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Abstract

Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in

exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns

visualized through dimension reduction. This method recognizes that pairwise distance matrix be-

tween observations is sufficient to compute within and between group sums of squares necessary

to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used.

This method, however, suffers from loss of power and type I error inflation in the presence of heter-

oscedasticity and sample size imbalances.

Results: We develop a solution in the form of a distance-based Welch t-test, T 2
W, for two sample

potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type

I error and power characteristics of the new test. We compare the performance of PERMANOVA

and T 2
W in reanalysis of two existing microbiome datasets, where the methodology has

originated.

Availability and Implementation: The source code for methods and analysis of this article is avail-

able at https://github.com/alekseyenko/Tw2. Further guidance on application of these methods can

be obtained from the author.

Contact: alekseye@musc.edu

1 Introduction

The PERMANOVA test (Anderson, 2001), has been proposed for

use in numerical ecology to test for the location differences in micro-

bial communities. The relationships between these communities are

typically described by ecological distance metrics (e.g. Jaccard, Chi-

Squared, Bray-Curtis) and visualized through dimension reduction

(also referred to as ordination in numerical ecology literature). The

PERMANOVA permutation test based on (pseudo) F statistic com-

puted directly from distances is a widely accepted means of estab-

lishing statistical significance for observed patterns. This test and

the extension of this paper are related to the multivariate Behrens-

Fisher problem (Krishnamoorthy and Yu, 2004) of testing the differ-

ence in multivariate means of samples from several populations. The

underlying statistics for both distance-based tests are related to the

Hotelling T2 statistic. The PERMANOVA is more general in allow-

ing for more than two populations to be compared simultaneously.

The distance-based geometric approach; however, forgoes the need

to estimate the covariance matrices. The cost of these geometric

approaches is that they only provide omnibus tests, which are un-

able to make inferences about individual components of the multi-

variate random vectors tested.

With the revived interest in numerical ecology fueled by the avail-

ability of DNA sequencing-based high-throughput microbial commu-

nity profiling, i.e. microbiomics, the PERMANOVA test is enjoying a

new wave of popularity. Several, cautionary articles have been pub-

lished noting the undesired behavior of the test in heteroscedastic con-

ditions (Warton et al., 2012). A definitive principled solution to this

issue is still lacking, however. The consensus is to ascertain the pre-

sence of heteroscedasticity using an additional test (e.g. PERMDISP;

Anderson, 2006; Anderson et al., 2006) in case of positive

PERMANOVA results and to report both with a disclaimer that the

attribution of positive PERMANOVA test to location or dispersion
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differences cannot be made whenever both tests yield positive results.

In reality, the exactly matching multivariate spread between factor

levels can rarely be assumed and the robustness of PERMANOVA to

violations of homoscedasticity has not been characterized empirically.

1.1 Performance of PERMANOVA in heteroscedastic data
We demonstrate the adverse behavior of PERMANOVA in unbal-

anced heteroscedastic case via a simulation. Let sample one consists of

observations from 1000-dimensional uncorrelated multivariate nor-

mal distribution, where each component is standard normal (mean 0

and SD 1). Sample two is likewise 1000-dimensional uncorrelated

multivariate normal with means equal to 1=
ffiffiffiffiffiffiffiffiffiffiffi
1000
p

fraction of the

desired effect size and standard deviation equal 0.8. Thus sample one

has 20% more multivariate spread than sample two. We set the effect

size to 0, 2, 4 and 5. We compute the corresponding Euclidean dis-

tances for use with PERMANOVA test, using its implementation in

the adonis() function of the R (R Core Team, 2015) package vegan

(Oksanen et al., 2015). We repeat the simulation 1,000 times for each

set of parameters and compute the average rejection rate at a¼0.05.

Figure 1 summarizes the type I error and power characteristics for this

design with varying sample sizes. First, note that the type I error (left

most box, where effect size equal to 0) is only correct when the sam-

ples are balanced. Whenever, the number of observations in the most

dispersed sample is less than that in the other sample the type I error

is inflated. In the opposite case, hardly any rejections are made. When

there is true location difference between the samples (effect size

greater than 0), the power curves have non-typical sigmoidal shapes

corresponding to the loss of power with increasing number of obser-

vations in the overdispersed sample. However, the power curves

under balanced sample sizes (triangles) are typical. Note that if

PERMDISP is used to ascertain heteroscedasticity, only type I error in-

flation can be detected, while the dramatic loss of power cannot be

corrected. When the samples are simulated under homoscedastic scen-

ario, typical values of type I error (around nominal significance

threshold) and power characteristics are observed (Table 1). These ob-

servations suggest that PERMANOVA is robust to violations of either

the homoscedasticity or the balanced sample size assumptions, but

not both. Simultaneous violation of both assumptions leads to loss of

type I error control and loss of power.

2 Approaches

In this article, we provide a definitive and principled two-sample so-

lution to heteroscedasticity-related type I error inflation and loss of

power with PERMANOVA. We do this by demonstrating that in-

stead of the F-statistic utilized by PERMANOVA, a distance-based

Welch t-statistic can be computed. We derive this Welch t-statistic

from pairwise distance matrix. We perform an empirical study of

type I error and power properties of this statistic in the permutation

testing setup. Finally, we perform two applications of this new test

in discovery data analysis and small clinical study scenarios.

3 Materials and methods

3.1 Univariate case
In a two-sample X ¼ fx1; . . . ;xnx

g, Y ¼ fy1; . . . ; yny
g independent

and identically distributed univariate case, we are concerned with

assessing the difference between the population means of the under-

lying distributions from which xi’s and yi’s are drawn. The square of

the corresponding Welch t-statistic is

T2
W ¼

ð�x � �yÞ2

s2
x=nx þ s2

y=ny
; (1)

where �x ¼ 1=nx

P
xi and s2

x ¼ 1=ðnx � 1Þ
P
ðxi � �xÞ2 are the usual

estimates of the sample mean and variance for X, with �y and s2
y

defined similarly for Y. Observe that the sum of square differences

from the mean, which appears in the expression for sample variance,

can be written in terms of the sum of squares of pairwise differences.

X
ðxi � �xÞ2 ¼

X
i
x2

i �
2

nx

X
i

X
j
xixj þ

1

nx

X
i
xi

� �2
(2)

¼
X

i
x2

i �
1

nx

X
i

X
j
xixj (3)

¼ 1

2nx
2nx

X
i
x2

i � 2
X

i

X
i
xixj

h i
(4)

¼ 1

2nx

X
i

X
j

x2
i � 2xixj þ x2

j

h i
(5)

¼ 1

2nx

X
i

X
j
ðxi � xjÞ2 ¼

1

nx

X
i< j
ðxi � xjÞ2: (6)

This allows us to write the variance as

s2
x ¼

1

nxðnx � 1Þ
Xnx

i< j
ðxi � xjÞ2; (7)

where
Pnx

i< J denotes double summation
Pnx

i

Pnx

j¼iþ1. Thus the de-

nominator of (1) can be expressed in terms of only squares of pair-

wise differences between data points. Likewise, the difference of

the means in the numerator of (1) can be expressed in terms

of just the pairwise differences. Let Z ¼ ðx1; . . . ;xnx
; y1; . . . ; yny

Þ ¼

Fig. 1. Type I error and power characteristics of the PERMANOVA test with

potentially unequal sample sizes. The headers of the boxes indicate the simu-

lated effect size 0 (where type I error rate is determined), 2, 4 and 5. The size

of the points corresponds to the number of observations in the least dis-

persed sample. Points, where the sample sizes are balanced, are indicated by

triangles. Plot of a method with ideal type I error characteristics (left box) will

be a horizontal line at the significance threshold a¼0.05. When effect size is

greater than 0, the plots show the power characteristics. Plot of a method

with ideal power will be a horizontal line at 1.0, corresponding to perfect

power and no type II error

Table 1. Fraction of rejected null hypotheses by PERMANOVA with

simulated homoscedastic data and varying number of observa-

tions in two samples

Type I error Power, efficient size ¼ 2

Sample

size

5 10 15 20 5 10 15 20

5 0.046 — — — 0.072 — — —

10 0.041 0.059 — — 0.096 0.134 — —

15 0.051 0.049 0.047 — 0.089 0.135 0.172 —

20 0.049 0.047 0.059 0.050 0.106 0.134 0.167 0.225
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ðz1; . . . ; znxþny
Þ be the concatenation of the observations in X and

Y, then �z ¼ ðnx �x þ ny�yÞ=ðnx þ nyÞ is the sample mean of Z. We can

write:

nxny

nx þ ny
�x � �yð Þ2 ¼ nxny

nx þ ny
�x2 � 2�x�y þ �y2
� �

(8)

¼ 1

nx þ ny
nxny �x2 � nxny �x�y þ nxny�y2
�

(9)

�nxny �x�y þ n2
y �y2 � n2

y �y2 þ n2
x �x2 � n2

x �x2� (10)

¼ 1

nx þ ny
nx �x2ðnx þ nyÞ þ ny�y2ðnx þ nyÞ
�

(11)

�nx �xðnx �x þ ny�yÞ � ny�yðnx �x þ ny�yÞ� (12)

¼ nx �x2 þ ny�y2 � nx �x�z � ny�y�z þ nx�z2 þ ny�z2 (13)

�nx �x þ ny�y

nx þ ny
nx þ nyÞ�z
�

(14)

¼ ðnx �x2 � nx �x�z � nx �x�z þ nx�z2Þ (15)

þðny�y2 � ny�y�z � ny�y�z þ ny�z2Þ (16)

Now consider the first term of Equation (16).

ðnx �x2 � 2nx �x�z þ nx�z2Þ ¼
Xnx

i

ð2�x2 � �x2 � 2�x�z þ �z2Þ (17)

¼
Xnx

1
ð2xið�x � �zÞ � ð�x2 � �z2ÞÞ (18)

¼
Xnx

i
ð�x � �zÞð2xi � �x � �zÞ (19)

¼
Xnx

i
ðxi � �z � xi þ �xÞðxi � �z þ xi � �xÞ (20)

¼
Xnx

i
ðxi � �zÞ2 �

Xnx

i
ðxi � �xÞ2: (21)

The combined contribution of the first terms of (21) from �x and �y

terms of (16) can be written in terms of pairwise differences of zi’s:Xnx

i
ðxi � �zÞ2 þ

Xny

i
ðyi � �zÞ2 ¼

Xnxþny

i¼1
ðzi � �zÞ2

¼ 1

nx þ ny

X
i< j
ðzi � zjÞ2: (22)

This and Equations (6), (16) and (21) imply that the square of

mean difference is expressable in terms of sums of squares of pair-

wise differences:

�x � �yð Þ2 ¼ nx þ ny

nxny

1

nx þ ny

X
i< j
ðzi � zjÞ2 �

1

nx

X
i< j
ðxi � xjÞ2 �

1

ny

X
i< j
ðyi � yjÞ2

� 	
:

(23)

Finally, Equations (7) and (23) can be put together to form the

Welch t-statistic (1) in terms of only the squares of the pairwise

differences.

The point differences can be thought of as distances. Let

D ¼ fdijgi;j¼1;...;nxþny
be the matrix of absolute pairwise differences,

dij ¼ absðzi � zjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzi � zjÞ2

q
. The elements of D are in fact

Euclidean distances between data points in one-dimension. Now the

sums of squares can be expressed in terms of dij’s:

X
i< j
ðzi � zjÞ2 ¼

Xnxþny

i < j
i; j ¼ 1

d2
ij; (24)

X
i< j
ðxi � xjÞ2 ¼

Xnx

i < j
i; j ¼ 1

d2
ij; (25)

X
i< j
ðyi � yjÞ2 ¼

Xnxþny

i < j
i; j ¼ nx þ 1

d2
ij (26)

In terms of squares of pairwise distances the T2
W statistic can be writ-

ten as

T2
W ¼

nx þ ny

nxny
�

� 1

nx þ ny

Xnxþny

i < j

i; j ¼ 1

d2
ij �

1

nx

Xnx

i < j

i; j ¼ 1

d2
ij �

1

ny

Xnxþny

i < j

i; j ¼ nx þ 1

d2
ij

1

n2
xðnx � 1Þ

Xnx

i < j

i; j ¼ 1

d2
ij þ

1

n2
yðny � 1Þ

Xnxþny

i < j

i; j ¼ nx þ 1

d2
ij

:

(27)

Note that Equation (24) expresses total sums of squares, and

Equations (25) and (26) express the within sample sums of squares

in terms of distances, while the term in square brackets of Equation

(23) corresponds to between group sums of squares. These are the

same terms that appear in the PERMANOVA two-sample

(pseudo)F statistic computation. Here we write the PERMANOVA

statistic for the two sample case and arbitrary nx and ny:

FA ¼

1
nxþny

Pnxþny

i < j
i; j ¼ 1

d2
ij � 1

nx

Pnx

i < j
i; j ¼ 1

d2
ij � 1

ny

Pnxþny

i < j
i; j ¼ nx þ 1

d2
ij

1
nx

P
i< j

d 2
ij
þ 1

ny

P
i< j

d 2
ij

nxþny�2

: (28)

It is easy to check that when the sample sizes are balanced, nx¼ny,

or within group sums of squares are equal, 1
nx

P
i< jd

2
ij ¼ 1

ny

P
i< jd

2
ij,

then FA and T2
W differ by a multiplicative factor that only depends

on nx and ny. This means that inference under the two statistics will

be different when both unbalanced sample sizes and heteroscedastic-

ity is present, which may help T2
W correct the adverse behavior of

PERMANOVA observed in Figure 1 and Table 1.

3.2 Multivariate extension

Next we examine a multivariate extension of the distance-based T2
W

statistic. Let the observations be multivariate vectors, Z ¼
ðX1; . . . ;Xnx

;Y1; . . . ;Yny
Þ, where Xi ¼ ðXð1Þi ; . . . ;X

ðmÞ
i Þ and Yj ¼

ðYð1Þj ; . . . ;Y
ðmÞ
j Þ are of arbitrary dimension m. As before, let D ¼ fdijg

be the pairwise matrix of Euclidean distances dij ¼ jjZi � Zjjj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 ðZ

ðkÞ
i � Z

ðkÞ
j Þ

2
q

. We use these distances in place of their uni-

variate counterpart to compute T2
W and FA. By extension arbitrary

distances (e.g. Jaccard, Bray-Curtis etc.) can be used for this purpose.

Note that in contrast to the PERMANOVA statistic the distance-

based T2
W explicitly accounts for potentially unbalanced number of
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observations and differences in multivariate spread in the two

samples.

3.3 Permutation test
The exact distribution of the multivariate distance-based T2

W statis-

tic is dependent on many factors, such as the dimensionality of the

underlying data, the distributions of these random variables, the

exact distance metric used etc. To make a practical general test, we

use permutation testing to establish the significance. To do so we

compute T2
WðiÞ on k permutations, ZðiÞ, for i ¼ 1; . . . ; k, of the ori-

ginal data. The estimate of significance is obtained as the fraction of

times the permuted statistic is greater than or equal to T2
W, i.e.

p ¼ 1
k

Pk
i 1ðT2

W � T2
WðiÞÞ. Here 1ð:Þ designates the indicator func-

tion. In practice, the distance matrix D does not need to be recom-

puted with each permutation, as it is sufficient to just permute the

sample labels. This permutation procedure is used by the original

PERMANOVA method and is a standard application of permuta-

tion testing.

3.4 Distance-based effect size
The ability to compute pseudo-variances and square mean difference

using just pairwise distances allows for estimation multivariate ef-

fect sizes in terms of familiar to statisticians Cohen’s d. Using deriv-

ations (7) and (23) we write

d2 ¼ ð�x � �yÞ2

ðnx � 1Þs2
x þ ðny � 1Þs2

y

nx þ ny � 2

¼ nx þ ny

nxny
�

1

nx þ ny

X
i< j
ðzi � zjÞ2 �

1

nx

X
i< j
ðxi � xjÞ2 �

1

ny

X
i< j
ðyi � yjÞ2

1

nx

X
i< j
ðxi � xjÞ2 þ

1

ny

X
i< j
ðyi � yjÞ2

nx þ ny � 2

:

(29)

The positive square root of d2 provides an estimate of the absolute

value of the distance Cohen’s d and adds another potentially inter-

esting effect size measurement for multivariate analysis, in addition

to the recently proposed x2 (Kelly et al., 2015).

4 Results

4.1 Simulation results
In this section, we extend the simulation study in the Introduction

section to compare the performance of PERMANOVA and T2
W.

Again, the nx observations in sample one are independent and iden-

tically distributed (i.i.d.) Xi � Nð0; IÞ, the ny observations in sample

two are i.i.d. Yj � Nð1e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1000Þ

p
; f IÞ, where e controls the effect

size and f controls the degree of multivariate spread differences

(fraction SD) between the two samples. For each set of nx, ny, e, and

f we simulate 1000 independent datasets. For each dataset we com-

pute the p-values using permutation testing with PERMANOVA

and T2
W statistics. We calculate the fraction of rejected null-

hypothesis with each test at significance level a ¼ 0:05.

First, we consider a broad scan over the sample sizes

nx;ny 2 ð5; 10; 15; 20Þ. Representing, case to control (or treated to

untreated) ratios of 1:1, 1:2, 1:3 and 1:4 with relatively small overall

sample size. Under the null hypothesis T2
W maintains the prescribed

rejection rate for all examined levels of heteroscedasticity (Fig. 2

first column). As we have seen in the Introduction, in the unbal-

anced heteroscedastic case the PERMANOVA exhibits inflated type

I errors (Fig. 2 first column). As demonstrated in scenarios where

e > 0, unlike PERMANOVA, T2
W has greater power to detect differ-

ences as the sample sizes increase (Fig. 2 columns two and three,

rows one and two). The power curves for the two tests are similar

when multivariate spread in the two samples is the same (Fig. 2 bot-

tom row columns two and three). When it is not, however, the

curves intersect at approximately the point where the sample sizes in

the two groups are balanced (triangles). This suggests that T2
W over-

comes the problematic behavior of PERMANOVA and has similar

power under the homoscedastic design (Fig. 2 bottom row) and

when sample sizes are balanced (Fig. 2 triangles).

Imagine an experiment in which an investigator aims to compare

10 observations in each group. For reasons beyond their control

(e.g. animal dies, subjects drop from protocol, unequal gender ratio)

the resulting sample sizes at the end of the experiment may not

exactly be 10 versus 10. These conditions are encountered in many

common discovery type studies. We examine the effect of heterosce-

dasticity for PERMANOVA and T2
W under these conditions. We

perform a similar comparison for sample sizes in the vicinity of 50,

corresponding to sample sizes in a typical small clinical study. As we

have seen previously, when the multivariate spread in the two sam-

ples is the same or similar, the power curves for PERMANOVA and

T2
W overlap (Fig. 3a and b bottom row). With sample sizes around

10 the violation of homescedasticity leads to loss of power (Fig. 3a

columns two and three and rows one and two) and inflated type I

errors (Fig. 3a first column rows one and two) with PERMANOVA

relative toT2
W. With the sample size increasing to approximately 50,

PERMANOVA becomes more robust, while the traces of the issue

still remain when the effect size is small (Fig.3b second column).

Likewise, at these sample sizes the type I error inflation is still

Fig. 2. Empirical type I error and power characteristics of PERMANOVA

(black) and T 2
W (red). The effect sizes vary in columns of panels. Effect size 0

corresponds to the case where the null hypothesis is true and the plots dem-

onstrate the type I error. Plot of a method with ideal type I error characteris-

tics will be a horizontal line at the significance threshold a¼ 0.05. When effect

size is greater than 0, the plots show the power characteristics. Plot of a

method with ideal power will be a horizontal line at 1.0, corresponding to per-

fect power and no type II error. The degree of heteroscedasticity varies along

the rows and is represented in terms of ratio of the standard deviations (Frac

SD) between two samples. The bottom row corresponds to homoscedastic

scenario, the top and middle rows show high and medium heteroscedasticity

scenarios, respectively. The number of observations in the least dispersed

sample is indicated by the size of the point and the balanced samples are

identified by triangles
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present when the unbalance is more extreme and heteroscedasticity

is large (Fig. 3b top left). Overall, T2
Whas better or similar type I

error and power characteristics to PERMANOVA and should be

recommended in all two-sample designs.

4.2 Application examples

We apply the T2
W to two previously published datasets on micro-

biome differences in the gut (Cho et al., 2012) and on the skin

(Alekseyenko et al., 2013). In both cases we compute the distances

using the Bray-Curtis dissimilarity, dij ¼
P

kabsðZðkÞi � Z
ðkÞ
j Þ=P

kðZ
ðkÞ
i þZ

ðkÞ
j Þ. For each comparison, we compute the P-values

with 100 000 permutations under PERMANOVA and T2
W and

quantify the corresponding effect size using x2 and distance

Cohennc d. The difference in the multivariate spread H is measured

as the ratio of mean distances within compared groups.

4.2.1 Sub-therapeutic antibiotic treatment microbiome dataset

The gut microbiome dataset consists of measurements of abun-

dances of gut microbes obtained from mice that either received a

prescribed antibiotic in their drinking water or none (C). Samples

were obtained from two locations of the gut of these mice (cecal and

fecal). The target number of samples per location was 10; however,

several fecal samples could not be analyzed for technical reasons.

Table 2 summarizes the results of the analysis of these data. At a

commonly used significance threshold of a¼0.05, both

PERMANOVA and T2
W agree in the statistical decision. However, if

we were to use a more stringent a¼0.01, the comparison of the con-

trol microbiota against microbiota of all the mice receiving antibi-

otic would not be deemed significant under PERMANOVA, while

the P-values under T2
W are below the significance threshold. The esti-

mated effect size, d, for C. versus All abx. comparison in cecal and

fecal samples are 1.28 and 1.42, respectively. Both of these are con-

sidered large effect sizes (Cohen, 1988) and given adequate sample

sizes would be deemed highly significant. Moreover, when we

examine these data using principal coordinates analysis, the separ-

ation of the group centroids is evident (Fig. 4). The largest separ-

ation along PC1 is observed for the location (fecal versus cecal). The

antibiotic versus control groups are separated along PC2. Note that

for cecal samples the comparison of the controls against each of the

antibiotic treatment groups individually is significant and similar for

both tests. This is expected because the design is balanced in these

tests.

4.2.2 Skin microbiome in psoriasis dataset

The skin microbiome dataset consists of observations of skin micro-

bial abundances from control subjects and from psoriasis subjects,

who contribute two samples from a lesion site and from symmetrical

unaffected site. PERMANOVA and T2
W tests produce similar signifi-

cance values and inferences (Table 3), which is owed to the fact that

Fig. 3. Empirical type I error and power characteristics of PERMANOVA (black) and T 2
W (red) tests with varying effect size, degree of heteroscedasticity and num-

ber of observations in two samples, for sample sizes typical for (a) a discovery study or (b) a small clinical study. The effect sizes vary in columns of panels. Effect

size 0 corresponds to the case where the null hypothesis is true and the plots demonstrate the type I error. Plot of a method with ideal type I error characteristics

will be a horizontal line at the significance threshold a¼0.05. When effect size is greater than 0, the plots show the power characteristics. Plot of a method with

ideal power will be a horizontal line at 1.0, corresponding to perfect power and no type II error. The degree of heteroscedasticity varies along the rows and is rep-

resented in terms of ratio of the standard deviations (Frac SD) between two samples. The bottom row corresponds to homoscedastic scenario, the top and middle

rows show high and medium heteroscedasticity scenarios, respectively. The number of observations in the least dispersed sample is indicated by the size of the

point and the balanced samples are identified by triangles

Fig. 4. Principal coordinates analysis of sub-therapeutic antibiotic treatment

data. Points correspond to the individual observations in cecal control (black),

cecal antibiotics (red), fecal control (gray), and fecal antibiotic (orange)

groups. The centroid of each group is marked by the box with the group

labels
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the multivariate spread is similar in all conditions, and sample sizes

are larger and closer to being balanced.

5 Discussion

By derivation T2
W inherits the characteristics of the univariate un-

equal variance Welch t-test. That test is recommended as a replace-

ment for pooled variance t-test in all circumstances. Testing for

unequal variances by methods, such as PERMDISP, is not recom-

mended before a choice of the primary test is made. The main disad-

vantage of the Welch’s t-test compared with ANOVA is potential

loss of robustness when violations of normality are present (Levy,

1978). This issue, however, rests on the limiting distributions of the

tests. In our case, the inference is obtained by permutation testing,

which alleviates this concern. Thus T2
W should also become a first

line replacement for PERMANOVA in simple two-sample case.

Two-sample scenario is a common experimental design, but a

general solution for k-level factors is still desirable. The behavior of

PERMANOVA under heteroscedastic conditions with k-level fac-

tors have not been examined, but is suspected to suffer from similar

shortcomings as in the two sample case. When heteroscedasticity is

suspected, several remedial strategies can be implemented. First, a

variance stabilizing transformation can be applied to the data to re-

move heteroscedasticity (McMurdie and Holmes, 2014). If trans-

formation of the data is not desirable for any reason, other strategies

could include developing specialized sub-sampling and permutation-

based strategies. For example, the data could be re-sampled m times

at balanced sample sizes and an average PERMANOVA statistic

computed FA ¼ 1
m

P
iF
ðiÞ
A . This statistic could then be compared with

the null distribution generated by permuting the sample labels r-

times and computing the re-sampled FAð1Þ; . . . ; FAðrÞ, where

FAðjÞ ¼ 1
m

P
iF
ðiÞ
A ðjÞ. The significance can be determined by using

regular permutation testing approach to compare the number of

times the obtained statistic is more extreme than those observed

under the null, i.e. pðrÞ ¼
Pr

j 1ðFA > FAðjÞÞ. This method ensures

that the groups are balanced in each comparison, but may still

lead to loss of power due to decreased effective sample size in each

sub-sampled comparison. This approach is reported here as a sug-

gestion that needs further development and evaluation before in can

be implemented in practice. The final strategy for analysis of data

with arbitrary number of levels could involve the application of T2
w

to only relevant pairwise comparisons with appropriate multiple

comparison controls in place.
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