
Sequence analysis

ntHash: recursive nucleotide hashing

Hamid Mohamadi*, Justin Chu, Benjamin P. Vandervalk and

Inanc Birol*

Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6,

Canada

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on February 3, 2016; revised on June 14, 2016; accepted on June 17, 2016

Abstract

Motivation: Hashing has been widely used for indexing, querying and rapid similarity search in

many bioinformatics applications, including sequence alignment, genome and transcriptome as-

sembly, k-mer counting and error correction. Hence, expediting hashing operations would have a

substantial impact in the field, making bioinformatics applications faster and more efficient.

Results: We present ntHash, a hashing algorithm tuned for processing DNA/RNA sequences. It per-

forms the best when calculating hash values for adjacent k-mers in an input sequence, operating

an order of magnitude faster than the best performing alternatives in typical use cases.

Availability and implementation: ntHash is available online at http://www.bcgsc.ca/platform/bio

info/software/nthash and is free for academic use.

Contacts: hmohamadi@bcgsc.ca or ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hashing is a common function across many informatics applica-

tions, and refers to mapping an input key value of arbitrary size to

an allocated memory of predetermined size. Among other uses, it is

an enabling concept for rapid search operations, and forms the

backbone of Internet search engines. In bioinformatics, it has many

applications including sequence alignment, genome and transcrip-

tome assembly, RNA-seq expression quantification, k-mer counting

and error correction.

Large-scale sequence analysis often relies on cataloguing or count-

ing consecutive k-mers in DNA/RNA sequences for indexing, quer-

ying and similarity searching. An efficient way of implementing such

operations is through the use of hash based data structures, such as

hash tables or Bloom filters. Therefore, improving the performance of

hashing algorithms would have a great impact in a wide range of bio-

informatics tools. Here, we present ntHash, a fast function for recur-

sively computing hash values for consecutive k-mers.

2 Methods

We propose an algorithm to hash consecutive k-mers in a sequence,

r of length l>k, using a recursive function, f, in which the hash

value of the current k-mer H is derived from the hash value of the

previous k-mer:

H k�merið Þ ¼ f H k�meri�1ð Þ; r iþ k� 1½ �; r i� 1½ �ð Þ (1)

Such a recursive function, also called rolling hash function, offers

huge improvements in performance when hashing consecutive k-

mers. This has been previously described and investigated for n-

gram hashing for string matching, text indexing and information re-

trieval (Cohen, 1997; Gonnet and Baezayates, 1990; Karp and

Rabin, 1987; Lemire and Kaser, 2010). In this paper, we have cus-

tomized the concept for hashing all k-mers of a DNA sequence, and

implemented an adapted version of the cyclic polynomial hash func-

tion, ntHash, to compute normal or canonical hash values for k-

mers in DNA sequences efficiently. In hashing by cyclic polynomial,

ntHash uses barrel shifts instead of multiplications to make the pro-

cess faster. To compute hash values for all k-mers of the sequence r

of length l, we first hash the initial k-mer, k-mer0, as follows:

H k�mer0ð Þ ¼ rolk�1h r 0½ �ð Þ�rolk�2h r 1½ �ð Þ� . . . �h r k� 1½ �ð Þ (2)

where rol is a cyclic binary left rotation, � is the bit-wise

EXCLUSIVE OR (XOR) operator, and h(.) is a seed table, where the

letters of the DNA alphabet, R¼ {A, C, G, T}, are assigned different

VC The Author 2016. Published by Oxford University Press. 3492
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(22), 2016, 3492–3494

doi: 10.1093/bioinformatics/btw397

Advance Access Publication Date: 16 July 2016

Applications Note

http://www.bcgsc.ca/platform/bioinfo/software/nthash
http://www.bcgsc.ca/platform/bioinfo/software/nthash
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
Deleted Text: k-
Deleted Text: ,
Deleted Text: k-
Deleted Text: ,
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: ,
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
http://www.oxfordjournals.org/


random 64-bit integers. The hash values for all consequent k-mers,

k-mer1, . . ., k-merl-k, are then computed recursively as follows:

H k�merið Þ ¼ rol1H k�meri�1ð Þ�rolkh r i� 1½ �ð Þ�h r iþ k� 1½ �ð Þ
(3)

We note that the time complexity of ntHash for sequence r is

O(kþ l) compared to O(kl) complexity of regular hash functions. In

some bioinformatics applications, one might be interested in com-

puting the hash value of forward and reverse-complement sequences

of a k-mer.

To do so, we add in the seed table integers that correspond to the

complement bases, such that table indices of base-complement base

pairs are separated by a fixed offset. Using this table, we can easily

compute the hash value for the reverse-complement (as well as the

canonical form) of a sequence efficiently, without actually reverse-

complementing the input sequence, as follows:

H k�mer�0ð Þ¼h r 0½ �þdð Þ�rol1h r 1½ �þdð Þ� . . .�rolk�1h r k�1½ �þdð Þ
H k�mer0 �i:1::l�kð Þ¼ ror1H k�mer�i�1ð Þ�ror1h r i�1½ �þdð Þ
�rolk�1h r iþk�1½ �þdð Þ (4)

where ror is a cyclic binary right rotation, and d is the offset of com-

plement base in the seed table h(.).

Further, ntHash provides a fast way to compute multiple hash

values for a given k-mer, without repeating the whole procedure for

each value. To do so, a single hash value is computed from a given

k-mer, and then each extra hash value is computed by few more

multiplication, shifting and XOR operations on the initial hash

value (Supplementary Data). This would be very useful for certain

bioinformatics applications, such as those that utilize the Bloom fil-

ter data structure. Experimental results demonstrate a substantial

speed improvement over conventional approaches, while retaining

a near-ideal hash value distribution (Fig. 1, Supplementary

Tables S1–S8).

In the Results section, we have used sequencing data on the

human individual NA19238 from the Illumina Platinum Genomes

project, as well as simulated random DNA sequences, as detailed in

Supp. Data.

3 Results

A good hash function should generate hash values that are inde-

pendently and uniformly distributed across the target domain, re-

sulting in fewer collisions. To evaluate the independence of

ntHash values, one way is to use the correlation coefficient be-

tween the bits of 64-bit hash values. That is, if each bit xi,

i¼1..64, in a 64-bit hash value vector X¼ {x1, x2, . . ., x64} is an

independent random variable, then there should be no correlation

between them. To test this, we first generated sets of hash values

for a given input. We next computed the (Pearson) correlation co-

efficient matrix for each sample set. Figure 1a shows the correl-

ation coefficients of two sample sets of size 100 (above diagonal)

and 100 000 (below diagonal). The plot shows natural statistical

fluctuations for smaller sample sets. The correlations dissipate

rapidly for large sample sets (Supplementary Figs S1–S5).

Comparing the computed correlation coefficients with a confi-

dence interval around the theoretical zero correlation shows that

for all hash functions tested, the number of observations outside

the 99.7% confidence is around 0.3%, in agreement with theoret-

ical expectations.

We have also evaluated the uniformity of different hash methods

by utilizing a Bloom filter data structure. Here, we first load a

Bloom filter with a number of unique k-mers, and then query the

Bloom filter with another set of unique k-mers. The results show the

false positive rates of ntHash and other hash functions comply with

the theoretical false positive rate for Bloom filters, indicating the

uniform distribution of hash values generated by the tested hash

methods (Supplementary Tables S1–S8).

We have compared the runtime performance of ntHash algo-

rithm with three most widely used hash methods in bioinformatics:

cityhash, murmur and xxhash (unpublished tools; references to web-

sites provided in the Supplementary Materials). ntBase is the hash

function for the base equation of ntHash (Eq. (2)). Figure 1b shows

the runtimes for hashing different length k-mers in 5 000 000 DNA

sequences of length 250 bp. In the inset, we see ntHash outperforms

other algorithms when hashing more than two k-mers in a DNA se-

quence. Figure 1c illustrates a typical use case of computing multiple

hash values for 50-mers in DNA sequences of length 250 bp, and

Fig. 1. Performance of ntHash. (a) A good hash function should have its values uniformly and independently distributed across the target domain. One way of

measuring that is through correlation coefficients between the bits of hashed values. The plot shows natural statistical fluctuations for smaller sample sets (100

data points, the area above diagonal). The correlations dissipate rapidly for large sample sets (100 000 data points, the area below diagonal). (b) Runtime for hash-

ing 250 bp DNA sequences with different k-mer lengths from 50 to 250. ntHash outperforms all other hash methods when hashing more than two subsequent k-

mers, i.e. k<249. (c) Comparing multi-hashing runtime of ntHash with the leading hash functions for one billion 50-mers. ntHash performs over 20� faster than

the closest competitor, cityhash. Grey, orange and blue bars refer to calculation of one, three and five hash functions, respectively

ntHash 3493

Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
Deleted Text: k-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
Deleted Text: k-
Deleted Text: k-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
Deleted Text: Equation 
Deleted Text: .
Deleted Text: k-
Deleted Text: ,
Deleted Text: ,
Deleted Text: k-
Deleted Text: .


shows that ntHash is over 20� faster than the closest competitor

(Supplementary Figs S6, S7).

Funding

This work has been funded by BC Cancer Foundation, Genome BC, Genome

Canada, UBC and NIH (under award number R01HG007182).

Conflict of Interest: The authors have a provisional patent on the technology

with USPTO # 62288334.

References

Cohen,J.D. (1997) Recursive hashing functions for n-grams. ACM Trans.

Inform. Syst., 15, 291–320.

Gonnet,G.H. and Baezayates,R.A. (1990) An analysis of the Karp-Rabin

string matching algorithm. Inform. Process. Lett., 34, 271–274.

Karp,R.M. and Rabin,M.O. (1987) Efficient randomized pattern-matching al-

gorithms. IBM J. Res. Dev., 31, 249–260.

Lemire,D. and Kaser,O. (2010) Recursive n-gram hashing is pairwise inde-

pendent, at best. Comput. Speech Lang., 24, 698–710.

3494 H.Mohamadi et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw397/-/DC1
Deleted Text: ,

