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Abstract

Motivation: Copy number variants (CNVs) have been implicated in a variety of neurodevelopmen-

tal disorders, including autism spectrum disorders, intellectual disability and schizophrenia. Recent

advances in high-throughput genomic technologies have enabled rapid discovery of many genetic

variants including CNVs. As a result, there is increasing interest in studying the role of CNVs in the

etiology of many complex diseases. Despite the availability of an unprecedented wealth of CNV

data, methods for testing association between CNVs and disease-related traits are still under-

developed due to the low prevalence and complicated multi-scale features of CNVs.

Results: We propose a novel CNV kernel association test (CKAT) in this paper. To address the low

prevalence, CNVs are first grouped into CNV regions (CNVR). Then, taking into account the multi-

scale features of CNVs, we first design a single-CNV kernel which summarizes the similarity between

two CNVs, and next aggregate the single-CNV kernel to a CNVR kernel which summarizes the simi-

larity between two CNVRs. Finally, association between CNVR and disease-related traits is assessed

by comparing the kernel-based similarity with the similarity in the trait using a score test for variance

components in a random effect model. We illustrate the proposed CKAT using simulations and show

that CKAT is more powerful than existing methods, while always being able to control the type I

error. We also apply CKAT to a real dataset examining the association between CNV and autism

spectrum disorders, which demonstrates the potential usefulness of the proposed method.

Availability and Implementation: A R package to implement the proposed CKAT method is avail-

able at http://works.bepress.com/debashis_ghosh/.

Contacts: xzhan@fhcrc.org or debashis.ghosh@ucdenver.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CNVs are deletions and duplications of DNA segments in the gen-

ome, ranging in size from one kilobase (Kb) to several megabases

(Mb), which represent the most common form of structural genetic

variation in human genome (Lupski, 2007; Sebat et al., 2004). The

advent of high-throughput technologies such as comparative gen-

omic hybridization (CGH) and single nucleotide polymorphisms

(SNPs) microarrays has enabled rapid discovery of genetic variants
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including CNVs (Carter, 2007; Girirajan et al., 2011a). As more

and more CNVs have been detected throughout the human genome,

there is a growing appreciation for studying their potential role in

the etiology of many conditions and diseases, including autism spec-

trum disorders (ASD), intellectual disability, schizophrenia and

many other neurodevelopment disorders (Girirajan et al., 2011b,

2013; Marshall et al., 2008; Sanders et al., 2011; Sebat et al., 2007).

Understanding the relationship between CNVs and these diseases

can contribute important new insights into the underlying genetics

etiology and may further lead to effective means in prevention and

treatments. A useful means to study the complex relationship be-

tween CNVs and human health conditions is through genetic associ-

ation studies (Ionita-Laza et al., 2009; McCarroll and Altshuler,

2007; McCarroll, 2008; McCarthy et al., 2008).

A powerful mode of genetic association analysis is collapsing

methods, which study the association between a group of genetic

variants and traits. Such methods have been widely used in SNPs as-

sociation analysis (Wu et al., 2010) and rare variants association

analysis (Lee et al., 2014; Wu et al., 2011). However, these collaps-

ing methods cannot be directly applied to CNV association analysis

due to its unique features. First, SNPs are probe-based in that differ-

ent subjects have the same loci genotyped. On the other hand, CNVs

are sample-based in that different CNVs can be detected in different

subjects. It is very common that a particular rare CNV is detected in

few subjects while is absent in the rest. In other words, a typical

SNP data matrix is a regular matrix while a CNV data matrix is ir-

regular in that different rows (samples) have different length of col-

umns (CNVs). A SNPs collapsing method usually combines multiple

columns together for analysis. However, it is not clear how CNVs

should be grouped together in the irregular data matrix. Second, It is

more complicated to model the effect of CNVs than that of SNPs.

SNPs usually takes values 0, 1, 2 (in an additive model) representing

the copy of minor alleles. On the other hand, CNVs has multi-scale

features including a start position, an end position and a type (dele-

tion or duplication). Phenotypic heterogeneity (a deletion CNV and

a duplication CNV can have different effects) are often observed.

Also, it has been hypothesized that both CNV size (length) and

CNV type (deletion or duplication) may affect the disease risk. Due

to all these reasons, it is not straightforward to extend most current

SNP or rare variant collapsing methods (Wu et al., 2010, 2011) to

CNV association analysis.

One way to fix those aforementioned difficulties is to break the

multi-dimensional CNV information into pieces, and to apply some

collapsing methods on a certain piece. For example, the recent CNV

collapsing random effects test (CCRET) (Tzeng et al., 2015) treats

the length of CNV as fix effect, and the CNV dosage (copy number)

as random effect of interest. To test for association with traits,

kernel-based collapsing methods (Wu et al., 2010, 2011) can be eas-

ily applied to the CNV dosage (Tzeng et al., 2015). Despite its feasi-

bility, the interpretation of this method may be slightly different

from classical CNV association analysis. It is no longer the CNV ef-

fect on the disease risk, but the CNV dosage effect on the disease

risk, conditioned on the CNV length. Alternatively, instead of

breaking the multi-scale CNV information into pieces, the presence/

absence analysis is often used in case–control studies. Typically, a

contingency table is created based on counting whether a CNV is de-

tected in a subject, and then a statistical test such as Fisher’s exact

test (Agresti and Kateri, 2011), is applied to evaluate the association.

This kind of analysis only utilizes the presence/absence information

of a CNV and ignores other information, such as CNV type and

size. Thus, neither CCRET nor Fisher’s exact test exploits the full in-

formation in a CNV.

In this study, to utilize both type and size information in a CNV,

we propose the CNV kernel association test (CKAT). We first design

a single-CNV kernel which accounts for the multi-scale features of a

CNV. Intuitively speaking, the kernel is used as a similarity measure

between two CNVs. To overcome low prevalence of CNVs, we pool

CNVs together to form CNV regions (CNVRs) and carefully aggre-

gate the single-CNV kernel to a CNVR kernel which describes the

similarity between two CNVRs. Compared with a single CNV,

more samples are likely to have CNVs detected in a region which

can makes the CNVR kernel more informative. Finally, association

between CNVR and the trait is tested by comparing the similarity in

CNVRs (captured by the CNVR kernel) to that in the trait. In par-

ticular, the trait we considered in this paper is disease status. If the

CNVR similarity between two patients (or two healthy controls) is

consistently higher than the CNVR similarity between one patient

and one healthy control, then it may suggest existence of association

between the CNVR and the disease risk. Statistically speaking, the

similarity comparison is evaluated in a logistic random effect model

and the P-value for the association test is also analytically calculated

via a variance component score test in the logistic regression frame-

work. Using extensive simulation studies, we demonstrate that the

proposed CKAT always has correct type I error rate and high power

in a wide range of settings. Finally, the CKAT is applied to a real

ASD data example which provides new insights and formal testing

results for previous observations.

2 Materials and methods

2.1 Autism spectrum disorders data
All the CNV calls used in this study were generated from individuals

with autism and typically developing controls using NimbleGen

microarrays and processed as described previously (Girirajan et al.,

2011b). A Hidden Markov model (HMM)-based CNV caller bun-

dles up sets of consecutive probes and calls CNV if the region is

greater than 2 SD (standard deviation) above the mean intensity for

the chromosome (Day et al., 2007). Then post hoc analysis is to just

check individual hotspots for events, where the hotspot regions are

between 500 kbp and 5 Mbp in length and have genes that are

known to be associated with neurological development based on

previous studies (Itsara et al., 2009). The hotspot array can accur-

ately detect CNVs>50 kbp in the 120 genomic hotspots and >300

kbp CNVs in the rest of the genome. Both CNV datasets from the

cohort of ASD patients and healthy controls are publicly available

(Girirajan et al., 2011b). Specifically, the ASD cohort contains 1285

CNVs on 310 individuals, while the control data contains 1074

CNVs on 278 individuals. All CNVs are segmented and each CNV

is characterized by three factors: start and end chromosomal pos-

ition in a certain chromosome and type. The type variable is identi-

fied by HMM as either a deletion (copy number<2) or a

duplication (copy number>2).

2.2 Kernels for CNVs
Kernels have been widely used as a similarity measure to construct

statistical tests in genetics association studies (Liu et al., 2007, 2008;

Wu et al., 2010, 2011; Zhan et al., 2015a,b). A typical kernel associ-

ation test proceeds in the following way. First, an appropriate posi-

tive semi-definite kernel function kðx1; x2Þ is used to summarize the

similarities between two (multi-dimensional) genetic variants x1 and

x2. Then, this similarity on genotypes (captured by the kernel) is

compared to the similarity in phenotypes (usually captured by the

correlation coefficient if the phenotype is continuous) to test
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whether there is any association between genotype and phenotype.

A high correspondence between genotypic similarity and phenotypic

similarity may suggest existence of association. In those studies, it

has been shown that a kernel is able to pool the information across

multiple genetic variants and hence amplify the association signal

between genotype and phenotype, which further leads to powerful

tests (Wu et al., 2010, 2011). Motivated by this kind of strategy, we

first design meaningful kernels which can appropriately summarize

the similarity between two CNVs.

2.2.1 Single-CNV kernel
Let X ¼ ðXð1Þ;Xð2ÞÞ denote a CNV, where Xð1Þ is length/size of the

CNV which equals to end position minus start position, and Xð2Þ is

the type information of the CNV, taking values 1 (deletion CNV)

and 3 (duplication CNV). Considering two arbitrary CNVs X1 and

X2, we define the kernel function between two CNVs as

kðX1;X2Þ ¼ exp �
X
ð1Þ
1 �X

ð1Þ
2

� �2

q

8><>:
9>=>;� IðXð2Þ1 ¼ X

ð2Þ
2 Þ þ 1

2

" #
(1)

As mentioned before, kðX1;X2Þ is used to describe the similarity be-

tween X1 and X2. As defined in (1), both size and type of CNV con-

tribute to the kernel similarity measure. The first term is the

contribution from CNV size, which is described by a Gaussian ker-

nel function. The second term is the contribution from CNV type. It

has value 1 when two CNVs are of the same type and 0.5 otherwise.

It is possible to replace 1 and 0.5 by other values, say a and b re-

spectively. In principle, we require a>b to have a proper similarity

function. Also, we expect b>0; otherwise the contribution of CNV

length would vanish when two CNVs are of different type. The size

of a CNV, Xð1Þ, can be in the order of thousands of base pairs. Even

the size difference (X
ð1Þ
1 �X

ð1Þ
2 ) can take a wide range of values.

Compared with the second term, the first term can be really small.

That is, the contribution from CNV size vanishes under such a scen-

ario. Simulations have been conducted to study the effect of q and

the results are reported in Section 2.1 of the Supplementary mater

ials available online. Based on the simulation results, a large shape

parameter is preferred if the disease risk is truly associated with

CNV size. As long as the shape parameter is selected to be large,

then the test may be no longer sensitive to the shape parameter. In

practice, we operationally standardize the CNVR to [0,1] and set

the shape parameter q¼1. Then, the two terms in (1) are compar-

able and the corresponding test is powerful in detecting both CNV

type effect and CNV size effect in our numerical studies. Last, to ap-

propriately describe similarities for association testing purpose, we

usually need the kernel function to be positive semi-definite (Wu

et al., 2010, 2011). A proof of this is included in the Supplementary

materials available online.

2.2.2 CNVR kernel
Kernel-based association analysis are often conducted in the variant-

set level rather than single variant level (Lee et al., 2014; Wu et al.,

2010, 2011). Hence, kernel-based CNV association analysis should

focus on CNVRs with multiple CNVs instead of a single CNV

(Tzeng et al., 2015). There are two reasons for performing kernel as-

sociation analysis at the CNVR level. First, kernels can summarize

the similarity between samples in terms of their CNVs. We empha-

size that the pairwise similarity is taken on two samples, not two

CNVs. Unlike SNP data, which is probe-based, CNV data is sample-

based, which means that different samples can have totally different

CNV profiles. One sample may have 5 CNVs and another sample

may have only 1 CNV. Then it is not clear what is the similarity be-

tween the two samples in terms of CNVs, because 5 single-CNV ker-

nels can be calculated. Alternatively, a kernel compares the whole

CNV profiles (such as all CNVs in a region) is preferred. Second,

most CNVs are rare, and some even only can be found in a unique

sample. In such a scenario, using a kernel to describe similarities be-

tween samples in terms of the rare single-CNV can be less inform-

ative. Considering CNVRs can pool all CNVs information in that

region together, which further lead to higher power in detecting an

existing association. This phenomenon has been widely observed in

rare variant association studies (Lee et al., 2014; Wu et al., 2011),

where the testing unit of association analysis is usually a set of rare

variants. Therefore, we propose a CNVR kernel which describes the

sample pairwise similarity between all CNVs in a CNVR.

Suppose the CNVR is pre-fixed, and let Ri ¼ ðXi
1; . . . Xi

pi
Þ be the

CNV profiles of sample i in that region, where Xi
1; . . . Xi

pi
are CNVs

sorted according to their positions and pi is the number of CNVs in

sample i in the region. Similarly, we have a corresponding CNVs ser-

ies Rj ¼ ðXj
1; . . . Xj

pj
Þ for another sample j. Then the CNVR kernel

function between sample i and j in this particular region is defined

as

kRðRi;RjÞ ¼

0 if pipj ¼ 0

max
l¼0;1;...;pi�pj

Xpj

t¼1

kðXi
tþl;X

j
tÞ if pi � pj > 0;

max
l¼0;1;...;pj�pi

Xpi

t¼1

kðXi
t;X

j
tþlÞ if pj > pi > 0

8>>>>>>>><>>>>>>>>:
(2)

where kð�; �Þ is the single-CNV kernel defined in (1). This CNVR

kernel measures the one-to-one correspondence in the CNV se-

quences of two subjects. The maximum operation in the definition

of kRð�; �Þ searches for the best CNV-to-CNV correspondence in the

CNV profiles of sample i and j in the CNVR. Other means (e.g. by

taking average) of aggregating the single-CNV kernel to the CNVR

kernel is also possible. Due to space limitations, we leave the ques-

tion to future investigation.

As will be seen in the kernel association analysis section 2.3, in

order to build an association test, we need to guarantee positive

semi-definiteness of this new kernel kRð�; �Þ, or equivalently, positive

semi-definiteness of the corresponding kernel matrix K, where

Kij ¼ kRðRi;RjÞ; i; j ¼ 1; . . . ; n. It is possible that such a CNVR ker-

nel matrix K may not be positive semi-definite. To overcome such a

potential issue, we modify the kernel similarity matrix by reweight-

ing the self-similarities (diagonal of the kernel matrix) while preserv-

ing the similarities between distinct sample pairs. In particular, let

kmin be the smallest eigenvalue of K. If kmin < 0, we replace the ker-

nel matrix with K� ¼ K� kminI, where I is the identity matrix.

Otherwise, we keep the kernel matrix, that is, K� ¼ K. It is easy to

see that the modified kernel matrix K� is always positive semi-

definite and hence valid to be used in the kernel-based association

analysis described in the following section.

2.3 Kernel-based association analysis
In this section we propose the CKAT for evaluating the association

between disease status and CNVs. Notationally, let yi be the disease

status with yi¼1 denoting the disease group and yi¼0 denoting the

control group, where i ¼ 1; . . . ;n are subjects. Let Ri ¼ ðXi
1; . . . Xi

pi
Þ

be the CNVs within the CNVR from subject i. The following logistic

regression model is used to relate the disease risk to CNVs

logit½Prðy1 ¼ 1Þ� ¼ b0 þ Zbþ f ðRiÞ; (3)
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where Z are covariates such as age, gender, and f ð�Þ is a centered un-

known function in the space spanned by the CNVR kernel kRð�; �Þ.
Based on (3), the hypothesis of no association between disease and

CNVs can be tested as H0 : f ð�Þ ¼ 0. To test H0 : f ð�Þ ¼ 0, one way

is to treat the CNV effect vector F ¼ ðf ðR1Þ; . . . ; f ðRnÞÞ0 as a random

effect vector which is distributed as Nð0; sKÞ, where s � 0 and K is

the n�n CNVR kernel matrix. It can be seen from here that K is

treated as covariance matrix of the random effect, which needs to be

positive semi-definite. It has been shown that testing H0 : f ð�Þ ¼ 0 is

equivalent to testing H0 : s ¼ 0 in the logistic mixed effect model

(Liu et al., 2008), Moreover, s is a variance component parameter in

the logistic mixed effect model, which can be tested using a re-

stricted maximum likelihood (REML)-based score test (Liu et al.,

2008; Wu et al., 2010, 2011). Skipping technical details, the score

test statistic is Q ¼ ðy� by0Þ
0Kðy� by0Þ, where by0 is estimated under

the null model logit½Prðy1 ¼ 1Þ� ¼ b0 þ Zb. Its asymptotic exact dis-

tribution (Chen et al., 2016) is used to calculate the test P-value.

2.4 Forming CNVR
A key aspect of the proposed CKAT approach is formation of a

CNVR so that the global association between the CNVR and the

disease risk can be tested. We emphasize that the proposed CKAT is

essentially testing whether a CNVR is associated with the disease

risk. The CNVR-based analysis can pool information across mul-

tiple CNVs to overcome the low prevalence of CNVs. A similar ap-

proach has been widely adopted in the rare variants literature (Lee

et al., 2014; Wu et al., 2011).

Currently, there is no clear consensus on how to form CNVRs in

the literature. Some suggestions of forming CNVRs are available in

literature (Jeng et al., 2015; Tzeng et al., 2015). They largely depend

on the conditions or requirements of the underlying methodology.

For example, each CNVR formed in CCRET in Tzeng et al. (2015)

corresponds to each column of the input matrices. The CNVR can

have at most 1 CNV for each subject, otherwise it is not clear how

to calculate those input matrices in their current CCRET method-

ology framework (Tzeng et al., 2015). The scanning procedure in

Jeng et al. (2015) requires the region to be neither too short nor too

long. By contrast, the CKAT method is more robust to formation of

CNVRs. The CNVR in CKAT can contain any number of CNVs,

and our testing procedure is robust to the CNVR size since it is

standardized as [0,1] and we can adjust the shape parameter q to

offset the effect of CNVR size if necessary. In this paper, we used

the similar strategy as suggested in Tzeng et al. (2015) to form the

CNVR by merging overlapped CNVs. Any two CNVs/CVNRs over-

lapped with each other for any amount of base pairs are grouped to-

gether until the rest CNVs/CNVRs are all disjoint. Other schemes

are also possible but not pursued in this paper due to the limit of

space.

As can be seen from model (3), under the null hypothesis

H0 : f ð�Þ ¼ 0, Ri does not affect the disease risk. In other words,

CKAT is valid (in the sense of protecting the nominal type I error

rate) irrespective of how the CNVR is formed. A ‘well-formed’

CNVR can enhance the interpretation of association testing results.

For example, forming a CNVR based on prior biological knowledge

may lead to scientifically meaningful results. Also, it can improve

the statistical power of the test if the CNVR is formed properly. For

instance, for some rare CNVs which are only detected in very few

samples, a relative large CNVR containing those rare CNVs may im-

prove the power of the association test if these rare CNVs are causal.

However, it may also dilute the association signal when the added

CNVs are noise variables. One way to address this is through

adaptive testing (Pan et al., 2015; Zhan et al., 2015a), which is of

importance and warrants further investigation.

2.5 Simulation
We conducted extensive simulation studies (using R statistical soft-

ware) to assess the performance of CKAT and to verify that it can

correctly control type I error and have relatively high power in de-

tecting an existing association. We focused on the scenario of testing

the association between disease status and CNVs in a pre-fixed

CNVR. When multiple CNVRs were involved, depending on the

purpose, one could either apply CKAT to each CNVR separately

and then adjust for multiple testings, or combine all CNVRs as a

new and huge CNVR for testing in CKAT. Without loss of general-

ity, we assumed the CNVR to be the interval [0,1] throughout this

simulation.

Besides CKAT, two other methods, the Fisher’s exact test

(Agresti and Kateri, 2011) and the CCRET (Tzeng et al., 2015),

were also studied. Ignoring the gene–intersection effects (which are

not present in the dataset we considered in this paper), the CCRET

evaluates the association between disease risk and CNV through the

following model:

logitðpiÞ ¼ b0 þ ZLenbLen þ hDS; (4)

where pi ¼ Prðyi ¼ 1Þ is the disease risk, ZLen is the length of the

CNV, DS denotes the dosage of the CNV (1¼deletion, 2¼normal,

3¼duplication, 4¼ triplication, etc.). The parameter hDS is the ran-

dom effect distributed as Nð0; sDSKDSÞ, and KDS is the genetic simi-

larity matrix (linear kernel is used in CCRET) in terms of CNV

dosage. Then, the CCRET uses a score test to examine H0 : sDS ¼ 0.

Since the format of the input matrix CCRET requires that each

CNVR can contain at most one CNV, we compared CKAT to

Fisher’s exact test and CCRET in two separate simulations denoted

as Simulation I and Simulation II respectively, which are described

in the following.

To mimic a real ASD dataset analyzed later in this paper, a total

of 600 subjects were simulated with 300 cases and 300 controls. For

subject i; i ¼ 1; . . . 600, we randomly generated mi CNVs. Under

Simulation I (CKAT versus Fisher’s exact test), mi took values 0, 1,

2, 3 with probabilities 0.6, 0.2, 0.1, 0.1 respectively. Under

Simulation II (CKAT versus CCRET), mi took values 0, 1 with prob-

abilities 0.8, 0.2 respectively. For each CNV, we randomly simu-

lated two endpoints in the CNVR and treated the smaller one as the

start position and the larger one as the end position. When mi > 1

under Simulation I, to avoid the overlap of different CNVs, we

simulated 2mi endpoints and sorted them from smallest to largest.

The first two endpoints formed the position information of the first

CNV, the next two formed the second CNV, and so on. Finally, we

randomly simulated a Bernoulli variable with success probability

0.5 as the type of each CNV.

After the CNVs were simulated, we generated the 0/1 group

label yi from the following logistic model

logitðpiÞ ¼ b0 þ
Xmi

j¼1

½fbDel
j I½Xð2Þij ¼ 1� þ bDup

j I½Xð2Þij ¼ 3�gXð1Þij �; (5)

where pi ¼ Prðyi ¼ 1Þ; b0 ¼ �4 implies a prevalence of roughly

0.018 for ASD, Xij ¼ ðXð1Þij ;X
ð2Þ
ij Þ is the jth CNV of the ith subject,

and bDel
j ; bDup

j are the log of the odd ratio (OR) of CNV j for dele-

tion and duplication respectively. bDel
j and bDup

j shared the same ab-

solute values but might have different signs. For simplicity, we
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called a CNV risk-associated (R) if the associated bDel
j > 0 or

bDup
j > 0, protective (P) if the corresponding b-coefficient is smaller

than 0, or neutral (N) on ASD if the corresponding b-coefficient

equals 0.

Two different types (denoted by A and B) of CNVRs were con-

sidered in our simulations. Type A CNVR is homogeneous, and

without loss of generality we assumed all CNVs are deletions. Type

B CNVRs is heterogeneous, which contains both deletions and du-

plications with even probability. Both types of CNVRs are widely

observed in practical scenarios. For a type A CNVR, the deletion

CNV can be either R or P under the alternative model. For a type B

CNVR, the effects of deletions and duplications have 8 possible

scenarios (Del, Dup)¼ (R,R), (R,N), (R,P), (N,R), (N,P), (P,R),

(P,N), (P,P). For ease of presentation, we only report powers under

4 scenarios (Del, Dup)¼ (R,R), (R,N), (R,P), (P,R). Results under

other scenarios were similar and hence not reported.

Depending on comparisons between different methods and types

of CNVRs, there are in total four different simulation scenarios: I-A,

I-B, II-A and II-B. For each scenario, we assumed the effect size jbDel
j

j ¼ jbDup
j j ¼ f=2, where f ¼ ð1 ; 2; 3; 4;5Þ when it was a causal

CNV (R or P) under the alternative model, and f¼0 when the CNV

was neutral (N) under the null model. After the data was simulated,

we compared CKAT with Fisher’s exact test under Simulation I-A

and Simulation I-B, and compared CKAT with CCRET under

Simulation II-A and Simulation II-B. For each simulation scenario,

we simulated 105 datasets under the null model, and 103 datasets

under the alternative model. Then type I error rate and power were

calculated as the proportion of datasets with P-values smaller than

the nominal significance level.

3 Results

3.1 Simulation I: CKAT versus fisher’s exact test
The QQ-plots of null P-values of CKAT and Fisher’s exact test

under Simulation I-A are presented Figure 1. Those under

Simulation I-B are almost identical and hence not reported. The type

of CNVR does not make any difference under the null model, since

both types of regions have zero effects. Based on the QQ-plot,

CKAT is on top of the 45 degree line, which indicates that CKAT

can always have the correct type I error rate under different nominal

significance levels even as low as a ¼ 10�5. On the other hand,

Fisher’s exact test is a little conservative when the significance level

is a is small. The fact that CKAT is able to have very small P-values

with an appropriate probability is very desirable in genome-wide as-

sociation studies (GWAS), which often requires very small P-values

to achieve the whole-genome significance due to the heavy multiple

testing adjustment burden.

The empirical powers of CKAT and Fisher’s exact test under

two CNVR scenarios are presented in Figures 2 and 3 respectively.

For ease of presenting, only a ¼ 0:05 was used as the nominal sig-

nificance level. When the CNVR is homogeneous (Simulation I-A),

CKAT has similar powers as Fisher’s exact test with both risk-

associated CNVs or protected CNVs (Fig. 2). This is because every

CNV is a deletion under Simulation I-A, and the type information

does not affect disease risk based on (5) since the second term sim-

ply reduces to bDel
j X

ð1Þ
ij . The size information of CNVR is equiva-

lent to the presence/absence information in that CNV size>0 is

equivalent to presence of the CNV. In this sense, both CKAT and

Fisher’s exact test utilize the similar information which determines

the disease risk pi, and hence have similar powers. When the

CNVR is heterogeneous (Simulation I-B), the power patterns of

two methods can be different. If two types of CNV have the same

direction of effect, then CKAT still has similar powers as the

Fisher’s exact test, as observed at the top left panel in Figure 3.

Due to our simulation design, bDel
j ¼ bDup

j if they have the same

sign. Hence, fbj DelI½Xð2Þij ¼ 1� þ bDup
j I½Xð2Þij ¼ 3�g in (5) reduces to

bDel
j or bDup

j since I½Xð2Þij ¼ 1� þ I½Xð2Þij ¼ 3� ¼ 1. Then this is similar

to Simulation I-A where the type information of CNV does not af-

fect the disease risk, and CKAT and Fisher’s exact test again have

similar powers. However, we can see that CKAT can be much

more powerful than Fisher’s exact test when different types of

CNVs have different signs. This is because, under such a scenario,

the type information of the CNV makes a difference in disease

risk. Failing to account for this information leads to power loss in

the Fisher’s exact test.

3.2 Simulation II: CKAT versus CCRET
The QQ-plots of null P-values of CKAT and CCRET under

Simulation II-A are presented Figure 4. Those under Simulation II-B

are almost identical and hence not reported. As shown in the figure,

both CKAT and CCRET can protect the correct type I error rate at

different nominal significance levels.
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Fig. 1. �log10 P-value based QQ plots of CKAT and Fisher’s exact test under

Simulation I-A. The x axis represents �log10 expected P-values and the y axis

represents �log10 observed P-values
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Fig. 2. Empirical power of CKAT and Fisher’s exact test under Simulation I-A.

The solid line is for CKAT and the dotted line is for Fisher’s exact test
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The empirical powers of CKAT and CCRET under two CNVR

scenarios are presented in Figures 5 and 6 respectively. Under the

homogeneous CNVR scenario, model (5) reduces to logitðpiÞ ¼

b0 þ
Pmi

j¼1

bDel
j X

ð1Þ
ij . The dosage/type variable X

ð2Þ
ij has no effect on dis-

ease risk pi at all. Hence, the CCRET model logitðpiÞ ¼ b0 þ Zsize

bsize þ hDS has no testing power for H0 : hDS ¼ 0 under Simulation

II-A. On the other hand, CKAT assumes a different model as

logitðpiÞ ¼ b0 þ hðsize; typeÞ, and it is robust to detect either CNV

type effect or CNV size effect. A similar argument can explain the

same phenomenon observed under the Simulation II-B (R,R) scen-

ario. Under other scenarios of Simulation II-B, X
ð2Þ
ij can affect pi.

Hence CCRET starts to gain power, and seems to be comparable

with CKAT depending on whether the main effect (of type and size)

or the interaction effect dominates. From all power comparisons in

Figures 5 and 6, we can see that CKAT is more robust to the underly-

ing CNV-effect pattern compared with CCRET in that it can always

have good powers under each scenario. Finally, one can observe that

powers under Simulation I are much higher than those under

Simulation II. This is because there are more CNVs in the CNVR in

Simulation I than Simulation II. Under such a scenario, CKAT can be

more powerful since more information can be pooled and further

leads to amplification of the association signal.

3.3 Real data analysis
A total of 2359 CNVs was detected in both ASD samples and

healthy controls in the original study (Girirajan et al., 2011b). Most

of those CNVs were large (>50 kbp in hotspot and>300 kbp in the

rest of genome) and rare (frequency<1%). Hence, it is important to

perform the CKAT analysis in a proper CNVR to pool information

of rare CNVs together in order to gain statistical power to detect

true association signals. We first treat each chromosome as a

CNVR. Next, we picked one chromosome as an illustratory ex-

ample and further partitioned it into multiple smaller CNVRs by

merging overlapped CNVs. Other schemes of forming CNVR (e.g.

prior biological knowledge) is also possible but not explored here.

Finally, we conducted the proposed CKAT analysis on each CNVR

to test the association between CNVs in the CNVR and ASD. The

P-values of CKAT, Fisher’s exact test and CCRET are reported in

Table 1. Bonferroni correction is used for multiple testing adjust-

ment to control the family-wise error rate (FWER) of a ¼ 0:05.

Hence, the P-value threshold for a whole-genome (i.e. across all

chromosomes) significance is 0:05=23 ¼ 2:2� 10�3, where 23 is the

total number of CNVRs being tested (no CNVs were detected on

Chromosome 21 in this ASD data, and hence were not tested).

As one can see from Table 1, CCRET is less powerful and cannot

detect any significant regions in this data example. This is because

information pooling in CCRET is performed across different

CNVRs, and it requires dense CNV genotyping arrays to guarantee

a high power. In this dataset, because large and rare CNVs were

studied (Girirajan et al., 2011b), we tested each chromosome as a

CNVR. Hence, CCRET is less powerful. On the other hand, CKAT
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Fig. 3. Empirical power of CKAT and Fisher’s exact test under Simulation I-B.

The solid line is for CKAT and the dotted line is for Fisher’s exact test
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is more robust with respect to the CNVRs in that it can pool infor-

mation across multiple CNVs in an arbitrarily region. It can also

been seen from Table 1 that both CKAT and Fisher’s exact test de-

tect five significant CNVRs after multiple testing. The performance

of CKAT and Fisher’s exact test are close in this ASD data. This is

because CNVs in the ASD data are relatively large and rare

(Girirajan et al., 2011b) and previous studies indicated that large

CNVs tends to be more homogeneous in the effect of disease risk as

more causal genes might be impacted (Tzeng et al., 2015). As shown

in the left top panel of Figure 3, when the effects of deletions and du-

plications are homogeneous, both CKAT and Fisher’s exact test are

very powerful. It also partially explains why CCRET has low power

according to the left top panel of Figure 5 under the homogeneous

effect scenario. Even though CKAT and Fisher’s exact test detect the

same significant CNVRs at FWER¼0.05, the P-values of CKAT

tend to be smaller than those of Fisher’s exact test, which is consist-

ent with the observation we have made in Figure 1. This could be a

potential advantage of CKAT. Also, as shown in Figure 3, for other

types of datasets where deletions and duplications have different dir-

ections of effect on the disease-risk, CKAT is expected to be much

more powerful than Fisher’s exact test.

Of the five significant chromosomes in Table 1, Chromosome 22

was picked for further association analysis. That is, we partitioned

Chromosome 22 into smaller CNVRs to further study the associ-

ation between those CNVRs and autism. The reason of choosing

Chromosome 22 is because that it has the most CNVs among those

most significant chromosomes. We formed new smaller CNVRs in

Chromosome 22 by merging overlapped CNVs. Any two CNVs

overlapping with each other were clustered together as a CNVR,

and we expanded this CNVR until no more CNVs were overlapped

with it. Under this scheme, five mutually disjoint CNVRs were

formed (see column 1 in Table 2). For each CNVR, CKAT was

applied to test for association with autism. Based on the results re-

ported in Table 2, two regions were detected as significantly associ-

ated with autism at FWER¼0.05 level. One significant region

(chr22:17258338-19800553) is within the chromosome band

22q11.21 (chr22:16300001-20500000), which has been widely

identified as associated with autism (Girirajan et al., 2011b;

Glessner et al., 2009). The other significant region

(chr22:20645784-23362762) has not been widely linked to ASD.

However, the ADORA2A gene (chr22:23153530-23168325) within

this region may increase the risk of ASD (Freitag et al., 2010).

To summarize, the proposed CKAT can evaluate the global asso-

ciation between all CNVs within a pre-specified regions and the

disease-risk. In previous studies, disease associated CNVs are usually

identified based on qualitative observations (Girirajan et al.,

2011b). That it, putative CNVs or regions are picked as enrichments

in disease patients compared to healthy controls. On the other hand,

the proposed CKAT can provide a flexible and formal statistical

testing for the data, which can bring new insights for previous stud-

ies. Although the sample size and the number of CNVs in the ASD

dataset is modest, the application of CKAT to larger datasets and

other disease-related traits has the potential to detect putative genes

or regions which are associated with the traits.

4 Discussion

We have proposed the CKAT to evaluate the association between

CNVs and disease-related traits. The kernel implemented in CKAT is

elaborately designed so that it can capture special features of CNVs,

such as multi-dimensionality (type and size) and heterogeneity effects.

The kernel (1) is defined in a rather ad hoc fashion. Extra evaluations

of the kernel and also comparisons with other similar kernels are

available in Section 2.2 of the online Supplementary materials.

However, we do not pursue an optimal CNV kernel choice in this

paper. After the kernel is designed, we then apply the kernel strategy

in the literature (Wu et al., 2010, 2011) to test the association be-

tween CNVR and disease-related outcomes. Simulation studies show

that CKAT can always protect the type I error and have higher power

than existing methods under a wide range of scenarios. Finally,

CKAT is illustrated with a real data examining the association be-

tween CNV and autism. Many CNV regions are detected as signifi-

cantly associated with ASD. Taking Chromosome 22 as an example,

two regions are detected by CKAT. One has a well-established associ-

ation with ASD in previous studies. The other contains a putative

genes, ADORA2A, which might be functionally related to ASD.

Further work is needed to understand the biological and genetic

mechanisms of the region on ASD.

The proposed CKAT calculates the P-value of the association test

analytically, which is computationally efficient and flexible for CNV

association analysis, as demonstrated in our numerical studies.

Table 1. Testing P-values of association between ASD and CNVs in

each chromosome

Chromosome #CNVs CKAT Fisher’s exact CCRET

chr1 175 8.2e-2 3.1e-1 3.5e-2

chr2 45 1.7e-4 (*) 4.3e-4 (*) 2.4e-2

chr3 49 0 (*) 1.8e-14 (*) 1

chr4 112 8.2e-1 8.3e-1 8.6e-1

chr5 242 2.3e-2 2.3e-2 9.4e-2

chr6 17 1.2e-4 (*) 3.4e-5 (*) 1

chr7 25 1.2e-4 (*) 1.4e-4 (*) 3.1e-2

chr8 3 0.1e-1 2.5e-1 1

chr9 13 7.7e-1 7.8e-1 2.1e-1

chr10 130 4.7e-1 3.3e-1 4.2e-1

chr11 257 8.8e-1 8.0e-1 5.6e-1

chr12 3 2.7e-1 6.1e-1 1.1e-1

chr13 5 7.4e-1 1 3.2e-1

chr14 2 1.8e-1 5.0e-1 1

chr15 919 5.4e-1 2.6e-1 1

chr16 140 3.7e-1 8.4e-1 6.0e-2

chr17 27 2.3e-3 4.5e-3 2.4e-1

chr18 6 1 1 1

chr19 17 3.2e-2 8.0e-2 3.5e-2

chr20 3 1.3e-1 2.5e-1 3.0e-1

chr21 0 NA NA NA

chr22 166 0 (*) 1.3e-21 (*) 3.0e-1

chrX 2 1.4e-2 2.2e-1 1

chrY 1 2.9e-1 4.7e-1 1

# denotes the number of CNVs on that chromosome, 1.0e-2 stands for

1:0� 10�2, and (*) denotes significance after Bonferroni adjustment at fam-

ily-wise error rate (FWER) of 0.05.

Table 2. CKAT testing results of CNV regions in chromosome 22

Region # of CNVs CKAT P-value

chr22:16146386-16261271 1 3.4e-1

chr22:17258338-19800553 23 5.3e-5 (*)

chr22:20645784-23362762 138 0 (*)

chr22:26924167-27361980 3 1.0e-1

chr22:38790464-39138992 1 3.4e-1

# denotes the number of CNVs in that region and (*) denotes significance

after Bonferroni adjustment at family-wise error rate (FWER) of 0.05.
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Compared with existing methods, it always has adequate power for

detecting an existing association. Moreover, CKAT also has good per-

formance when the nominal significance level of the test is extreme,

which makes it a desirable tool in genome-wide association analysis

where multiple testing burden is usually very high. Besides serving as

a useful tool in CNV association analysis, the way of incorporating

both CNV length information and CNV type information in the CNV

kernels can be also extended to pooling information from different

data types. For example, gene-intersection (GI) is often considered as

an important feature of CNV (Tzeng et al., 2015). One can incorpor-

ate GI into the CNV kernel by using an appropriate kernel for GI and

multiple it to existing single-CNV kernel in (1). Given the increasing

availability of genome-wide information from different data sources,

this mode of analysis can shed light on integrative genomics across

multiple platforms in the foreseeable near future.
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