated using a permutation test. Probabilistic and gene-

set assisted approaches together contribute to significantly higher sensitivity and specificity 

of EDDY, compared to other methods, such as GSEA and Gene Set Co-expression Analysis 

(GSCA) [12].
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Incorporation of Prior Knowledge into EDDY—Known interactions from the Pathway 

Commons 2 (http://www.pathwaycommons.org) database are integrated into EDDY as prior 

knowledge (Figure 1). This integration has been shown to improve the interpretability of 

results from EDDY. Prior weight (Wp) is specified to determine the degree of weight that is 

given to the prior knowledge in evaluating new edges to be included in the proposed 

dependency structure. Since prior knowledge is not condition-specific, large prior weight 

could decrease EDDY’s sensitivity to detect differential dependency while reducing 

discovery of false-positive dependencies. For this analysis, a prior weight of Wp = 0.5 was 

used, meaning that any edges with half the support from data were included in the 

dependency network. The choice was based on extensive analysis of various data sets where 

Wp = 0.5 seemed to give the best compromise between sensitivity and false discovery rate 

when varying prior weight, as reported in Speyer et. al. [13].

2.3. Input Data

Transcriptomic data—BAM files of 935 CCLE cell lines downloaded from the Cancer 

Genomics Hub (https://cghub.ucsc.edu) were converted to a FASTQ format and transcript 

quantification was performed using Salmon [19] to obtain quantitative estimate of mRNA 

expression in TPM (transcripts per million). These mRNA expression values were log2 

transformed and quantized to values −1 (under-expressed), 0 (intermediate), and 1 (over-

expressed). For each gene, median average deviation (MAD) was computed and used to 

determine under-expression (MAD < −1), over-expression (MAD > 1), and intermediate.

Drug sensitivity—The cell lines were grouped into sensitive and non-sensitive classes 

using the Small-Molecule Cancer Cell Line Sensitivity Profiling CTRP 2.0 2015 Dataset, 

acquired from CTD2 (Cancer Target Discovery and Development). CTRP summarizes drug 

sensitivity between each cell line and drug pair using the area-under-percent-viability-curve 

(AUC) values [16, 17]. We used the ‘extremevalues’ R package to identify outliers in AUC 

values and group the cell lines into sensitive (−1; lower-end outliers), non-sensitive (1; 

upper-end outliers), and intermediate (0; non-outliers) groups for each compound.

In order to conduct a statistically meaningful analysis using EDDY, only those drugs that 

had at least 50 samples in each sensitive and non-sensitive class were analyzed. This reduced 

the number of drugs that could be analyzed to 368 drugs.

2.4. Identification of Mediators

For each compound, the results from EDDY analysis (Figure 2) are summarized into 1) a list 

of pathways enriched with differential dependency of statistical significance, and 2) a 

differential dependency network (DDN) that captures how gene dependency changes 

between sensitive and non-sensitive cell lines. We identified those genes that seemed to play 

a significantly different role (based on statistical dependencies) between cell lines that were 

sensitive to a drug and cell lines that were non-sensitive, and termed them as mediators.

Essentiality mediators—Each DDN is split into condition-specific dependency networks 

(CDNs) where each CDN is composed of dependencies manifested in each condition. We 

then compute between-ness centrality for each gene in both CDNs and compute the 
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difference of the betweenness centrality. The genes with the most differential betweenness 

centrality are termed essentiality mediators, as the genes with highest betweenness centrality 

in gene regulatory network are often interpreted as essential genes [20].

Specificity mediators—We also analyzed how many dependencies for each gene change 

between the CDN from sensitive cell lines and the CDN from non-sensitive cell lines. 

Formally, Let PC = EC/(EC + ES), a proportion of condition-specific edges (EC) across the 

overall number of edges (EC + ES), and ECi be the number of condition-specific edges and 

ESi be number of shared edges, of a gene i. Note EC = Σi ECi and ES = Σi ESi. We can then 

compute the probability, Pr(k ≥ ECi), that a gene i can have ECi or more condition-specific 

edges by random chance, via binomial probability B(k, ECi + ESi, PC). If this probability, 

Pr(k ≥ ECi) < 0.05, we termed gene i as specificity mediator.

2.5. Evidence Networks

However, uncertainty in interpreting these drug-pathway-mediator triplets hinders 

prioritization of hypotheses or experimental design to explore these potentially valuable 

results. We address this challenge by constructing evidence networks built with protein and 

drug interactions from the STRING and STITCH interaction databases. STITCH and 

STRING are sister knowledge-bases that store scored drug-protein interactions and protein-

protein interactions, respectively [21, 22]. As compounds can have multiple names, from 

commercial and generic labels to chemical formula and IUPAC ID, the database employed a 

unifying InChIKey to maximize comprehensiveness and to avoid false negatives.

Evidence networks were generated using a modified Yen’s K-shortest paths algorithm [23] 

with a weight function of W(EDGE) = 1 – EDGE.SCORE, so that edges with higher scores 

would be preferred over edges with lower scores (all scores are within the interval [0,1] and 

are based on how compelling the supporting evidence is). To generate the evidence 

networks, shortest paths were continually found and added to the network until there were 

no more paths from the drug to the gene or there were at least N distinct nodes in the sub-

network, where N is some arbitrary threshold. N was not a strict floor as sometimes the last 

path added to the sub-network would add two or more distinct nodes pushing the total 

number of distinct nodes over the threshold. Instead, N was used simply as a stopping 

condition and was chosen in order to prevent generation of evidence networks that would be 

too overwhelming for users to interpret. Choosing N = 5 yielded abundant evidence nets 

without excessive density. Dijkstra’s shortest-path algorithm with a Fibonacci heap was used 

as the supporting shortest-path algorithm in the modified Yen’s K-shortest- paths algorithm 

[24, 25].

3. Results

3.1. Pathway and Mediator Analysis

EDDY analysis identified a total of 8,811 statistically significant pathways and 26,822 

compound-pathway- mediator triplets. Of these, 534 pathways out of 685 BIOCARTA and 

REACTOME pathways were identified for at least one compound, and 2,401 genes out of 

4,298 unique BIOCARTA and REACTOME genes were identified as mediators for at least 
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one compound. On average each compound identified about 24 pathways and 73 mediators. 

We found that for 125 compounds, EDDY identified pathways that had the compound’s 

intended target in their DDN, and 29 mediators were identified as intended targets. Only 248 

out of the 368 compounds had intended targets that EDDY could potentially identify within 

the REACTOME and BIOCARTA pathways. Hence, EDDY identified pathways that 

included the intended target for 125 out of 248 compounds (50.4%). We tabulated (Table 1 

& Table 2) the top 10 statistically significant pathways and mediators, respectively, which 

were identified by the largest number of compounds. We can see that the top two pathways 

that were statistically significant were ERYTH (erythrocyte differentiation pathway) and 

LAIR (pathway for cells and molecules involved in local acute inflammatory response) from 

BIOCARTA. The erythrocyte differentiation pathway is the pathway responsible for the 

formation of red blood cells from the bone marrow. It is expected that this pathway would be 

altered in hematopoietic cancers and that its alteration would be involved in immune 

responses. The genes found in this pathway include TGFB2 and cytokines IL1A, IL3, IL6, 

IL9, and IL11. Cytokines are involved in various immune responses and inflammatory 

processes. The LAIR pathway includes mechanisms associated with the releases of 

cytokines IL1A and IL6. The genes IL1A and IL6 are among the top fourteen mediators 

identified by compounds in EDDY and they are also intended targets for the ERYTH and 

LAIR pathways. IL1A gene is a cytokine involved in various immune responses, 

inflammatory processes, and hematopoiesis. This protein is released in response to cell 

injury. IL6 is also a cytokine that functions in inflammation and maturation of B cells [26]. 

Indeed, upon further examination of the response data for the compounds differentially 

dependent for the ERYTH and LAIR pathways, hematopoietic cell lines were on average six 

times more prevalent in the sensitive versus the non-sensitive groups.

The MAPK signaling pathway is an important signaling pathway in cancer studies because it 

is altered in many different cancer types and regulates processes such as cell proliferation, 

cell differentiation, and cell death. MAPK1, MAPK3 and MAPK14 are mitogen-activated 

protein kinases and are members of the MAP kinase family. These genes act in signaling 

pathways (MAPK signaling, immune response) and various other cellular processes such as 

proliferation, differentiation, and cell cycle progression. MAPK14 is activated by 

environmental stresses and cytokines associated to inflammatory responses. MAP kinases 

play important roles in cascades of cellular responses and lead to direct activation of 

transcription factors [27].

3.2. Evidence Network Analysis

EDDY-CTRP analysis identified 26,822 drug-pathway-mediator triplets. Among these pairs, 

19,222 of them consisted of a drug or a gene that is contained within the STRING and 

STITCH databases. Mining STITCH and STRING for each of 19,222 unique compound-

pathway-mediator triplets yielded 14,415 evidence networks (~75%) of a path with 3 or 

fewer intermediate genes. These evidence networks are integrated into the main EDDY-

CTRP portal as searchable tables (Table 3).

We note that 102 evidence networks indeed were direct compound and mediator relations, 

among which only 34 were intended targets defined in the CTRP data and annotation. This 
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indicates STITCH/STRING contain drug-target relations that were not included in the CTRP 

database, but EDDY-CTRP analysis was able to discover those relations. Most of these 

evidence networks were for drug-pathway-mediator triplets where mediators were not direct 

targets of drug but had some known functional association to the drug (based on STITCH/

STRING database). Note that known “hub” genes such as TP53 turned out to have high 

prevalence in the constructed evidence networks. In future development, the algorithm will 

introduce weighting to counter this bias.

3.3. Interactive and Searchable Web-P ortal for EDDY-CTRP Results

The web-portal of the CTRP analysis (http://biocomputing.tgen.org/software/EDDY/CTRP) 

consists of two main views: CTRP compound-centric and mediator-centric. These views 

provide alternate perspectives on hypothesis-testing data from the EDDY analysis. CTRP 

compound-centric view (Figure 3) provides pathways enriched with differential 

dependencies for each of 368 compounds uncovered by EDDY. For each compound, a user 

can explore each identified pathway, corresponding DDNs, and mediators. Mediator-centric 

view (Figure 4) lists all compound-pathway-mediator triplets uncovered across all 

compounds and all identified pathways. For each triplet, a user can also explore evidence 

networks as well as corresponding DDNs and pathways.

4. Case Studies: Potential Alternative Drug Targets

4.1. DAPK3 as an Alternative Target for TG-101348

TG-101348 was developed as a selective inhibitor of JAK2 kinase for the treatment of 

myeloproliferative disorder [28]. EDDY identified 29 pathways significantly enriched with 

differential dependency, and 66 mediators. One of the pathways is the EPONFKB pathway, 

which has JAK2 as an identified mediator, and, examining this DDN, JAK2 has exclusively 

sensitive-specific edges. We obtained the evidence networks for 59 of 66 mediators, and one 

of those mediators with evidence network is DAPK3 which is identified as a direct target of 

TG-101348, based on STITCH database. DAPK3 was identified as a mediator for the 

“ROLE OF DCC IN REGULATING APOPTOSIS” pathway which has an altered 

differential dependency network for TG-101348. The gene product of DAPK3 was a 

mediator in this pathway due to high change of essentiality (betweenness centrality) between 

the condition-specific dependency networks TG-101348 sensitive cancer cell lines and non-

sensitive cancer cell lines. In TG-101348-sensitive cell lines, DAPK3 is highly connected in 

the network (Figure 5a), consistent with DAPK3 playing a central role in a functioning 

apoptotic network. In the non-sensitive cell lines, however, DAPK3 is not connected to the 

rest of the network (Figure 5b), corroborating the indication that disconnected DAPK3 may 

confer insensitivity to TG-101348 sensitivity.

The evidence network built for TG-101348 - DAPK3 supports this hypothesis by showing a 

direct association between TG-101348 and DAPK3, discovered from the STITCH database 

(Figure 5c). Indeed, the evidence link was from a study that showed TG-101348 can inhibit 

the kinase activity of DAPK3, indicating that TG-101348 actually does target DAPK3 in 

addition to JAK2. Additionally, an association between the downstream JAK2 modulator 

and DAPK3 was revealed suggesting further signaling interactions targeted by TG-101348 

SPEYER et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://biocomputing.tgen.org/software/EDDY/CTRP


[29]. So, while this target was not annotated in CTRP annotation for known targets of 

TG-101348, EDDY-CTRP analysis was able to detect this relationship. This example 

illustrates EDDY can discover potentially novel targets of a compound and how the evidence 

network provides further contextual information regarding the possible mechanisms of how 

mediators selected in the EDDY analysis function to alter individual drug responses.

4.2. HIF1A as an Alternative Target for Indisulam

Indisulam is a carbonic anhydrase IX (CA9) inhibitor [30]. CA9 activity in cancer is 

associated with an acidic microenvironment that favors tumor cell survival and growth [31]. 

EDDY identified the HIF pathway as a DDN associated with indisulam response. The HIF 

pathway is important for cancer-cell survival in hypoxic conditions often seen in tumors 

[32]. In the non-responsive HIF pathway DDN two genes, HIF1A and JUN exhibit high 

essentiality compared to the responsive HIF DDN (Figure 6a). HIF1A is a major gene that 

signals for cell survival in hypoxic conditions [32]. The evidence network for indisulam and 

HIF1A reveals a direct link between CA9 and HIF1A (Figure 6c). This would not be evident 

if investigator had only HIF pathway DDN evidence. Inspection of the evidence from 

STRING shows that HIF1A positively regulates CA9 expression. Cancer cells may be non-

responsive to indisulam because HIF1A increases CA9 levels such that the drug is not 

effective at tested concentration in fully inhibiting CA9. This example shows how the 

evidence network is able to mechanistically link EDDY DDNs to drug targets and expand 

understanding of signaling events associated with drug response.

5. Conclusions

While the current CTRP dataset allows the study of the correlations between genetic features 

with sensitivity to compounds, and while there are previous studies associating genes with 

compound sensitivity [33], this paper presents an unprecedented identification of pathways 

with differential dependency networks across a large number of cancer cell lines with drug-

screening data. Additionally we have created a web repository to allow clinicians and 

researchers to view the results of our analysis. The web repository provides an interactive 

method to view the results for specific drugs. Researchers can query the intended targets, 

genes, or pathways to identify types of drugs, known targets, and to discover hitherto 

unknown mediators. We integrated quick unique links to the CTRP database, MSigDB 

Database, and Gene Cards, for each of the compounds, pathways, and genes. These links 

allow users to view the analysis and information about the drug, pathway, or gene 

seamlessly. We also provide links to the interactive DDN and condition-specific CDNs so 

that users can move around the nodes and edges to better analyze the results. In addition we 

provide links to generate the Oncoprints for the sensitive and non-sensitive cell lines for 

each DDN. These links allow the users to look at the mutation data used to generate the 

DDN.

This resource can be valuable for researchers to explore potential targets of their interest and 

allow them to look at differential dependencies across a large number of cell lines and 

compounds. It may aid in studying potential molecular mechanisms underlying cells’ 
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response to drug as well as designing experiments for the purpose of personalized treatment 

regimens.

Computational methods that can efficiently predict the effectiveness of drugs based on the 

genetic makeup of tumors would provide a major breakthrough towards personalized 

therapy for cancer patients based on their tumor’s molecular markers. To strengthen the 

validity of our analysis and resource, experimental validation of the pathways identified by 

EDDY is warranted. We anticipate that this web repository will be a living resource for 

clinicians and researchers to use for designing experiments and identifying potential 

personalized treatment regimens.
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Figure 1. Knowledge-assisted EDDY Workflow
GDNi,C is a gene-dependency network constructed for a gene set Gi, for condition C, aided 

by gene interaction network GINi. A network likelihood distribution over multiple networks 

is constructed via resampling for each condition and the network score distributions between 

the conditions are compared. Permutation testing assesses the significance of the divergence 

between the distributions of scores. Differential dependency networks can then be 

constructed for statistically significant gene sets.
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Figure 2. Overall workflow of EDDY analysis of CCLE and CTRP data
EDDY identifies significant pathways from RNA expression and compound-response 

categorization of cancer cell lines. Graphical analysis of output networks (edge color 

indicating condition) identifies important genes, termed mediators. Mining knowledge bases 

yields evidence networks for compound-mediator pairings (edge color here indicating 

evidence type).

SPEYER et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
CTRP compound-centric view
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Figure 4. 
CTRP mediator-centric view
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Figure 5. 
(a) Condition-specific dependency network (CDN) for TG-101348-sensitive cell lines. 

Dashed lines represent statistical dependencies while solid lines known interactions. Size of 

nodes represents node essentiality. (b) CDN for TG-101348-insensitive cell lines. (c) 
Evidence network for the TG-101348 – DAPK3 drug-mediator pair. All edges represent a 

known association based from the STRING/STITCH databases. Blue edges represent 

mediator-gene associations, red edges drug-gene associations, and yellow edge a direct drug-

mediator association.
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Figure 6. 
(a) Condition-specific dependency network (CDN) for indisulam for drug-sensitive cell 

lines. (b) CDN for indisulam for drug-insensitive cell lines. (c) Evidence network for the 

indisulam – HIF1A drug-mediator pair.
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Table 1

Top 10 most commonly identified statistically significant pathways that were statistically significant

Pathway # Compounds Database

Erythrocyte differentiation (ERYTH) 78 BIOCARTA

Cells and molecules involved in local acute inflammatory response (LAIR) 61 BIOCARTA

CBL mediated ligand-induced downregulation of EGF receptors (CBL) 55 BIOCARTA

TERMINATION OF O GLYCAN BIOSYNTHESIS 52 REACTOME

SIGNALING BY HIPPO 49 REACTOME

NUCLEOTIDE LIKE PURINERGIC RECEPTORS 48 REACTOME

ZINC TRANSPORTERS 46 REACTOME

GRANULOCYTES 45 BIOCARTA

SYNTHESIS OF SUBSTRATES IN N GLYCAN BIOSYTHESIS 44 REACTOME

PURINE CATABOLISM 43 REACTOME
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Table 2

The top 10 most commonly identified mediators

Pathway # Compounds

MAPK1 185

MAPK3 171

GRB2 168

NUP210 158

HRAS 136

NUP37 125

AKT1 120

ORC4 114

MAPK14 114

CDK1 114
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Table 3

Distribution of the number of intermediate genes in shortest path between drug and mediator pair.

Direct targets

Indirect targets

# of intermediate genes in shortest path

1 2 3

# of pairs 102 988 3,410 9,915
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